首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to quantitatively describe the relationships between joint angles and muscle architecture (lengths (Lf) and angles (Θf) of fascicles) of human triceps surae [medial (MG) and lateral (LG) gastrocnemius and soleus (SOL) muscles] in vivo for three men-cosmonaut after long-duration spaceflight. Sagittal sonographs of MG, LG, SOL were taken at ankle was positioned at 15° (dorsiflexion), 0° (neutral position), +15°, and +30° (plantarflexion), with the knee at 90° at rest and after a long-duration spaceflight. At each position, longitudinal ultrasonic images of the MG and LG and SOL were obtained while the cosmonauts was relaxed from which fascicle lengths and angles with respect to the aponeuroses were determined. After space flight plantarflexor force declined significantly (26%; p < 0.001). The internal architecture of the GM, and LG, and SOL muscle was significantly altered. In the passive condition, Lf changed from 45, 53, and 39 mm (knee, 0°, ankle, −15°) to 26, 33, and 28 mm (knee, 90° ankle, 30°) for MG, LG, and SOL, respectively. Different lengths and angles of fascicles, and their changes by contraction, might be related to differences in force-producing capabilities of the muscles and elastic characteristics of tendons and aponeuroses. The three heads of the triceps surae muscle substantially differ in architecture, which probably reflects their functional roles. Differences in fiber length and pennation angle that were observed among the muscles and could be associated with differences in force production and in elastic properties of musculo-tendinous complex and aponeuroses.  相似文献   

2.
The purpose of this study was to detect the characteristics of center of pressure (COP) movement during tiptoe standing (TS) compared to quiet standing (QS). Eight healthy subjects were asked to perform QS and TS on a force platform. During standing, surface electromyograms (EMGs) were recorded from the soleus (SOL), flexor hallucis brevis (FHB), medial gastrocnemius (MG), lateral gastrocnemius (LG), and tibialis anterior (TA) muscles. The path length and rectangular area of the COP trajectory were significantly larger during TS than during QS. In contrast, irrespective of standing condition, the scaling coefficients in the short and long regions were above and below 0.5, respectively. The coherence spectrum between the COP and EMG from the SOL and FHB muscles was statistically significant during TS at frequencies up to 17 Hz, while that for the QS was only significant below 1 Hz. In conclusion, the control of COP movement during TS was similar to that during QS despite large COP fluctuations during TS. Our results suggest that unstable posture during TS is compensated for by the activities of the SOL and FHB muscles, which enhance postural control.  相似文献   

3.
The muscles of the triceps surae group are important for performance in most sports and in the performance of activities of daily life. In addition, hypertrophy and balance among these muscles are integral to success in bodybuilding. The purpose of this study was to compare the muscle utilization patterns of the 2 major muscles of the triceps surae group, the soleus (SOL) and gastrocnemius (lateral head = LG and medial head = MG), and the tibialis anterior (TA) as an antagonist muscle to the group. Their electromyographic (EMG) signals were compared during 50 constant external resistance contractions at a level established before the testing session. Eleven experienced subjects contributed data during plantar flexion at 3 different knee angles (90, 135, and 180 degrees ). Both root mean square amplitude and integrated signal analyses of the EMGs revealed that the MG produced significantly greater activity than either the SOL or TA at 180 degrees, whereas the LG was not different from the SOL at any knee angle measured. Data also revealed that the SOL produced less electrical activity at 180 degrees than at the other knee angles, whereas the MG produced greater electrical activity. As would be expected, the TA produced lower EMG values than any of the triceps surae muscles at all angles tested. These data indicate that selective targeting of the SOL and MG is possible through the manipulation of knee angle. This targeting appears to be controlled by the biarticular and monoarticular structures of the MG and SOL, respectively. The LG appears less affected by knee position than the MG. Results suggest that the SOL can be targeted most effectively with the knee flexed at 90 degrees and the MG with the leg fully extended. The LG appears to also be more active at 180 degrees; however, it is not as affected as the MG or SOL by knee angle.  相似文献   

