首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
IL-17 from pearl oyster Pinctada fucata, one of mollusk, was identified and characterized, and its genomic structure and promoter were analyzed. The full-length cDNA of P. fucata IL-17 (PfIL-17) is 907 bp with an open reading frame of 585 bp encoding a putative protein of 194 amino acids. The deduced PfIL-17 contains a 19 amino acid signal peptide and a conserved IL-17 domain. Multiple sequence alignments and phylogenetic analysis revealed that PfIL-17 has lower similarity with other invertebrate IL-17 and was clustered with CgIL-17, but not clustered with other invertebrate IL-17. Gene expression analysis indicated that PfIL-17 took part in the immune response to LPS and poly(I:C) stimulation, and dual-luciferase reporter assays showed that PfIL-17 could active vertebrate target genes containing the NF-κB binding site and involve NF-κB signal pathway in HEK293 cells. Combined with the results mentioned above, it is suggested that PfIL-17 might involve and activate NF-κB signal pathway against extracellular pathogens.  相似文献   

2.
Li S  Xie L  Ma Z  Zhang R 《The FEBS journal》2005,272(19):4899-4910
Calcium metabolism in oysters is a very complicated and highly controlled physiological and biochemical process. However, the regulation of calcium metabolism in oyster is poorly understood. Our previous study showed that calmodulin (CaM) seemed to play a regulatory role in the process of oyster calcium metabolism. In this study, a full-length cDNA encoding a novel calmodulin-like protein (CaLP) with a long C-terminal sequence was identified from pearl oyster Pinctada fucata, expressed in Escherichia coli and characterized in vitro. The oyster CaLP mRNA was expressed in all tissues tested, with the highest levels in the mantle that is a key organ involved in calcium secretion. In situ hybridization analysis reveals that CaLP mRNA is expressed strongly in the outer and inner epithelial cells of the inner fold, the outer epithelial cells of the middle fold, and the dorsal region of the mantle. The oyster CaLP protein, with four putative Ca(2+)-binding domains, is highly heat-stable and has a potentially high affinity for calcium. CaLP also displays typical Ca(2+)-dependent electrophoretic shift, Ca(2+)-binding activity and significant Ca(2+)-induced conformational changes. Ca(2+)-dependent affinity chromatography analysis demonstrated that oyster CaLP was able to interact with some different target proteins from those of oyster CaM in the mantle and the gill. In summary, our results have demonstrated that the oyster CaLP is a novel member of the CaM superfamily, and suggest that the oyster CaLP protein might play a different role from CaM in the regulation of oyster calcium metabolism.  相似文献   

3.
Because of its capacity to rapidly convert superoxide to hydrogen peroxide, superoxide dismutase (SOD) is crucial in both intracellular signalling and regulation of oxidative stress. In this paper we report the cloning of a Cu/Zn SOD (designated as pfSOD) from the pearl oyster (Pinctada fucata) using rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of this Cu/Zn SOD contains an open reading frame (ORF) of 471 bp coding for 156 amino acids. No signal peptide was identified at the N-terminal amino acid sequence of Cu/Zn SOD indicating that this pfSOD encodes a cytoplasmic Cu/Zn SOD. This is supported by the presence of conserved amino acids required for binding copper and zinc. Semi-quantitative analysis in adult tissues showed that the pfSOD mRNA was abundantly expressed in haemocytes and gill and scarcely expressed in other tissues tested. After challenge with lipopolysaccharide (LPS), expression of pfSOD mRNA in haemocytes was increased, reaching the highest level at 8 h, then dropping to basal levels at 36 h. These results suggest that Cu/Zn SOD might be used as a bioindicator of the aquatic environmental pollution and cellular stress in pearl oyster.  相似文献   

