首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
NFBD1/MDC1 is a large nuclear protein involved in the early cellular response to DNA damage. Upon DNA damage, NFBD1 has an ability to facilitate the efficient DNA repair. In the present study, we have found that, in addition to DNA damage response, NFBD1 plays a critical role in the regulation of G2/M transition. Expression study using synchronized HeLa cells demonstrated that, like the mitotic kinase Plk1, NFBD1 expression level is maximal in G2/M-phase of the cell cycle. siRNA-mediated knockdown of NFBD1 resulted in G2/M arrest as well as simultaneous apoptosis in association with a significant increase in the amounts of γH2AX and pro-apoptotic p73. Since a remarkable down-regulation of mitotic phospho-histone H3 was detectable in NFBD1-knocked down cells, it is likely that knocking down of NFBD1 inhibits G2/M transition. Taken together, our present findings suggest that NFBD1 has a pivotal role in the regulation of proper mitotic entry.  相似文献   

2.
3.
4.
5.
UHRF2(ubiquitin like with PHD and ring finger domains 2)是新近发现的具有多个结构域的核蛋白,在细胞周期调控和表观遗传学中发挥重要作用.近期研究提示,UHRF2是肿瘤抑制蛋白p53的1个E3连接酶,在体内外能与p53相互结合并促进其泛素化,过表达UHRF2能使细胞周期停滞于G1期.然而,UHRF2介导的G1期阻滞及其与p53联系尚不清楚.通过共转染UHRF2质粒及p53特异性小干扰RNA(siRNAs)到HEK293细胞构建细胞模型,探索UHRF2引起细胞周期停滞与p53之间的关系.结果显示,UHRF2能促进HEK293细胞中p53的稳定,从而引起p21 (CIP1/WAF1)基因表达,并使细胞周期停滞于G1期;但在siRNA抑制p53的表达后p21(CIP1/WAF1)表达降低,UHRF2引起的细胞周期阻滞消除.研究结果提示,UHRF2可通过稳定p53,上调p21的表达,从而介导细胞周期阻滞于G1期;同时UHRF2可能参与细胞周期调控及DNA损伤反应(DNA damage response, DDR).UHRF2稳定p53的具体分子机制及其在DDR中的作用有待进一步研究证明.  相似文献   

6.
7.
8.
Nuclear DNA duplication in the absence of cell division (i.e. endoreplication) leads to somatic polyploidy in eukaryotic cells. In contrast to some invertebrate neurons, whose nuclei may contain up to 200,000-fold the normal haploid DNA amount (C), polyploid neurons in higher vertebrates show only 4C DNA content. To explore the mechanism that prevents extra rounds of DNA synthesis in these latter cells we focused on the chick retina, where a population of tetraploid retinal ganglion cells (RGCs) has been described. We show that differentiating chick RGCs that express the neurotrophic receptors p75 and TrkB while lacking retinoblastoma protein, a feature of tetraploid RGCs, also express p27Kip1. Two different short hairpin RNAs (shRNA) that significantly downregulate p27Kip1 expression facilitated DNA synthesis and increased ploidy in isolated chick RGCs. Moreover, this forced DNA synthesis could not be prevented by Cdk4/6 inhibition, thus suggesting that it is triggered by a mechanism similar to endoreplication. In contrast, p27Kip1 deficiency in mouse RGCs does not lead to increased ploidy despite previous observations have shown ectopic DNA synthesis in RGCs from p27Kip1−/− mice. This suggests that a differential mechanism is used for the regulation of neuronal endoreplication in mammalian versus avian RGCs.  相似文献   

9.
A "spindle assembly" checkpoint has been described that arrests cells in G1 following inappropriate exit from mitosis in the presence of microtubule inhibitors. We have here addressed the question of whether the resulting tetraploid state itself, rather than failure of spindle function or induction of spindle damage, acts as a checkpoint to arrest cells in G1. Dihydrocytochalasin B induces cleavage failure in cells where spindle function and chromatid segregation are both normal. Notably, we show here that nontransformed REF-52 cells arrest indefinitely in tetraploid G1 following cleavage failure. The spindle assembly checkpoint and the tetraploidization checkpoint that we describe here are likely to be equivalent. Both involve arrest in G1 with inactive cdk2 kinase, hypophosphorylated retinoblastoma protein, and elevated levels of p21(WAF1) and cyclin E. Furthermore, both require p53. We show that failure to arrest in G1 following tetraploidization rapidly results in aneuploidy. Similar tetraploid G1 arrest results have been obtained with mouse NIH3T3 and human IMR-90 cells. Thus, we propose that a general checkpoint control acts in G1 to recognize tetraploid cells and induce their arrest and thereby prevents the propagation of errors of late mitosis and the generation of aneuploidy. As such, the tetraploidy checkpoint may be a critical activity of p53 in its role of ensuring genomic integrity.  相似文献   

10.
11.
12.
13.
14.
15.
p21(Cip1), first described as an inhibitor of cyclin-dependent kinases, has recently been shown to have a function in the formation of cyclin D-Cdk4 complexes and in their nuclear translocation. The dual behavior of p21(Cip1) may be due to its association with other proteins. Different evidence presented here indicate an in vitro and in vivo interaction of p21(Cip1) with calmodulin: 1) purified p21(Cip1) is able to bind to calmodulin-Sepharose in a Ca(2+)-dependent manner, and this binding is inhibited by the calmodulin-binding domain of calmodulin-dependent kinase II; 2) both molecules coimmunoprecipitate when extracted from cellular lysates; and 3) colocalization of calmodulin and p21(Cip1) can be detected in vivo by electron microscopy immunogold analysis. The carboxyl-terminal domain of p21(Cip1) is responsible for the calmodulin interaction, since p21(145-164) peptide is also able to bind calmodulin and to compete with full-length p21(Cip1) for the calmodulin binding. Because treatment of cells with anti-calmodulin drugs decreases the nuclear accumulation of p21(Cip1), we hypothesize that calmodulin interaction with p21(Cip1) is important for p21(Cip1), and in consequence for cyclin D-Cdk4, translocation into the cell nucleus.  相似文献   

16.
17.
18.
19.
CREB-binding protein and p300 in transcriptional regulation   总被引:23,自引:0,他引:23  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号