首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine the role of a lactococcal branched-chain amino acid aminotransferase gene, ilvE, in the production of branched-chain fatty acids. Lactococcus lactis subsp. lactis LM0230 and an ilvE deletion mutant, JLS450, produced branched-chain fatty acids from amino and α-keto acids at levels above α-keto acid spontaneous degradation and the fatty acids' flavor thresholds. The deletion mutant produced the same amounts of branched-chain fatty acids from precursor amino acids as did the parent. This was not the case, however, for the production of branched-chain fatty acids from the corresponding precursor α-keto acids. The deletion mutant produced a set of fatty acids different from that produced by the parent. We concluded from these observations that ilvE plays a role in the specific type of fatty acids produced but has little influence on the total amount of fatty acids produced by lactococci.  相似文献   

2.
The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain α-keto acid decarboxylase (KdcA). The activity of the latter enzyme has been found only in a limited number of Lactococcus lactis strains. By using a random mutagenesis approach, the gene encoding KdcA in L. lactis B1157 was identified. The gene for this enzyme is highly homologous to the gene annotated ipd, which encodes a putative indole pyruvate decarboxylase, in L. lactis IL1403. Strain IL1403 does not produce KdcA, which could be explained by a 270-nucleotide deletion at the 3′ terminus of the ipd gene encoding a truncated nonfunctional decarboxylase. The kdcA gene was overexpressed in L. lactis for further characterization of the decarboxylase enzyme. Of all of the potential substrates tested, the highest activity was observed with branched-chain α-keto acids. Moreover, the enzyme activity was hardly affected by high salinity, and optimal activity was found at pH 6.3, indicating that the enzyme might be active under cheese ripening conditions.  相似文献   

3.
4.
The first step of amino acid degradation in lactococci is a transamination, which requires an α-keto acid as the amino group acceptor. We have previously shown that the level of available α-keto acid in semihard cheese is the first limiting factor for conversion of amino acids to aroma compounds, since aroma formation is greatly enhanced by adding α-ketoglutarate to cheese curd. In this study we introduced a heterologous catabolic glutamate dehydrogenase (GDH) gene into Lactococcus lactis so that this organism could produce α-ketoglutarate from glutamate, which is present at high levels in cheese. Then we evaluated the impact of GDH activity on amino acid conversion in in vitro tests and in a cheese model by using radiolabeled amino acids as tracers. The GDH-producing lactococcal strain degraded amino acids without added α-ketoglutarate to the same extent that the wild-type strain degraded amino acids with added α-ketoglutarate. Interestingly, the GDH-producing lactococcal strain produced a higher proportion of carboxylic acids, which are major aroma compounds. Our results demonstrated that a GDH-producing lactococcal strain could be used instead of adding α-ketoglutarate to improve aroma development in cheese.  相似文献   

5.
We have used a new genetic strategy based on the Cre-loxP recombination system to generate large chromosomal rearrangements in Lactococcus lactis. Two loxP sites were sequentially integrated in inverse order into the chromosome either at random locations by transposition or at fixed points by homologous recombination. The recombination between the two chromosomal loxP sites was highly efficient (approximately 1 × 10−1/cell) when the Cre recombinase was provided in trans, and parental- or inverted-type chromosomal structures were isolated after removal of the Cre recombinase. The usefulness of this approach was demonstrated by creating three large inversions of 500, 1,115, and 1,160 kb in size that modified the lactococcal genome organization to different extents. The Cre-loxP recombination system described can potentially be used for other gram-positive bacteria without further modification.  相似文献   

6.
7.
Acetate was shown to improve glucose fermentation in Lactococcus lactis deficient in lactate dehydrogenase. 13C and 1H nuclear magnetic resonance studies using [2-13C]glucose and [2-(13)C]acetate as substrates demonstrated that acetate was exclusively converted to ethanol. This novel pathway provides an alternative route for NAD+ regeneration in the absence of lactate dehydrogenase.  相似文献   