4.
The length-force relations of nine different skeletal muscles in the hindlimb of the cat were determined experimentally, with electrical stimulation of the sciatic nerve as the activation mode. It was shown that the active-, passive-, and total-force patterns varied widely among the muscles. The tibialis posterior (TP), medial and lateral gastrocnemius (MG, LG) and flexor digitorum longus (FDL) had a symmetric active-force curve, whereas the tibialis anterior (TA), peroneus brevis (PB), peroneus longus (PL), extensor digitorum longus (EDL), and soleus (SOL) had an asymmetric curve which exhibits about 25% of the maximal isometric force at extreme lengths. The SOL, EDL, and LG had a low-level passive force which appeared at short muscle length, whereas all other muscles exhibited initial passive force just before the optimal length. The total force was rising quasi-linearly for the SOL, whereas the other muscles exhibited an intermediate plateau about the optimal length. The LG and FDL had a substantial but temporary intermediate dip in the total force as the muscle was elongated past the optimal length. The elongation range of the various muscles also varied, ranging from +/- 15 to +/- 30% of the optimal length. The elongation range was symmetric for the FDL, LG, MG, TP, SOL, and EDL, and asymmetric for the PL, PB, and TA, being -12 to + 17%, -12 to + 17%, and -35 to + 12%, respectively. Two different models which incorporate muscle architecture were successfully fitted to the experimental data of the muscles except for the MG and TA. The architecture of these two muscles is highly nonhomogeneous and contains compartments with two pennation patterns or two different optimal lengths. New models, which add spatially and temporally the individual characteristics of each compartment of the muscles, were constructed for these two muscles. The new models demonstrated high correlation to the experimental data obtained from the MG and TA. It was concluded that the length-force relation varies widely among various skeletal muscles and is probably dependent on the primary function of the muscle in the context of integrated movement; this is a manifestation of architectural factors such as fiber pennation pattern and angle, cross-sectional area, ratio of muscle to tendon length, distribution of the fiber length within the muscle and compartmental pennation.  相似文献   

5.
This study aimed to investigate whether fatigue-induced changes in synergistic muscle forces match their tendon elongation. The medial gastrocnemius muscle (MG) was fatigued by repeated electrical stimulation (1 min×5 times: interval 30 s, intensity: 20–30% of maximal voluntary plantar flexion torque) applied at the muscle belly under a partial occlusion of blood vessels. Before and after the MG fatigue task, ramp isometric contractions were performed voluntarily, during which tendon elongations were determined by ultrasonography, along with recordings of the surface EMG activities of MG, the soleus (SOL) and the lateral gastrocnemius (LG) muscles. The tendon elongation of MG and SOL in post-fatigue ramp was similar, although evoked MG forces dropped nearly to zero. In addition, for a given torque output, the tendon elongation of SOL significantly decreased while that of LG did not, although the activation levels of both muscles had increased. Results suggest that the fatigue-induced changes in force of the triceps surae muscles do not match their tendon elongation. These results imply that the tendons of the triceps surae muscles are mechanically coupled even after selective fatigue of a single muscle.  相似文献   

6.
Ultrasonography was used to measure pennation angle and electromyography (EMG) to record muscle activity of the human tibialis anterior (TA), lateral gastrocnemius (LG), medial gastrocnemius (MG), and soleus (SOL) muscles during graded isometric ankle plantar and dorsiflexion contractions done on a Biodex dynamometer. Data from 8 male and 8 female subjects were collected in increments of approximately 25% of maximum voluntary contraction (MVC) ranging from rest to MVC. A significant positive linear relationship (p<0.05) between normalized EMG and pennation angle for all muscles was observed when subject specific pennation angles at rest and MVC were included in the analysis. These were included to account for gender differences and inter-subject variability in pennation angle. The coefficient of determination, R(2), ranged between 0.76 for the TA and 0.87 for the SOL. The EMG-pennation angle relationships have ramifications for use in EMG-driven models of muscle force. The regression equations can be used to characterize fiber pennation angle more accurately and to determine how it changes with contraction intensity, thus providing improved estimates of muscle force when using musculoskeletal models.  相似文献   

