首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the 3-chlorocatechol 1,2-dioxygenase from the Gram-positive bacterium Rhodococcus opacus (erythropolis) 1CP, a Fe(III) ion-containing enzyme specialized in the aerobic biodegradation of 3-chloro- and methyl-substituted catechols, has been solved by molecular replacement techniques using the coordinates of 4-chlorocatechol 1,2-dioxygenase from the same organism (PDB code 1S9A) as a starting model and refined at 1.9 A resolution (R(free) 21.9%; R-factor 17.4%). The analysis of the structure and of the kinetic parameters for a series of different substrates, and the comparison with the corresponding data for the 4-chlorocatechol 1,2-dioxygenase isolated from the same bacterial strain, provides evidence of which active site residues are responsible for the observed differences in substrate specificity. Among the amino acid residues expected to interact with substrates, only three are altered Val53(Ala53), Tyr78(Phe78) and Ala221(Cys224) (3-chlorocatechol 1,2-dioxygenase(4-chlorocatechol 1,2-dioxygenase)), clearly identifying the substitutions influencing substrate selectivity in these enzymes. The crystallographic asymmetric unit contains eight subunits (corresponding to four dimers) that show heterogeneity in the conformation of a co-crystallized molecule bound to the catalytic non-heme iron(III) ion resembling a benzohydroxamate moiety, probably a result of the breakdown of recently discovered siderophores synthesized by Gram-positive bacteria. Several different modes of binding benzohydroxamate into the active site induce distinct conformations of the interacting protein ligands Tyr167 and Arg188, illustrating the plasticity of the active site origin of the more promiscuous substrate preferences of the present enzyme.  相似文献   

2.
The crystal structure of the 4-chlorocatechol 1,2-dioxygenase from the Gram-positive bacterium Rhodococcus opacus (erythropolis) 1CP, a Fe(III) ion-containing enzyme involved in the aerobic biodegradation of chloroaromatic compounds, has been solved by multiple wavelength anomalous dispersion using the weak anomalous signal of the two catalytic irons (1 Fe/257 amino acids) and refined at a 2.5 A resolution (R(free) 28.7%; R factor 21.4%). The analysis of the structure and its comparison with the structure of catechol 1,2-dioxygenase from Acinetobacter calcoaceticus ADP1 (Ac 1,2-CTD) highlight significant differences between these enzymes. The general topology of the present enzyme comprises two catalytic domains (one for each subunit) related by a noncrystallographic 2-fold axis and separated by a common alpha-helical zipper motif consisting of five N-terminal helices from each subunit; furthermore the C-terminal tail is shortened significantly with respect to the known Ac 1,2-CTD. The presence of two phospholipids binding in a hydrophobic tunnel along the dimer axis is shown here to be a common feature for this class of enzyme. The active site cavity presents several dissimilarities with respect to the known catechol-cleaving enzyme. The catalytic nonheme iron(III) ion is bound to the side chains of Tyr-134, Tyr-169, His-194, and His-196, and a cocrystallized benzoate ion, bound to the metal center, reveals details on a novel mode of binding of bidentate inhibitors and a distinctive hydrogen bond network with the surrounding ligands. Among the amino acid residues expected to interact with substrates, several are different from the corresponding analogs of Ac 1,2-CTD: Asp-52, Ala-53, Gly-76, Phe-78, and Cys-224; in addition, regions of largely conserved amino acid residues in the catalytic cleft show different shapes resulting from several substantial backbone and side chain shifts. The present structure is the first of intradiol dioxygenases that specifically catalyze the cleavage of chlorocatechols, key intermediates in the aerobic catabolism of toxic chloroaromatics.  相似文献   