4.
Galectins can recognize and specifically bind to β-galactoside residues, playing crucial roles in innate immune responses of vertebrates and invertebrates. We cloned the cDNA of a tandem-repeat galectin from the pearl oyster Pinctada fucata (designated as PoGal2). PoGal2 cDNA is 1347 bp long and consists of a 5'-untranslated region (UTR) of 3 bp, a 3'-UTR of 297 bp with one cytokine RNA instability motif (ATTTA), and an open reading frame of 1047 bp, encoding a polypeptide of 349 amino acids, with an estimated molecular mass of 38.1 kDa and a theoretical isoelectric point of 8.5. PoGal2 contains two carbohydrate recognition domains (CRDs); both have the conserved carbohydrate-binding motifs H-NPR and WG-EE. PoGal2 shares 50.6 and 50.9% identity with those of abalone (Haliotis discus) and the Manila clam (Venerupis philippinarum), respectively. Phylogenetic analysis revealed that the tandem-repeat galectins formed two clades for the different species. Molluscan tandem-repeat galectins were clustered into a single clade, and nematode tandem-repeat galectins were clustered into another single clade. In both clades, CRD-N and CRD-C were divided into different groups. PoGal2 mRNA was constitutively expressed in all tissues analyzed, and the expression level of PoGal2 mRNA was found to be significantly up-regulated in digestive glands, gills and hemocytes after Vibrio alginolyticus stimulation/infection. Expression profile analysis showed that the expression level of PoGal2 mRNA was significantly up-regulated at 8, 12 and 24 h after V. alginolyticus infection. These results suggest that PoGal2 is a constitutive and inducible acute-phase protein involved in the innate immune response of pearl oysters.  相似文献   

5.
TRAF3 is a highly versatile regulator that negatively regulates JNK and alternative nuclear factor-κB signalling, but positively controls type I interferon production. To investigate TRAF3 function in innate immune responses among invertebrate especially mollusk, we characterized TRAF3 (PfTRAF3) from pearl oyster Pinctada fucata, one of the most important bivalve mollusks for seawater pearl production. PfTRAF3 cDNA is 2261 bp with an open reading frame of 1623 bp encoding a putative protein of 541 amino acids. The deduced PfTRAF3 contains a RING finger domain, two TRAF domains with zinc finger domains and a conserved C-terminal meprin and TRAF homology (MATH) domain. Comparison and phylogenetic analysis revealed that PfTRAF3 from mollusk shared a higher identity with Ciona intestinalis TRAF3 from urochordata, Branchiostoma belcheri TRAF3 from cephalochordate, and even TRAF3 from vertebrate than with insect homologues. Furthermore, gene expression analyses suggested that PfTRAF3 was involved in the immune response to Vibrio alginolyticus.  相似文献   

6.
Guo H  Zhang D  Cui S  Chen M  Wu K  Li Y  Su T  Jiang S 《Marine Genomics》2011,4(4):245-251
Catalase (EC 1.11.1.6) is an important antioxidant enzyme that protects aerobic organisms against oxidative damage by degrading hydrogen peroxide to water and oxygen. In the present study, a catalase cDNA of peal oyster Pincatada fucata (designated as PoCAT) is cloned and characterized by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) methods. PoCAT is 2428 bp long and consists of a 5′-UTR of 140 bp, an unusually long 3′-UTR of 749 bp, and an open reading frame (ORF) of 1539 bp. The ORF of PoCAT encodes a polypeptide of 512 amino acids with molecular weight of 58.1 kDa and the theoretical isoelectric point of 8.4. PoCAT shares 62.3–82.2% identity and 73.0–92.0% similarity to other catalase amino acid sequences. Sequence alignment indicates that PoCAT contains the proximal heme-ligand signature sequence (R351LFSYSDT358), the proximal active site signature (F61NRERIPERVVHAKGGGA78), and the three catalytic amino acid residues (His72, Asn145, and Tyr 355). PoCAT has two potential glycosylation sites (N436YS438 and N478FS480) and a peroxisome targeting signal (ASL). PoCAT mRNA was ubiquitously expressed in all detected tissues, and the expression level of PoCAT mRNA was higher in intestine and mantle. The expression profile analysis showed that the expression level of PoCAT mRNA in intestine was significantly up-regulated at 2, 4 and 12 h after Vibrio alginolyticus stimulation. These results demonstrated that PoCAT is a typical member of catalase family and might be involved in innate immune responses of pearl oyster.  相似文献   

