首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The article summarises the results of more than 30 years of research on palmitoylation (S-acylation) of viral proteins, the post-translational attachment of fatty acids to cysteine residues of integral and peripheral membrane proteins. Analysing viral proteins is not only important to characterise the cellular pathogens but also instrumental to decipher the palmitoylation machinery of cells. This comprehensive review describes methods to identify S-acylated proteins and covers the fundamental biochemistry of palmitoylation: the location of palmitoylation sites in viral proteins, the fatty acid species found in S-acylated proteins, the intracellular site of palmitoylation and the enzymology of the reaction. Finally, the functional consequences of palmitoylation are discussed regarding binding of proteins to membranes or membrane rafts, entry of enveloped viruses into target cells by spike-mediated membrane fusion as well as assembly and release of virus particles from infected cells. The topics are described mainly for palmitoylated proteins of influenza virus, but proteins of other important pathogens, such as the causative agents of AIDS and severe acute respiratory syndrome, and of model viruses are discussed.  相似文献   

2.
Viruses intricately interact with and modulate cellular membranes at several stages of their replication, but much less is known about the role of viral lipids compared to proteins and nucleic acids. All animal viruses have to cross membranes for cell entry and exit, which occurs by membrane fusion (in enveloped viruses), by transient local disruption of membrane integrity, or by cell lysis. Furthermore, many viruses interact with cellular membrane compartments during their replication and often induce cytoplasmic membrane structures, in which genome replication and assembly occurs. Recent studies revealed details of membrane interaction, membrane bending, fission, and fusion for a number of viruses and unraveled the lipid composition of raft-dependent and -independent viruses. Alterations of membrane lipid composition can block viral release and entry, and certain lipids act as fusion inhibitors, suggesting a potential as antiviral drugs. Here, we review viral interactions with cellular membranes important for virus entry, cytoplasmic genome replication, and virus egress.  相似文献   

3.
We describe the development of a selectable, bi-cistronic subgenomic replicon for bovine viral diarrhea virus (BVDV) in Huh-7 cells, similar to that established for hepatitis C virus (HCV). The selection marker and reporter (Luc-Ubi-Neo) in the BVDV replicon was fused with the amino-terminal protease N(pro), and expression of the nonstructural proteins (NS3 to NS5B) was driven by an encephalomyocarditis virus internal ribosome entry site. This BVDV replicon allows us to compare RNA replication of these two related viruses in a similar cellular background and to identify antiviral molecules specific for HCV RNA replication. The BVDV replicon showed similar sensitivity as the HCV replicon to interferons (alpha, beta, and gamma) and 2'-beta-C-methyl ribonucleoside inhibitors. Known nonnucleoside inhibitor molecules specific for either HCV or BVDV can be easily distinguished by using the parallel replicon systems. The HCV replicon has been shown to block, via the NS3/4A serine protease, Sendai virus-induced activation of interferon regulatory factor 3 (IRF-3), a key antiviral signaling molecule. Similar suppression of IRF-3-mediated responses was also observed with the Huh-7-BVDV replicon but was independent of NS3/4A protease activity. Instead, the amino-terminal cysteine protease N(pro) of BVDV appears to be, at least partly, responsible for suppressing IRF-3 activation induced by Sendai virus infection. This result suggests that different viruses, including those closely related, may have developed unique mechanisms for evading host antiviral responses. The parallel BVDV and HCV replicon systems provide robust counterscreens to distinguish viral specificity of small-molecule inhibitors of viral replication and to study the interactions of the viral replication machinery with the host cell innate immune system.  相似文献   