3.
A eukaryotic catechol 1,2-dioxygenase (1,2-CTD) was produced from a Candida albicans TL3 that possesses high tolerance for phenol and strong phenol degrading activity. The 1,2-CTD was purified via ammonium sulfate precipitation, Sephadex G-75 gel filtration, and HiTrap Q Sepharose column chromatography. The enzyme was purified to homogeneity and found to be a homodimer with a subunit molecular weight of 32,000. Each subunit contained one iron. The optimal temperature and pH were 25°C and 8.0, respectively. Substrate analysis showed that the purified enzyme was a type I catechol 1,2-dioxygenase. This is the first time that a 1,2-CTD from a eukaryote (Candida albicans) has been characterized. Peptide sequencing on fragments of 1,2-CTD by Edman degradation and MALDI-TOF/TOF mass analyses provided information of amino acid sequences for BLAST analysis, the outcome of the BLAST revealed that this eukaryotic 1,2-CTD has high identity with a hypothetical protein, CaO19_12036, from Candida albicans SC5314. We conclude that the hypothetical protein is 1,2-CTD.  相似文献   

4.
Dioxygenases are nonheme iron enzymes that biodegrade recalcitrant compounds, such as catechol and derivatives, released into the environment by modern industry. Intradiol dioxygenases have attracted much attention due to the interest in their use for bioremediation, which has demanded efforts towards understanding their action mechanism and also how to control it. The role of unexpected amphipatic molecules, observed in crystal structures of intradiol dioxygenases, during catalysis has been poorly explored. We report results obtained with the intradiol enzyme chlorocatechol 1,2-dioxygenase (1,2-CCD) from Pseudomonas putida subjected to delipidation. The delipidated enzyme is more stable and shows more cooperative thermal denaturation. The kinetics changes from Michaelis–Menten to a cooperative scheme, indicating that conformational changes propagate between monomers in the absence of amphipatic molecules. Furthermore, these molecules inhibit catalysis, yielding lower v max values. To the best of our knowledge, this is the first report concerning the effects of amphipatic molecules on 1,2-CCD function.  相似文献   

5.
BACKGROUND: Intradiol dioxygenases catalyze the critical ring-cleavage step in the conversion of catecholate derivatives to citric acid cycle intermediates. Catechol 1,2-dioxygenases (1, 2-CTDs) have a rudimentary design structure - a homodimer with one catalytic non-heme ferric ion per monomer, that is (alphaFe(3+))(2). This is in contrast to the archetypical intradiol dioxygenase protocatechuate 3,4-dioxygenase (3,4-PCD), which forms more diverse oligomers, such as (alphabetaFe(3+))(2-12). RESULTS: The crystal structure of 1,2-CTD from Acinetobacter sp. ADP1 (Ac 1,2-CTD) was solved by single isomorphous replacement and refined to 2.0 A resolution. The structures of the enzyme complexed with catechol and 4-methylcatechol were also determined at resolutions of 1.9 A and 1.8 A, respectively. While the characteristics of the iron ligands are similar, Ac 1,2-CTD differs from 3,4-PCDs in that only one subunit is used to fashion each active-site cavity. In addition, a novel 'helical zipper', consisting of five N-terminal helices from each subunit, forms the molecular dimer axis. Two phospholipids were unexpectedly found to bind within an 8 x 35 A hydrophobic tunnel along this axis. CONCLUSIONS: The helical zipper domain of Ac 1, 2-CTD has no equivalent in other proteins of known structure. Sequence analysis suggests the domain is a common motif in all members of the 1,2-CTD family. Complexes with catechol and 4-methylcatechol are the highest resolution complex structures to date of an intradiol dioxygenase. Furthermore, they confirm several observations seen in 3,4-PCDs, including ligand displacement upon binding exogenous ligands. The structures presented here are the first of a new family of intradiol dioxygenases.  相似文献   

6.
Corynebacterium glutamicum assimilated phenol, benzoate, 4-hydroxybenzoate p-cresol and 3,4-dihydroxybenzoate. Ring cleavage was by catechol 1,2-dioxygenase when phenol or benzoate was used and by protocatechuate 3,4-dioxygenase when the others were used as substrate. The locus ncg12319 of its genome was cloned and expressed in Escherichia coli. Enzyme assays showed that ncg12319 encodes a catechol 1,2-dioxygenase. This catechol 1,2-dioxygenase was purified and accepted catechol, 3-, or 4-methylcatechols, but not chlorinated catechols, as substrates. The optimal temperature and pH for catechol cleavage catalyzed by the enzyme were 30 degrees C and 9, respectively, and the Km and Vmax were determined to be 4.24 micromol l(-1) and 3.7 micromol l(-1) min(-1) mg(-1) protein, respectively.  相似文献   