7.
This study examined the relationship between onset latencies estimates from EMG and center of pressure (COP) in young (five female, five male; mean=24.2+/-2.3 years) and older (six female, four male; 78.4+/-2.3 years) subjects during anterior or posterior platform translations. The latencies to onset of activity were estimated for the tibialis anterior (TA; mean=119.8 ms across both age groups) and COP (mean=139.7 ms across both groups) for anterior translations, and the soleus (SOL; mean=122.4 ms across both groups), gastrocnemius (GAS; mean=126.0 ms for young, and 115.9 ms for old subjects) and COP (mean=160.0 ms across both groups) for posterior translations. Average within-subject correlations (r') among these measures showed a high correlation between TA and COP onset latency (r'=0.667, young; r'=0.482, old), and relatively low correlations between the plantar flexors (SOL and GAS) and COP onset latencies (SOL: r'=0.292 for young, r'=0.249 for old; GAS: r'=0.126 for young, r'=0.143 for old). The SOL and GAS onset latencies correlated well with each other, especially in the older subjects (r'=0.762), suggesting that the contribution of two muscles creates some variability in the relationship with COP onset latency. The strong correlation between TA and COP for anterior perturbations, coupled with the weaker correlations for the plantar flexors suggest that the COP method may be preferable for studies interested in determining timing of postural responses to multidirectional perturbations.  相似文献   

8.
In humans, an inhibitory via Ia afferent pathway from the medial gastrocnemius (MG) to the soleus (SOL) motoneuron pool has been suggested. Herein, we examined the relation between MG fascicle length changes and the SOL H-reflex modulation during passive knee movement. Twelve subjects performed static and passive (5° s?1) knee movement tasks with the ankle immobilized using an isokinetic dynamometer in sitting posture. The maximal H- and M-waves were measured at four target angles (20°, 40°, 60°, and 80° flexion from full knee extension). The MG fascicles length and velocity were measured using a B-mode ultrasonic apparatus. Results demonstrated that the SOL Hmax/Mmax; i.e., ratio of the maximal H- to M-waves, was attenuated with increasing MG fascicle length in static tasks. The SOL Hmax/Mmax at 20° was significantly attenuated compared with 60° and 80° with increasing MG fascicle length and lengthening velocity in passive knee extension. However, no significant differences in the SOL Hmax/Mmax were found across the target angles in the passive knee flexion task. In conclusion, as muscle spindles increase their discharge with lengthening fascicle velocity, but keep silent when fascicles shorten, our data suggest that lengthening the MG facilitates an inhibitory Ia pathway from MG to SOL, and modulates SOL motoneuron activity during movements.  相似文献   

9.
Synergistic behaviour of triceps surae muscles (medial gastrocnemius-MG, lateral gastrocnemius-LG, soleus-SOL) during sustained submaximal plantarflexions was investigated in this study. Six male subjects were asked to sustain an isometric plantar flexor effort to exhaustion at two different knee angles. Exhaustion was defined as the point when they could no longer maintain the required tension. The loads sustained at 0 and 120 degrees of knee flexion represented 50% and 36% of their maximum voluntary contraction (MVC) respectively. MVC was measured at 0 degree knee flexion. During the contractions, electromyograms (EMG) from the surface of the triceps surae muscles were recorded. Changes in the synergistic behaviour of the triceps surae were assessed via partial correlations of the average EMG (AEMG) between three muscle combinations; MG/LG, MG/SOL, LG/SOL, and correlation between SOL/MG + LG and MG/SOL + LG. The latter combinations were based on either common fibre type or innervation properties. Two types of synergisms were identified: trade-off and coactivation. Trade-off and coactivation synergies were defined by significant (p less than 0.05) positive and negative correlations respectively. Coactivation synergism was found to occur predominantly under conditions of high load or reduced length of the triceps surae, and increased with the duration of the contraction. Trade-off synergism was evident when the muscles were at their optimum length and the loads sustained were submaximum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In this study, the frontal plane moment arms of tibialis anterior (TA) and the lateral and medial heads of gastrocnemius (LG and MG) were determined using ultrasonography of ten healthy subjects. Analysis of variance was performed to investigate the effects of frontal plane angle, muscle activity, and plantarflexion angle on inversion–eversion moment arm for each muscle. The moment arms of each muscle were found to vary with frontal plane angle (all p<0.001). TA and LG exhibited eversion moment arms when the foot was everted, but MG was found to have a slight inversion moment arm in this position. As the ankle rotated from 0° to 20° inversion, the inversion moment arm of each increased, indicating that the three muscles became increasingly effective inverters. In neutral position, the inverter moment arm of MG was greater than that of LG (p=0.001). Muscle activity had a significant effect on both LG and MG moment arm at all frontal plane positions (all p0.005). These results demonstrate the manner in which frontal plane moment arms of gastrocnemius and TA differ across the frontal plane range of motion in healthy subjects. This method for assessing muscle action in vivo used in this study may prove useful for subject-specific planning of surgical treatments for frontal plane foot and ankle deformities.  相似文献   