7.
A novel carbonic anhydrase (CA) has been purified from the mantle of the pearl oyster, Pinctada fucata, by ammonium sulfate precipitation and affinity chromatography. Its molecular mass was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to be approximately 38 kDa. Native-PAGE shows that the novel CA can bind a fluorescent probe, 5-dimethylamino-1-naphthalenesulfonamide (DNSA), known to specifically bind carbonic anhydrase. Compared to carbonic anhydrase I (CAI) from human erythrocytes, the novel CA migrates faster indicating that it is more acidic. The effect of an inhibitor on the enzyme activity was also examined. The CA from the mantle showed a weak resistance to acetazolamide (AZ), a specific inhibitor of CA. When DNSA was bound to CA, it caused the wavelength of emission maximum intensity to blue shift to 454 nm upon excitation at 326 nm. Histochemical data indicates that the enzyme is distributed widely throughout the mantle tissue, being concentrated at the edge of the mantle. The evidence presented indicates a function for CA in the process of pearl formation and biomineralization.  相似文献   

8.
Iron is one of the most important minor elements in the shell of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell formation. A novel ferritin cDNA from the pearl oyster (Pinctada fucata) was isolated and characterized. The ferritin cDNA encodes a 206 amino acid polypeptide, which shares high similarity with snail soma ferritin and the H-chains of mammalian ferritins. Oyster ferritin mRNA shows the highest level of expression in the mantle, the organ for shell formation. In situ hybridization analysis revealed that oyster ferritin mRNA is expressed at the highest level at the mantle fold, a region essential for metal accumulation and contributes to metal incorporation into the shell. Taken together, these results suggest that ferritin is involved in shell formation by iron storage. The identification and characterization of oyster ferritin also helps to further understand the structural and functional properties of molluscan ferritins.  相似文献   

9.
Tyrosinase (monophenol, L-DOPA: oxygen oxidoreductase, EC 1.14.18.1), a kind of copper-containing phenoloxidase, arouses great interests of scientists for its important role in periostracum formation. A cDNA clone encoding a putative tyrosinase, termed OT47 because of its estimated molecular mass of 47kDa, was isolated from the pearl oyster, Pinctada fucata. This novel tyrosinase shares similarity with the cephalopod tyrosinases and other type 3 copper proteins within two conserved copper-binding sites. RT-PCR analysis showed that OT47 mRNA was expressed only in the mantle edge. Further in situ hybridization analysis and tyrosinase activity staining revealed that OT47 was expressed at the outer epithelial cells of the middle fold, different from early histological results in Mercenaria mercenaria, suggesting a different model of periostracum secretion in P. fucata. Taken together, these results suggest that OT47 is most likely involved in periostracum formation. The identification and characterization of oyster tyrosinase also help to further understand the structural and functional properties of molluscan tyrosinase.  相似文献   

10.
11.
Inhibitor of NF-κB (IκB) is one important member of NF-κB signal pathway and plays a pivotal role in regulating the innate immune response of invertebrate. Herein, we described the isolation and characterization of pearl oyster Pinctada fucata IκB gene (designated as poIκB). The poIκB cDNA was 1975 bp long and consisted of a 5′ untranslated region (UTR) of 73 bp, a 3′ UTR of 807 bp with three RNA instability motifs (ATTTA) and a polyadenylation signal (AATAAA) at 13 nucleotides upstream of the poly (A) tail, and an open reading frame (ORF) of 1095 bp encoding a polypeptide of 364 amino acids with an estimated molecular mass of 40.11 kDa and theoretical isoelectric point of 4.61. A conserved degradation motif (DS35GFSS39) and six ankyrin repeats were identified in the poIκB by SMART analysis. Homology analysis of the deduced amino acid sequence of the poIκB with other known IκB sequences by MatGAT software revealed that the poIκB shared 23.5–63.3% similarities with other known IκB isoforms. The poIκB mRNA was constitutively expressed in all studied tissues with the most abundant mRNA in the haemocyte. The poIκB mRNA was up-regulated and increased 4.13- and 5.28-fold after LPS and Vibrio alginolyticus stimulation, respectively. These results suggested that the poIκB was a constitutive and inducible acute-phase protein that perhaps involved in the immune defense of pearl oyster.  相似文献   