7.
Degradation of phenol and phenolic compounds by Pseudomonas putida EKII   总被引:3,自引:0,他引:3  
Summary The phenol-degrading strain Pseudomonas putida EKII was isolated from a soil enrichment culture and utilized phenol up to 10.6 mM (1.0 g·1 -1) as the sole source of carbon and energy. Furthermore, cresols, chlorophenols, 3,4-dimethylphenol, and 4-chloro-m-cresol were metabolized as sole substrates by phenol-grown resting cells of strain EKII. Under conditions of cell growth, degradation of these xenobiotics was achieved only in co-metabolism with phenol. Phenol hydroxylase activity was detectable in whole cells but not in cell-free extracts. The specificity of the hydroxylating enzyme was found during transformation of cresols and chlorophenols: ortho- and meta-substituted phenols were degraded via 3-substituted catechols, while degradation of para-substituted phenols proceeded via 4-substituted catechols. In cell-free extracts of phenol-grown cells a high level of catechol 2,3-dioxygenase as well as smaller amounts of 2-hydroxymuconic semialdehyde hydrolyase and catechol 1,2-dioxygenase were detected. The ring-cleaving enzymes were characterized after partial purification by DEAE-cellulose chromatography.  相似文献   

8.
《FEBS letters》1997,407(1):69-72
Hydroxyquinol 1,2-dioxygenase, an intradiol dioxygenase, which catalyzes the cleaving of the aromatic ring of hydroxyquinol, a key intermediate of 2,4-D and 2,4,5-T degradation, was purified from Nocardioides simplex 3E cells grown on 2,4-D as the sole carbon source. This enzyme exhibits a highly restricted substrate specificity and is able to cleave hydroxyquinol (Km for hydroxyquinol as a substrate was 1.2 μM, Vmax 55 U/mg, Kcat 57 s−1 and Kcat/Km 47.5 μM s−1), 6-chloro- and 5-chlorohydroxyquinol. Different substituted catechols and hydroquinones are not substrates for this enzyme. This enzyme appears to be a dimer with two identical 37-kDa subunits. Protein and iron analyses indicate an iron stoichiometry of 1 iron/65 kDa homodimer, α2 Fe. Both the electronic absorption spectrum which shows a broad absorption band with a maximum at 450 nm and the electron paramagnetic resonance spectra are consistent with a high-spin iron(III) ion in a rhombic environment typical of the active site of intradiol cleaving enzymes.  相似文献   

9.
Alcaligenes eutrophus CH34 used benzoate as a sole source of carbon and energy, degrading it through the 3-oxoadipate pathway. All the enzymes required for this degradation were shown to be encoded by chromosomal genes. Catechol 1,2-dioxygenase activity was induced by benzoate, catechol, 4-chlorocatechol, and muconate. The enzyme is most likely a homodimer, with an apparent molecular weight of 76,000 ± 500. According to several criteria, its properties are intermediate between those of catechol 1,2-dioxygenases (CatA) and chlorocatechol 1,2-dioxygenases (ClcA). The determined K m for catechol is the lowest among known catechol and chlorocatechol dioxygenases. Similar K m values were found for para-substituted catechols, although the catalytic constants were much lower. The catechol 1,2-dioxygenase from strain CH34 is unique in its property to transform tetrachlorocatechol; however, excess substrate led to a marked reversible inhibition. Some meta- and multi-substituted catechols behaved similarly. The determined K m (or K i) values for para- or meta-substituted catechols suggest that the presence of an electron-withdrawing substituent at one of these positions results in a higher affinity of the enzyme for the ligand. Results of studies of recognition by the enzyme of various nonmetabolised aromatic compounds are also discussed. Received: 20 November 1996 / Accepted: 11 April 1996  相似文献   