11.
The ankle flexor and extensor muscles are essential for pedal movements associated with car driving. Neuromuscular activation of lower leg muscles is influenced by the posture during a given task, such as the flexed knee joint angle during car driving. This study aimed to investigate the influence of flexion of the knee joint on recruitment threshold-dependent motor unit activity in lower leg muscles during isometric contraction. Twenty healthy participants performed plantar flexor and dorsiflexor isometric ramp contractions at 30 % of the maximal voluntary contraction (MVC) with extended (0°) and flexed (130°) knee joint angles. High-density surface electromyograms were recorded from medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) muscles and decomposed to extract individual motor units. The torque-dependent change (Δpps /Δ%MVC) of the motor unit activity of MG (recruited at 15 %MVC) and SOL (recruited at 5 %MVC) muscles was higher with a flexed compared with an extended knee joint (p < 0.05). The torque-dependent change of TA MU did not different between the knee joint angles. The motor units within certain limited recruitment thresholds recruited to exert plantar flexion torque can be excited to compensate for the loss of MG muscle torque output with a flexed knee joint.  相似文献   

12.
The purpose of this study was to compare lower limb muscle activity during whole-body vibration (WBV) exercise between a young and an older study population. Thirty young (25.9±4.3 yrs) and thirty older (64.2±5.3 yrs) individuals stood on a side-alternating WBV platform while surface electromyography (sEMG) was measured for the tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SOL), vastus lateralis (VL), vastus medialis (VM), and biceps femoris (BF). The WBV protocol included nine vibration settings consisting of three frequencies (6, 11, 16 Hz) x three amplitudes (0.9, 2.5, 4.0 mm), and three control trials without vibration (narrow, medium, wide stance). The vertical platform acceleration (peak values of maximal displacement from equilibrium) was quantified during each vibration exercise using an accelerometer. The outcomes of this study showed that WBV significantly increased muscle activity in both groups for most vibration conditions in the TA (averaged absolute increase: young: +3.9%, older: +18.4%), GM (young: +4.1%, older: +9.5%), VL (young: +6.3%, older: +12.6%) and VM (young: +5.4%, older: +8.0%), and for the high frequency-amplitude combinations in the SOL (young: +7.5%, older: +12.6%) and BF (young: +1.9%, older: +7.5%). The increases in sEMG activity were significantly higher in the older than the young adults for all muscles, i.e., TA (absolute difference: 13.8%, P<0.001), GM (4.6%, P=0.034), VL (7.6%, P=0.001), VM (6.7%, P=0.042), BF (6.4%, P<0.001), except for the SOL (0.3%, P=0.248). Finally, the vertical platform acceleration was a significant predictor of the averaged lower limb muscle activity in the young (r=0.917, P<0.001) and older adults (r=0.931, P<0.001). In conclusion, the older population showed greater increases in lower limb muscle activity during WBV exercise than their young counterparts, meaning that they might benefit more from WBV exercises. Additionally, training intensity can be increased by increasing the vertical acceleration load.  相似文献   

13.
The architectural properties of the triceps surae muscle were studied in vivo in groups of healthy subjects (eight men) and patients with locomotor function disorders (four men and four women) with the ankle joint positioned at a plantar flexion 0° and the knee set at 90° (neutral position). In this position, using ultrasonic scanning, longitudinal ultrasonic images of the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (Sol) muscles were obtained when the subject was relaxed (the passive state) or performed isometric plantar flexion (50% of the maximum voluntary contraction (MVC), the active state). The fascicle lengths, fascicle angles, and muscle thickness were determined. In the passive state, the fascicle lengths of the MG, LG, and Sol muscles in the group of healthy subjects were 33, 35, and 30 mm and the pennation angle, 25°, 19°, and 25°; in the group of patients with motor disorders, 38, 39, and 29 mm and 21°, 19°, and 24°, respectively. The MG, LG, and Sol thicknesses in the group of healthy subjects were 15, 13, and 12 mm, and in the group of patients with motor disorders, 14, 12, and 14 mm, respectively. In the active state (50% of the MVC), the MG, LG, and Sol fiber lengths in the group of healthy subjects shortened by 31, 24, and 18%; the fiber pennation angle increased by 60, 41, and 41%, respectively. In the group of patients with motor disorders, the fiber lengths shortened by 28, 14, and 18% and the fiber pennation angle decreased by 28, 26, and 36%, respectively. The MG, LG, and Sol thicknesses in the group of healthy subjects increased by 9, 22, and 18%, while in the group of patients with motor disorders the thickness decreased by 4% in the MG and increased by 11 and 4% in the LG and Sol muscles, respectively. Different fiber lengths and pennation angles and their changes upon contraction might be related to differences in the force-producing capabilities of the muscles and the viscoelastic properties of muscle tendons and aponeuroses.  相似文献   