12.
Interferon regulatory factors (IRFs) control many facets of the innate and adaptive immune responses, regulate the development of the immune system itself and involve in reproduction and morphogenesis. In the present study, the IRF-2 homology gene, PfIRF-2 from pearl oyster Pinctada fucata was cloned and its genomic structure and promoter were analyzed. PfIRF-2 encodes a putative protein of 350 amino acids, and contains a highly conserved N-terminal DNA-binding domain and a variable C-terminal regulatory domain. Comparison and phylogenetic analysis revealed that PfIRF-2 shared a relatively higher identity with other mollusk but relatively lower identity with vertebrate IRF-2, and was clustered with IRF-1 subfamily composed of IRF-2 and IRF-1. Furthermore, gene expression analysis revealed that PfIRF-2 involved in the immune response to LPS and poly(I:C) stimulation. Immunofluorescence assay showed that the expressed PfIRF-2 was translocated into the nucleus and dual-luciferase reporter assays indicated that PfIRF-2 could involved and activate interferon signaling or NF-κB signal pathway in HEK293 cells. The study of PfIRF-2 may help better understand the innate immune in mollusk.  相似文献   

13.
Marine pearl production is directly influenced by the growth speed of Pinctada fucata martensii. However, the slow growth rate of this organism remains the main challenge in aquaculture production. Epidermal growth factor receptor (EGFR), an important receptor of tyrosine kinases in animals, plays versatile functions in development, growth and tissue regeneration. In this study, we described the characteristic and function of an EGFR gene identified from P. f. martensii (PmEGFR). PmEGFR possesses a typical EGFR structure and is expressed in all studied tissues, with the highest expression level in adductor muscle. PmEGFR expression level is significantly higher in the fast-growing group than that in the slow-growing one. Correlation analysis represents that shell height and shell weight show positive correlation with PmEGFR expression (p < 0.05), and total weight and tissue weight exhibit positive correlation with it (p < 0.01). This study indicates that PmEGFR is a valuable functional gene associated with growth traits.  相似文献   

14.
1. A lectin in the serum of Pinctada fucata martensii was purified by a combination of affinity chromatography on Sepharose 4B coupled with bovine submaxillary gland mucine, anion exchange chromatography on Mono Q and gel filtration on Superose 6. 2. The purified lectin was indicated to be homogeneous by polyacrylamide electrophoresis and rechromatography on Mono Q. 3. The purified lectin was approximately 440,000 in molecular weight and was composed of identical subunits with a molecular weight of approximately 20,000. 4. D-galactose and N-acetylgalactosamine gave a 50% inhibition of agglutination of horse erythrocytes by the lectin at 0.3 and 1.2 mM, respectively. 5. The antibody obtained from rabbit immunized with the purified lectin was monospecific to the lectin judged from the hemagglutination blocking test, immunoelectrophoresis and immunoblotting.  相似文献   