10.
The reactions of 3-ethylcatechol and 3-(methylthio)catechol with catechol 1,2-dioxygenase and catechol 2,3-dioxygenase from Pseudomonas putida were examined. Both 3-substituted catechols are oxidized by catechol 2,3-dioxygenase at approximately 30% of the rate observed for catechol oxidation by this enzyme. Analysis of the products of the reactions showed that ring cleavage occurs in a normal fashion between carbons 2 and 3 of the alternate substrates. 3-Ethylcatechol is oxidized by catechol 1,2-dioxygenase at about 6% of the rate of catechol oxidation; ring cleavage occurs between carbons 1 and 2 to give 2-ethyl-cis,cis-muconic acid. However, 3-(methylthio)catechol is a very poor substrate for catechol 1,2-dioxygenase (0.8% of the rate of catechol), but it is a potent competitive inhibitor (Ki = 0.6 microM). The effects of 3-(methylthio)catechol and 3-ethylcatechol on the visible and EPR spectra of catechol 1,2-dioxygenase are also reported.  相似文献   

11.
This study aimed to characterization of catechol 1,2-dioxygenase from a Gram-negative bacterium, being able to utilize a wide spectrum of aromatic substrates as a sole carbon and energy source. Strain designated as N6, was isolated from the activated sludge samples of a sewage treatment plant at Bentwood Furniture Factory Jasienica, Poland. Morphology, physio-biochemical characteristics and phylogenetic analysis based on 16S rDNA sequence indicate that strain belongs to Pseudomonas putida. When cells of strain N6 grown on protocatechuate or 4-hydroxybenzoic acid mainly protocatechuate 3,4-dioxygenase was induced. The activity of catechol 1,2-dioxygenase was rather small. The cells grown on benzoic acid, catechol or phenol showed high activity of only catechol 1,2-dioxygenase. This enzyme was optimally active at 35 °C and pH 7.4. Kinetic studies showed that the value of Km and Vmax was 85.19 ??M and 14.54 ??M min−1 respectively. Nucleotide sequence of gene encoding catechol 1,2-dioxygenase in strain N6 has 100% identity with catA genes from two P. putida strains. The deduced 301-residue sequence of enzyme corresponds to a protein of molecular mass 33.1 kDa. The deduced molecular structure of the catechol 1,2-dioxygenase from P. putida N6 was very similar and characteristic for the other intradiol dioxygenases.  相似文献   

12.
Chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp 1,2-CCD) is a dioxygenase responsible for ring cleavage during the degradation of recalcitrant aromatic compounds. We determined the zero-field splitting of the Fe(III) cofactor (|D| = 1.3 +/- 0.2 cm(-1)) by electron paramagnetic resonance (EPR) experiments that along with other structural data allowed us to infer the Fe(III) coordination environment. The EPR spectrum of the ion shows a significantly decrease of the g = 4.3 resonance upon substrate binding. This result is rationalized in terms of a mechanism previously proposed, where catechol substrate is activated by Fe(III), yielding an exchange-coupled Fe(II)-semiquinone (pair). The Pp 1,2-CCD capacity of binding amphipatic molecules and the effects of such binding on protein activity are also investigated. EPR spectra of spin labels show a protein-bound component, which was characterized by means of spectral simulations. Our results indicate that Pp 1,2-CCD is able to bind amphipatic molecules in a channel with the headgroup pointing outwards into the solvent, whereas the carbon chain is held inside the tunnel. Protein assays show that the enzyme activity is significantly lowered in the presence of stearic-acid molecules. The role of the binding of those molecules as an enzyme activity modulator is discussed.  相似文献   

13.
4-Chroropyrocatechol is formed as a results of the oxidation of 2,5-dichlorobenzoate byPseudomonas stutzeri. 3-Chloro-cis,cis-muconic acid is the product of the oxidation of 4-chloropyrocatechol. Pyrocatechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, but not pyrocatechol 2,3-dioxygenase or protocatechuate 3,4-dioxygenase activities were found in cell-free extracts. Theortho cleavage activity for catechols appeared to involve induction of isoenzymes with different stereospecificity towards chlorocatechols. A catablic pathway for the degradation of 2,5-dichlorobenzoate by a newly isolated strain ofP. stutzeri was proposed.  相似文献   