14.
Despite differences in the anatomical and physiological characteristics of the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (Sol) muscles, it is common practice to investigate them as single triceps surae H-reflex recordings. The aim of this study was to compare the latencies of H-reflex recordings from the Sol, MG, and LG in patients with explicit magnetic resonance imaging (MRI) evidence of unilateral S1 radiculopathy and also compare their diagnostic yield in varied clinical characteristics (i.e., symptom duration and severity of involvement). We found a significant difference between H-reflex latencies of Sol and the two others (p?相似文献   

15.
Ultrasonography was used to measure the pennation angle of the human tibialis anterior (TA), lateral gastrocnemius (LG), medial gastrocnemius (MG), and soleus (Sol). The right and left legs of 8 male and 8 female subjects were tested at rest and during maximum voluntary contraction (MVC). Joint angles were chosen to control muscle tendon lengths so that the muscles were near their optimal length within the length-tension relationship. No differences in pennation angle were detected between the right and left legs. Another consistent finding was that the pennation angle at MVC was significantly greater than at rest for all muscles tested. Optimal pennation angles for the TA, MG, and Sol were significantly greater for the men than for the women. Optimal pennation angles for the TA, LG, MG, and Sol for the male subjects were 14.3 degrees, 23.7 degrees, 34.6 degrees, and 40.1 degrees respectively, whereas values of 12.1 degrees, 16.3 degrees, 27.3 degrees, and 26.3 degrees were recorded for the female subjects. The results of this study suggest the following: (1) similar values for pennation angle can be used for the right and left TA, LG, MG, and Sol; (2) pennation angle is significantly greater at MVC than at rest for all muscles tested; and (3) sex-specific values for optimal pennation angle should be used when modeling the force-generating potential of the primary muscles responsible for ankle plantar and dorsiflexion.  相似文献   

16.
One of the purposes of footwear is to assist locomotion, but some footwear types seem to restrict natural foot motion, which may affect the contribution of ankle plantar flexor muscles to propulsion. This study examined the effects of different footwear conditions on the activity of ankle plantar flexors during walking. Ten healthy habitually shod individuals walked overground in shoes, barefoot and in flip-flops while fine-wire electromyography (EMG) activity was recorded from flexor hallucis longus (FHL), soleus (SOL), and medial and lateral gastrocnemius (MG and LG) muscles. EMG signals were peak-normalised and analysed in the stance phase using Statistical Parametric Mapping (SPM). We found highly individual EMG patterns. Although walking with shoes required higher muscle activity for propulsion than walking barefoot or with flip-flops in most participants, this did not result in statistically significant differences in EMG amplitude between footwear conditions in any muscle (p > 0.05). Time to peak activity showed the lowest coefficient of variation in shod walking (3.5, 7.0, 8.0 and 3.4 for FHL, SOL, MG and LG, respectively). Future studies should clarify the sources and consequences of individual EMG responses to different footwear.  相似文献   

17.
Prior to implementing a normalisation method, the standardisation and reliability of the method needs to be examined. This investigation aimed to assess the reliability of EMG amplitudes and test outputs from proposed normalisation methods for the triceps surae. Sixteen participants completed isometric (maximum and sub-maximum); isokinetic (1.05 rad/s, 1.31 rad/s and 1.83 rad/s) squat jump and 20 m sprint conditions, on 3 separate occasions over 1 week. The EMG data was collected from the medial and lateral gastrocnemius (MG and LG) and soleus (SOL). Log transformed typical error measurements (TEMCV%) assessed EMG signal and test output reliability across the three sessions. Only the squat jump provided acceptable EMG reliability for all muscles both between days (SOL: 13%; MG: 14.5%; LG: 11.8%) and between weeks (SOL: 14.5%; MG: 12.9%; LG: 8.9%), with the sprint only showing poor reliability in the LG between days (16.3%). Acceptable reliability for the isometric and isokinetic conditions were muscle and re-test period dependant. Reliable output was found for the squat jump (4.1% and 3.6%), sprint (0.8% and 0.6%) and 1RM plantar flexion test (2.8% and 3.5%) between days and weeks, respectively. Isokinetic plantar flexion displayed poor reliability at all velocities between days and weeks. It was concluded that the squat jump provides a standardised and reproducible reference EMG value for the triceps surae for use as a normalisation method.  相似文献   