4.
Viral safety is an important prerequisite for clinical preparations of plasma-derived pharmaceuticals. One potential way to increase the safety of therapeutic biological products is the use of a virus-retentive filter. In order to increase the viral safety of human antihemophilic factor IX, particularly in regard to non-enveloped viruses, virus removal process using a polyvinylidene fluoride membrane filter (Viresolve NFP) has been optimized. The most critical factor affecting the filtration efficiency was operating pH and the optimum pH was 6 or 7. Flow rate increased with increasing operating pressure and temperature. Recovery yield in the optimized productionscale process was 96%. No substantial changes were observed in the physical and biochemical characteristics of the filtered factor IX in comparison with those before filtration. A 47-mm disk membrane filter was used to simulate the process performance of the production-scale cartridges and to test if it could remove several experimental model viruses for human pathogenic viruses, including human hepatitis A virus (HAV), porcine parvovirus (PPV), murine encephalomyocarditis virus (EMCV), human immunodeficiency virus type 1 (HIV), bovine viral diarrhea virus (BVDV), and bovine herpes virus (BHV). Nonenveloped viruses (HAV, PPV, and EMCV) as well as enveloped viruses (HIV, BVDV, and BHV) were completely removed during filtration. The log reduction factors achieved were (i)v.12 for HAV, (i)t.28 for PPV, (i)u.33 for EMCV, (i)u.51 for HIV, (i)u.17 for BVDV, and (i)u.75 for BHV. These results indicate that the virus filtration process successfully improved the viral safety of factor IX.  相似文献   

5.
Qu L  McMullan LK  Rice CM 《Journal of virology》2001,75(22):10651-10662
Isolates of bovine viral diarrhea virus (BVDV), the prototype pestivirus, are divided into cytopathic (cp) and noncytopathic (ncp) biotypes according to their effect on cultured cells. The cp viruses also differ from ncp viruses by the production of viral nonstructural protein NS3. However, the mechanism by which cp viruses induce cytopathic effect in cell culture remains unknown. Here we used a genetic approach to isolate ncp variants that arose from a cp virus at low frequency. A bicistronic BVDV (cp strain NADL) was created that expressed puromycin acetyltransferase as a dominant selectable marker. This bicistronic virus exhibited slightly slower growth kinetics and smaller plaques than NADL but remained cp. A number of independent ncp variants were isolated by puromycin selection. Remarkably, these ncp variants produced NS3 and viral RNA at levels comparable to those of the cp parent. Sequence analyses uncovered no change in NS3, but for all ncp variants a Y2441C substitution at residue 15 of NS4B was found. Introduction of the Y2441C substitution into the NADL or bicistronic cp viruses reconstituted the ncp phenotype. Y2441 is highly conserved among pestiviruses and is located in a region of NS4B predicted to be on the cytosolic side of the endoplasmic reticulum membrane. Other engineered substitutions for Y2441 also affected viral cytopathogenicity and viability, with Y2441V being cp, Y2441A being ncp, and Y2441D rendering the virus unable to replicate. The ncp substitutions for Y2441 resulted in slightly increased levels of NS2-3 relative to NS3. We also showed that NS3, NS4B, and NS5A could be chemically cross-linked in NADL-infected cells, indicating that they are associated as components of a multiprotein complex. Although the mechanism remains to be elucidated, these results demonstrate that mutations in NS4B can attenuate BVDV cytopathogenicity despite NS3 production.  相似文献   

6.
Solvent-detergent treatment, although used routinely in plasma product processing to inactivate enveloped viruses, substantially reduces product yield from the human plasma resource. To improve yields in plasma product manufacturing, a new viral reduction process has been developed using the fatty acid caprylate. As licensure of plasma products warrants thorough evaluation of pathogen reduction capabilities, the present study examined susceptibility of enveloped viruses to inactivation by caprylate in protein solutions with varied pH and temperature. In the immunoglobin-rich solutions from Cohn Fraction II+III, human immunodeficiency virus, Type-1, bovine viral diarrhea virus (BVDV), and pseudorabies virus were inactivated by caprylate concentrations of >/=9 mM, >/=12 mM, and >/=9 mM, respectively. Compared to solvent-detergent treatment, BVDV inactivation in Fraction II+III solution was significantly faster (20-60 fold) using 16 mM caprylate. Caprylate-mediated inactivation of BVDV was not noticeably affected by temperature within the range chosen manufacturing the immunoglobulin product. In Fraction II+III solutions, IgG solubility was unaffected by 相似文献   