14.
Cultures of Caulobacter crescentus were found to grow on a variety of aromatic compounds. Degradation of benzoate, p-hydroxybenzoate, and phenol was found to occur via beta-ketoadipate. The induction of degradative enzymes such as benzoate 1,2-dioxygenase, the ring cleavage enzyme catechol 1,2-dioxygenase, and cis, cis-muconate lactonizing enzyme appeared similar to the control mechanism present in Pseudomonas spp. Both benzoate 1,2-dioxygenase and catechol 1,2-dioxygenase had stringent specificities, as revealed by their action toward substituted benzoates and substituted catechols, respectively.  相似文献   

15.
2,3-Dihydroxybiphenyl 1,2-dioxygenase (EC ), the extradiol dioxygenase of the biphenyl biodegradation pathway, is subject to inactivation during the steady-state cleavage of catechols. Detailed analysis revealed that this inactivation was similar to the O(2)-dependent inactivation of the enzyme in the absence of catecholic substrate, resulting in oxidation of the active site Fe(II) to Fe(III). Interestingly, the catecholic substrate not only increased the reactivity of the enzyme with O(2) to promote ring cleavage but also increased the rate of O(2)-dependent inactivation. Thus, in air-saturated buffer, the apparent rate constant of inactivation of the free enzyme was (0.7 +/- 0.1) x 10(-3) s(-1) versus (3.7 +/- 0.4) x 10(-3) s(-1) for 2,3-dihydroxybiphenyl, the preferred catecholic substrate of the enzyme, and (501 +/- 19) x 10(-3) s(-1) for 3-chlorocatechol, a potent inactivator of 2,3-dihydroxybiphenyl 1,2-dioxygenase (partition coefficient = 8 +/- 2, K(m)(app) = 4.8 +/- 0.7 microm). The 2,3-dihydroxybiphenyl 1,2-dioxygenase-catalyzed cleavage of 3-chlorocatechol yielded predominantly 2-pyrone-6-carboxylic acid and 2-hydroxymuconic acid, consistent with the transient formation of an acyl chloride. However, the enzyme was not covalently modified by this acyl chloride in vitro or in vivo. The study suggests a general mechanism for the inactivation of extradiol dioxygenases during catalytic turnover involving the dissociation of superoxide from the enzyme-catecholic-dioxygen ternary complex and is consistent with the catalytic mechanism.  相似文献   

16.
Catechol 1,2-dioxygenase (C12O) was purified to electrophoretic homogeneity from Acinetobacter sp. DS002. The pure enzyme appears to be a homodimer with a molecular mass of 66 kDa. The apparent Km and Vmax for intradiol cleavage of catechol were 1.58 μM and 2 units per mg of protein respectively. Unlike other C12Os reported in the literature, the catechol 1,2-dioxygenase of Acinetobacter showed neither intradiol nor extradiol cleavage activity when substituted catechols were used as substrates. However, it has shown mild intradiol cleavage activity when benzenetriol was used as substrate. As determined by two dimensional electrophoresis (2DE) followed MALDI-TOF/TOF analyses and gel permeation chromatography, no isoforms of C12O was observed in Acinetobacter sp. DS002. Further, the C12O was seen only in cultures grown in benzoate and it was completely absent in succinate grown cultures. Based on the sequence information obtained from MS/MS data, degenerate primers were designed to amplify catA gene from the genomic DNA of Acinetobacter sp. DS002. The sequence of the PCR amplicon and deduced amino acid sequence showed 97% similarity with a catA gene of Acinetobacter baumannii AYE (YP_001713609).  相似文献   