18.
Assessment of intra-session repeatability of muscle activation pattern is of considerable relevance for research settings, especially when used to determine changes over time. However, the repeatability of lower limb muscles activation pattern during pedaling is not fully established. Thus, we tested the intra-session repeatability of the activation pattern of 10 lower limb muscles during a sub-maximal cycling exercise.Eleven triathletes participated to this study. The experimental session consisted in a reference sub-maximal cycling exercise (i.e. 150 W) performed before and after a 53-min simulated training session (mean power output = 200 ± 12 W). Repeatability of EMG patterns was assessed in terms of muscle activity level (i.e. RMS of the mean pedaling cycle and burst) and muscle activation timing (i.e. onset and offset of the EMG burst) for the 10 following lower limb muscles: gluteus maximus (GMax), semimembranosus (SM), Biceps femoris (BF), vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), gastrocnemius medianus (GM) and lateralis (GL), soleus (SOL) and tibialis anterior (TA).No significant differences concerning the muscle activation level were found between test and retest for all the muscles investigated. Only VM, SOL and TA showed significant differences in muscle activation timing parameters. Whereas ICC and SEM values confirmed this weak repeatability, cross-correlation coefficients suggest a good repeatability of the activation timing parameters for all the studied muscles.Overall, the main finding of this work is the good repeatability of the EMG pattern during pedaling both in term of muscle activity level and muscle activation timing.  相似文献   

19.
The purpose of this experiment was to investigate the effects of frequency and inertia on lower extremity muscle activities during cycling. Electromyographic (EMG) data of seven lower extremity muscles were collected. Sixteen subjects cycled at 250 W across different cadences (60, 80, and 100 rpm) with different loads (0, 0.5, 1.0, 1.5, and 2.0 kg) attached to distal end of their thighs. Load and cadence interactions were observed for the offset of the biceps femoris (BF), the active duration of the rectus femoris (RF), and the peak magnitudes of the vastus lateralis (VL) and the tibialis anterior (TA). Cadence effects were observed in the onset of the gluteus maximus (GM), RF, BF, VL, and TA; the offset of the GM, RF, BF, VL; the duration of the BF and TA; the peak magnitude of the RF and gastrocnemius (GAS); and the crank angle at which the peak magnitude was achieved of the BF, GAS, and soleus (SOL). Load effect was observed from the onset of RF and SOL, the offset of RF, the duration of SOL, and the peak magnitude of BF. These results indicate that inertial properties influence the lower extremity muscular activity in addition to the cadence effect.  相似文献   

20.
The ankle plantar flexor muscles act synergistically to control quiet and dynamic body balance. Previous research has shown that the medial (MG) and lateral (LG) gastrocnemii, and soleus (SOL) are differentially activated as a function of motor task requirements. In the present investigation, we evaluated modulation of the plantar flexors' activation from feet orientation on the ground in an upright stance and the ensuing reactive response to a perturbation. A single group of young participants (n = 24) was evaluated in a task requiring initial stabilization of body balance against a backward pulling load (5% or 10% of body weight) attached to their trunk, and then the balance was suddenly perturbed, releasing the load. Four feet orientations were compared: parallel (0°), outward orientation at 15° and 30°, and the preferred orientation (M = 10.5°). Results revealed a higher activation magnitude of SOL compared to MG-LG when sustaining quiet balance against the 10% load. In the generation of reactive responses, MG was characterized by earlier, steeper, and proportionally higher activation than LG-SOL. Feet orientation at 30° led to higher muscular activation than the other orientations, while the activation relationship across muscles was unaffected by feet orientation. Our results support the conclusion of task-specific differential modulation of the plantar flexor muscles for balance control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号