15.
16.
We previously identified a matrix protein, MSI7, from pearl oyster Pinctada fucata. According to the structural analysis, the DGD site in the N-terminal of MSI7 is crucial for its role in the shell formation. In this study, we expressed a series of recombinant MSI7 proteins, including the wild-type and several mutants directed at the DGD site, using an Escherichia coli expression system to reveal the structure-function relationship of MSI7. Furthermore, in vitro crystallization, crystallization speed assay, and circular dichroism spectrometry were carried out. Results indicated that wild-type MSI7 could induce the nucleation of aragonite and inhibit the crystallization of calcite. However, none of the mutants could induce the nucleation of aragonite, but all of them could inhibit the crystallization of calcite to some extent. And all the proteins accelerated the crystallization process. Taken together, the results indicated that MSI7 could contribute to aragonite crystallization by inducing the nucleation of aragonite and inhibiting the crystallization of calcite, which agrees with our prediction about its role in the nacreous layer formation of the shell. The DGD site was critical for the induction of the nucleation of aragonite.  相似文献   

17.
This study examines the seasonal changes of marine birnavirus (MABV) in seawater and the Japanese pearl oyster Pinctada fucata reared at different depths (2 and 15 m). Oysters and seawater were collected in 1998, and a 2-step PCR was carried out to detect MABV. Virus isolation was performed on the PCR-positive samples in the oyster. The detection rate of the MABV genome in the oyster was low during June, but increased after July at both 2 and 15 m depths. MABV was not isolated until after September, when isolation rates of 10 to 28.6% were recorded. The results suggest that growth of MABV in the oyster is similar at 2 and 15 m depth. In contrast, the MABV genome in seawater was present through the year at 15 m depth, but was not detected in summer at 2 m. This suggests that the virus is destroyed by UV and/or other factors at 2 m in summer, but is stable in deeper waters.  相似文献   

18.
Pearl oysters are usually sacrificed to donate mantle tissue for pearl production. However, if oysters are anaesthetized, they are able to survive mantle excision and regenerate this tissue. Mantle excision causes a large wound and severs the pallial artery that necessitates rapid wound repair to avoid death by bleeding. This study was undertaken to assess the wound healing process in the mantle of the Akoya pearl oyster, Pinctada fucata, following mantle excision. Forty-seven P. fucata were relaxed with 2.5 mL L(-1) propylene phenoxetol before mantle tissue was excised. Oysters were relaxed and sacrificed 1, 3, 6, 12, 25, 36, 48, 66, 80 and 105 h after excision to assess mantle healing using histological techniques. Muscular contraction that effectively reduced the size of the wound was observed within 1 h after mantle excision. Accumulation of haemocytes and connective tissue occurred 3-6 h after excision and wound plugging was achieved within 6 h of excision. Proliferation of epithelial cells to cover the wound site was observed within the first 25 h after mantle excision and growth of connective tissue and formation of the pallial artery were observed within 105 h after mantle excision.  相似文献   

19.
20.
Suzuki M  Nagasawa H 《The FEBS journal》2007,274(19):5158-5166
The mollusk shell is a hard tissue consisting of calcium carbonate and organic matrices. The organic matrices are considered to play important roles in shell formation. We have previously identified a prismatic layer-specific protein named Prismalin-14, which consists of 105 amino acid residues and includes four structurally characteristic regions; a repeated sequence of Pro-Ile-Tyr-Arg, a Gly/Tyr-rich region and N- and C-terminal Asp-rich regions. Prismalin-14 showed an inhibitory activity on calcium carbonate precipitation and a calcium-binding ability in vitro. In this study, we prepared some molecular species of recombinant proteins including Prismalin-14 and its truncated proteins in an Escherichia coli expression system to reveal a structure-function relationship of Prismalin-14. The results showed that the Gly/Tyr-rich region was responsible for chitin binding and was identified as a novel chitin-binding sequence. On the other hand, both N- and C-terminal Asp-rich regions are related to inhibitory activity on calcium carbonate precipitation in vitro. Immunohistological observation revealed that Prismalin-14 was localized at the acid-insoluble organic framework including chitin. All these results strongly suggest that Prismalin-14 is a framework protein that mediates chitin and calcium carbonate crystals by using its acidic and chitin-binding regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号