7.
Bovine viral diarrhea virus (BVDV), a pestivirus of the Flaviviridae family, is an economically important cattle pathogen with a worldwide distribution. Both noncytopathic (ncp) and cytopathic (cp) biotypes of BVDV can be isolated from persistently infected cattle suffering from the lethal mucosal disease. The cp biotype correlates with the production of the NS3 nonstructural protein, which in the corresponding ncp biotype is present in its uncleaved form, NS23. Previously, we have shown that cp but not ncp BVDV induces the formation of alpha/beta interferons in bovine macrophages. In this study, we demonstrate that ncp BVDV inhibits the induction of apoptosis and the expression of interferon alpha/beta by poly(IC), a synthetic double-stranded RNA (dsRNA). Inhibition was observed only in cells which had been infected with ncp BVDV at least 12 h prior to the addition of dsRNA, which indicates that expression of viral proteins is necessary for the ncp virus to inhibit the effects of poly(IC). Additional experiments using transfected poly(IC) showed that ncp BVDV interfered with the intracellular action of dsRNA rather than with its uptake into the cells. Infected cells were not resistant to induction of apoptosis by actinomycin D or staurosporine, which suggests that ncp BVDV may specifically interfere with signaling through dsRNA. Interference with the innate antiviral host responses may explain the successful establishment of persistent infection by ncp BVDV in fetuses early in their development.  相似文献   

8.
9.
Infection with bovine viral diarrhea virus (BVDV) is prevalent in the cattle population worldwide. The virus exists in two biotypes, cytopathic and non-cytopathic, depending on the effect of the viruses on cultured cells. BVDV may cause transient and persistent infections which differ fundamentally in the host's antiviral immune response. Transient infection may be due to both cytopathic and non-cytopathic biotypes of BVDV and leads to a specific immune response. In contrast, only non-cytopathic BVD viruses can establish persistent infection as a result of infection of the embryo early in its development. Persistent infection is characterized by immunotolerance specific for the infecting viral strain. In this paper we discuss the role of innate immune responses in the two types of infection. In general, both transient and persistent infections are associated with an increased frequency of secondary infections. Associated with the increased risk of such infections are, among others, impaired bacteria killing and decreased chemotaxis. Interestingly, non-cytopathic BVDV fails to induce interferon type I in cultured bovine macrophages whereas cytopathic biotypes readily trigger this response. Cells infected with non-cytopathic BVDV are also resistant to induction of interferon by double stranded RNA, a potent interferon inducer signalling the presence of viral replication in the cell. Thus, non-cytopathic BVDV may dispose of a mechanism suppressing a key element of the antiviral defence of the innate immune system. Since interferon is also important in the activation of the adaptive immune response, suppression of this signal may be essential for the establishment of persistent infection and immunotolerance.  相似文献   

10.
Bovine viral diarrhea virus (BVDV), together with Classical swine fever virus (CSFV) and Border disease virus (BDV) of sheep, belongs to the genus Pestivirus of the Flaviviridae. BVDV is either cytopathic (cp) or noncytopathic (ncp), as defined by its effect on cultured cells. Infection of pregnant animals with the ncp biotype may lead to the birth of persistently infected calves that are immunotolerant to the infecting viral strain. In addition to evading the adaptive immune system, BVDV evades key mechanisms of innate immunity. Previously, we showed that ncp BVDV inhibits the induction of apoptosis and alpha/beta interferon (IFN-alpha/beta) synthesis by double-stranded RNA (dsRNA). Here, we report that (i) both ncp and cp BVDV block the induction by dsRNA of the Mx protein (which can also be induced in the absence of IFN signaling); (ii) neither biotype blocks the activity of IFN; and (iii) once infection is established, BVDV is largely resistant to the activity of IFN-alpha/beta but (iv) does not interfere with the establishment of an antiviral state induced by IFN-alpha/beta against unrelated viruses. The results of our study suggest that, in persistent infection, BVDV is able to evade a central element of innate immunity directed against itself without generally compromising its activity against unrelated viruses ("nonself") that may replicate in cells infected with ncp BVDV. This highly selective "self" and "nonself" model of evasion of the interferon defense system may be a key element in the success of persistent infection in addition to immunotolerance initiated by the early time point of fetal infection.  相似文献   