17.
Dioxygenases induced during benzoate degradation by the actinobacterium Rhodococcus wratislaviensis G10 strain degrading haloaromatic compounds were studied. Rhodococcus wratislaviensis G10 completely degraded 2 g/liter benzoate during 30 h and 10 g/liter during 200 h. Washed cells grown on benzoate retained respiration activity for more than 90 days, and a high activity of benzoate dioxygenase was recorded for 10 days. Compared to the enzyme activities with benzoate, the activity of benzoate dioxygenases was 10-30% with 13 of 35 substituted benzoate analogs. Two dioxygenases capable of cleaving the aromatic ring were isolated and characterized: protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase. Catechol inhibited the activity of protocatechuate 3,4-dioxygenase. Protocatechuate did not affect the activity of catechol 1,2-dioxygenase. A high degree of identity was shown by MALDI-TOF mass spectrometry for protein peaks of the R. wratislaviensis G10 and Rhodococcus opacus 1CP cells grown on benzoate or LB. DNA from the R. wratislaviensis G10 strain was specifically amplified using specific primers to variable regions of genes coding αand β-subunits of protocatechuate 3,4-dioxygenase and to two genes of theR. opacus 1CP coding catechol 1,2-dioxygenase. The products were 99% identical with the corresponding regions of the R. opacus 1CP genes. This high identity (99%) between the genes coding degradation of aromatic compounds in the R. wratislaviensis G10 and R. opacus 1CP strains isolated from sites of remote location (1400 km) and at different time (20-year difference) indicates a common origin of biodegradation genes of these strains and a wide distribution of these genes among rhodococci.  相似文献   

18.
Nitrobenzene 1,2-dioxygenase from Comamonas sp. strain JS765 catalyzes the initial reaction in nitrobenzene degradation, forming catechol and nitrite. The enzyme also oxidizes the aromatic rings of mono- and dinitrotoluenes at the nitro-substituted carbon, but the basis for this specificity is not understood. In this study, site-directed mutagenesis was used to modify the active site of nitrobenzene dioxygenase, and the contribution of specific residues in controlling substrate specificity and enzyme performance was evaluated. The activities of six mutant enzymes indicated that the residues at positions 258, 293, and 350 in the α subunit are important for determining regiospecificity with nitroarene substrates and enantiospecificity with naphthalene. The results provide an explanation for the characteristic specificity with nitroarene substrates. Based on the structure of nitrobenzene dioxygenase, substitution of valine for the asparagine at position 258 should eliminate a hydrogen bond between the substrate nitro group and the amino group of asparagine. Up to 99% of the mononitrotoluene oxidation products formed by the N258V mutant were nitrobenzyl alcohols rather than catechols, supporting the importance of this hydrogen bond in positioning substrates in the active site for ring oxidation. Similar results were obtained with an I350F mutant, where the formation of the hydrogen bond appeared to be prevented by steric interference. The specificity of enzymes with substitutions at position 293 varied depending on the residue present. Compared to the wild type, the F293Q mutant was 2.5 times faster at oxidizing 2,6-dinitrotoluene while retaining a similar Km for the substrate based on product formation rates and whole-cell kinetics.  相似文献   

19.
《Carbohydrate research》1986,147(2):191-203
Complexes between borate ion and cyclohexane-cis-1,2-diol, cyclohexane-cis,cis-1,3,5-triol, and myo- and epi-inositol have been investigated by 11B-n.m.r. spectroscopy. Three different complexes of myo-inositol have been identified. Formation constants have been determined for the borate complexes of each cyclitol. Where the complex is formed from the less-stable chair conformer, MNDO calculations have been performed to determine the enthalpies of inversion. For myo-inositol, an iterative method of calculation gave a set of constants which provided a good match with experimental data and supported the proposed formulation of its borate complexes.  相似文献   

20.
Summary A 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterial strain, Xanthobacter sp. CP, was isolated after enrichment in aerated soil columns. A limited number of chlorinated phenols and chlorinated phenoxyalkanoic acids with an even number of carbon atoms in the side chain served as substrates for growth, although whole cells exhibited oxygen uptake with a wide range of those compounds. The maximal growth rate with 2,4-D was 0.13·h-1 at a growth yield of 0.1 g biomass/g 2,4-D. Chloride ions were released quantitatively from 2,4-D and related chlorinated aromatic compounds which served as growth substrates. No by-products of 2,4-D metabolism were detected in oxygen-sufficient cultures of Xanthobacter sp. CP and catechols were cleaved exclusively by catechol 1,2-dioxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号