11.
12.
Using a proteomics approach, we evaluated the effect of cytopathic (cp), and non-cytopathic (ncp) bovine viral diarrhea viruses (BVDV) on the expression of protein kinases and related proteins in bovine monocytes. Proteins were isolated from membrane and cytosolic fractions with the differential detergent fractionation (DDF) method and identified with 2D-LC ESI MS(2). Of approximately 10,000 proteins identified, 378 proteins had homology with known protein kinases or related proteins. Eighteen proteins involved in cell differentiation and activation, migration, anti-viral mechanisms (interferon/apoptosis), biosynthesis, sugar metabolism and oncogenic transformation were significantly altered in BVDV-infected monocytes compared to the uninfected controls. Six proteins, mostly related to cell migration, anti-viral mechanisms, sugar metabolism and possibly tumor resistance were differentially expressed between the ncp and cp BVDV-infected monocytes. Particularly, the expression of the receptor of activated C kinase (RACK), of pyridoxal kinase (PK), diacyglycerol kinase (DGK) and Brutons tyrosine kinase (BTK) was decreased in monocytes infected with cp BVDV compared to ncp BVDV, possibly contributing to the cytopathic effect of the virus. This and other findings are discussed in view of the possible role the identified proteins play in the development of viral infection and oncogenic transformation of cells.  相似文献   

13.
The intrinsic antiviral defense is based on cellular restriction factors that are constitutively expressed and, thus, active even before a pathogen enters the cell. The promyelocytic leukemia (PML) nuclear bodies (NBs) are discrete nuclear foci that contain several cellular proteins involved in intrinsic antiviral responses against a number of viruses. Accumulating reports have shown the importance of PML as a DNA virus restriction factor and how these pathogens evade this antiviral activity. However, very little information is available regarding the antiviral role of PML against RNA viruses. Dengue virus (DENV) is an RNA emerging mosquito-borne human pathogen affecting millions of individuals each year by causing severe and potentially fatal syndromes. Since no licensed antiviral drug against DENV infection is currently available, it is of great importance to understand the factors mediating intrinsic immunity that may lead to the development of new pharmacological agents that can boost their potency and thereby lead to treatments for this viral disease. In the present study, we investigated the in vitro antiviral role of PML in DENV-2 A549 infected cells.  相似文献   

14.
Studies with many viruses have revealed that viral specific protein synthesis is an obligatory step in generating antigens on target cells for antiviral cytotoxic T lymphocytes. This has been most clearly demonstrated with DI particles, virions that are structurally complete but lack infectious RNA. Adsorption of such particles onto target cell membranes does not render these cells susceptible to lytic attack by antiviral effector cells, unless some viral protein synthesis transpires. However, some viruses, such as Sendai virus, circumvent the requirement for viral protein synthesis via fusion of the viral envelope with the target cell membrane, a process mediated by a specialized fusion protein. Once inserted into the lipid bilayer, it is likely that viral components and self H-2 noncovalently associate so that the complex can be recognized by antiviral cytotoxic T cells. This idea is supported by the demonstration that viral proteins and H-2 containing membrane proteins, incorporated into reconstituted membrane vesicles or liposomes are recognized by cytotoxic T cells. These data further show that native rather than altered viral and H-2 molecules are the moieties recognized. Associations between antigen and H-2 have been detected by a variety of techniques and in some cases are not random but selective; that is, viral antigens perferentially associate with some H-2 alleles and not others. In summary, these findings indicate that although viral antigens are present in the mature virions, these components are not recognized by antiviral killer cells until integrated into the plasma membrane. This may be achieved either through direct fusion of the viral envelope with the target cell or following viral protein synthesis and insertion of viral antigens into the plasma membrane.  相似文献   

15.
Hepatitis C virus (HCV) is an important cause of liver disease worldwide. Current therapies are inadequate for most patients. Using a two-hybrid screen, we isolated a novel cellular binding partner interacting with the N terminus of HCV nonstructural protein NS5A. This partner contains a TBC Rab-GAP (GTPase-activating protein) homology domain found in all known Rab-activating proteins. As the first described interaction between such a Rab-GAP and a viral protein, this finding suggests a new mechanism whereby viruses may subvert host cell machinery for mediating the endocytosis, trafficking, and sorting of their own proteins. Moreover, depleting the expression of this partner severely impairs HCV RNA replication with no obvious effect on cell viability. These results suggest that pharmacologic disruption of this NS5A-interacting partner can be contemplated as a potential new antiviral strategy against a pathogen affecting nearly 3% of the world's population.  相似文献   

16.
Cytopathogenic bovine viral diarrhea virus (BVDV) arises by RNA recombination in animals persistently infected with noncytopathogenic BVDV. Such animals develop fatal mucosal disease. In this report, the genome of a cytopathogenic BVDV isolate, termed CP9, is characterized. CP9-infected cells contained not only viral genomic RNA of 12.3 kb but also a BVDV-specific RNA of 8 kb. cDNA cloning and sequencing revealed that the 8-kb RNA is a BVDV genome with an internal deletion of 4.3 kb. The 8-kb RNA represents the genome of a typical defective interfering particle (DI), since its replication was strictly dependent on the presence of a helper virus and strongly interfered with the replication of the helper. Cell culture experiments demonstrated that the CP9 virus stock contains two viruses, namely, a helper virus and DI9. While the helper virus alone was noncytopathogenic, the presence of the DI conferred cytopathogenicity. Expression experiments demonstrated that p80, the marker protein of cytopathogenic BVDV, is translated from the defective genome. The occurrence of this cytopathogenic DI is linked to a fatal disease in cattle.  相似文献   

17.
我国牛病毒性腹泻病(Bovine viral diarrhea,BVD)的流行比较复杂,其病原BVDV (BVDV-1和BVDV-2)不仅仅局限于已知易感动物牛群感染,其他动物种群中感染BVDV-1和BVDV-2的现象也值得注意,如猪群中BVDV感染很大程度上混淆了猪瘟等病原的监测,从而加剧病程发展。牛病毒性腹泻病毒(Bovine viral diarrhea virus,BVDV)可致持续感染(Persistent infection,PI),这一特性导致该病的净化面临巨大困难,对整个养殖场的健康发展形成了严峻威胁。BVDV抗原变异速率非常快,目前BVDV-1已有22个亚型,BVDV-2有4个亚型,鉴于病原在自然界的适应和演进特性,对该病的防控措施迟后其病原的变异速度。因此,定期摸清BVDV-1和BVDV-2在我国的流行现状是实施疫病净化的第一步和关键步骤,进一步借鉴国外BVD净化成功经验,综合考虑我国国情,采取适宜的防控策略,逐步净化该病原感染,有助于促进国内养殖业的健康发展。  相似文献   

18.
Biopharmaceutical products produced from cell cultures have a potential for viral contamination from cell sources or from adventitious introduction during production. The objective of this study was to assess viral clearance in the production of insect cell-derived recombinant human papillomavirus (HPV)-16 type L1 virus-like particles (VLPs). We selected Japanese encephalitis virus (JEV), bovine viral diarrhea virus (BVDV), and minute virus of mice (MVM) as relevant viruses to achieve the aim of this study. A downstream process for the production of purified HPV-16 L1 VLPs consisted of detergent lysis of harvested cells, sonication, sucrose cushion centrifugation, and cesium chloride (CsCl) equilibrium density centrifugation. The capacity of each purification/treatment step to clear viruses was expressed as reduction factor by measuring the difference in log virus infectivity of sample pools before and after each process. As a result, detergent treatment (0.5% v/v, Nonidet P-40/phosphate-buffered saline) was effective for inactivating enveloped viruses such as JEV and BVDV, but no significant reduction (< 1.0 log(10)) was observed in the non-enveloped MVM. The CsCl equilibrium density centrifugation was fairly effective for separating all three relevant adventitious viruses with different CsCl buoyant density from that of HPV-16 L1 VLPs (JEV, BVDV, and MVM = 4.30, 3.10, > or = 4.40 log(10) reductions). Given the study conditions we used, overall cumulative reduction factors for clearance of JEV, BVDV, and MVM were > or = 10.50, > or = 9.20, and > or = 6.40 log(10) in 150 ml of starting cell cultures, respectively.  相似文献   

19.
20.
A wide range of viruses, including many human and animal pathogens representing various taxonomic groups, contain genomes that are enclosed in lipid envelopes. These envelopes are generally acquired in the final stages of assembly, as viruses bud from regions of the membrane of the infected cell at which virally encoded membrane proteins have accumulated. The viruses procure their membranes during this process and mature particles 'pinch off' from the cellular membranes. Under most circumstances, initiation of another round of infection is dependent on two critical functions supplied by the envelope proteins. The virus must bind to cell-surface receptors of a new host cell, and fusion of the viral and cellular membranes must occur to transfer the viral genome into the cell. Enveloped viruses have evolved a variety of mechanisms to execute these two basic functions. Owing to their relative simplicity, studies of binding and fusion using enveloped viruses and their components have contributed significantly to the overall understanding of receptor-ligand interactions and membrane fusion processes - fundamental activities involved in a plethora of biological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号