8.
Mannitol is a sugar polyol claimed to have health-promoting properties. A mannitol-producing strain of Lactococcus lactis was obtained by disruption of two genes of the phosphoenolpyruvate (PEP)-mannitol phosphotransferase system (PTSMtl). Genes mtlA and mtlF were independently deleted by double-crossover recombination in strain L. lactis FI9630 (a food-grade lactate dehydrogenase-deficient strain derived from MG1363), yielding two mutant (ΔldhΔmtlA and ΔldhΔmtlF) strains. The new strains, FI10091 and FI10089, respectively, do not possess any selection marker and are suitable for use in the food industry. The metabolism of glucose in nongrowing cell suspensions of the mutant strains was characterized by in vivo 13C-nuclear magnetic resonance. The intermediate metabolite, mannitol-1-phosphate, accumulated intracellularly to high levels (up to 76 mM). Mannitol was a major end product, one-third of glucose being converted to this hexitol. The double mutants, in contrast to the parent strain, were unable to utilize mannitol even after glucose depletion, showing that mannitol was taken up exclusively by PEP-PTSMtl. Disruption of this system completely blocked mannitol transport in L. lactis, as intended. In addition to mannitol, approximately equimolar amounts of ethanol, 2,3-butanediol, and lactate were produced. A mixed-acid fermentation (formate, ethanol, and acetate) was also observed during growth under controlled conditions of pH and temperature, but mannitol production was low. The reasons for the alteration in the pattern of end products under nongrowing and growing conditions are discussed, and strategies to improve mannitol production during growth are proposed.  相似文献   

9.
The effects of the rolling-circle and theta modes of replication on the maintenance of recombinant plasmids in Lactococcus lactis were studied. Heterologous Escherichia coli or bacteriophage λ DNA fragments of various sizes were inserted into vectors based on either the rolling-circle-type plasmid pWV01 or the theta-type plasmid pAMβ1. All pAMβ1 derivatives were stably maintained. pWV01 derivatives, however, showed size-dependent segregational instability, in particular when large DNA fragments were inserted. All recombinant pWV01 derivatives generated high-molecular-weight plasmid multimers (HMW) in amounts that were positively correlated with plasmid size and inversely correlated with the copy numbers of the monomeric plasmid forms. Formation of HMW or reductions in copy numbers were not observed with pAMβ1 derivatives. The results indicate that HMW formation and/or reduction in plasmid copy numbers is an important factor in the maintenance of pWV01 derivatives. It is concluded that theta-type plasmids are superior to rolling-circle-type plasmids for cloning in lactococci.  相似文献   

10.
In Gouda and Cheddar type cheeses the amino acid conversion to aroma compounds, which is a major process for aroma formation, is essentially due to lactic acid bacteria (LAB). In order to evaluate the respective role of starter and nonstarter LAB and their interactions in cheese flavor formation, we compared the catabolism of phenylalanine, leucine, and methionine by single strains and strain mixtures of Lactococcus lactis subsp. cremoris NCDO763 and three mesophilic lactobacilli. Amino acid catabolism was studied in vitro at pH 5.5, by using radiolabeled amino acids as tracers. In the presence of α-ketoglutarate, which is essential for amino acid transamination, the lactobacillus strains degraded less amino acids than L. lactis subsp. cremoris NCDO763, and produced mainly nonaromatic metabolites. L. lactis subsp. cremoris NCDO763 produced mainly the carboxylic acids, which are important compounds for cheese aroma. However, in the reaction mixture containing glutamate, only two lactobacillus strains degraded amino acids significantly. This was due to their glutamate dehydrogenase (GDH) activity, which produced α-ketoglutarate from glutamate. The combination of each of the GDH-positive lactobacilli with L. lactis subsp. cremoris NCDO763 had a beneficial effect on the aroma formation. Lactobacilli initiated the conversion of amino acids by transforming them mainly to keto and hydroxy acids, which subsequently were converted to carboxylic acids by the Lactococcus strain. Therefore, we think that such cooperation between starter L. lactis and GDH-positive lactobacilli can stimulate flavor development in cheese.  相似文献   

11.
12.
Genes encoding a branched-chain alpha-keto acid dehydrogenase from Enterococcus faecalis 10C1, E1alpha (bkdA), E1beta (bkdB), E2 (bkdC), and E3 (bkdD), were found to reside in the gene cluster ptb-buk-bkdDABC. The predicted products of ptb and buk exhibited significant homology to the phosphotransbutyrylase and butyrate kinase, respectively, from Clostridium acetobutylicum. Activity and redox properties of the purified recombinant enzyme encoded by bkdD indicate that E. faecalis has a lipoamide dehydrogenase that is distinct from the lipoamide dehydrogenase associated with the pyruvate dehydrogenase complex. Specific activity of the ptb gene product expressed in Escherichia coli was highest with the substrates valeryl-coenzyme A (CoA), isovaleryl-CoA, and isobutyryl-CoA. In cultures, a stoichiometric conversion of alpha-ketoisocaproate to isovalerate was observed, with a concomitant increase in biomass. We propose that alpha-ketoisocaproate is converted via the BKDH complex to isovaleryl-CoA and subsequently converted into isovalerate via the combined actions of the ptb and buk gene products with the concomitant phosphorylation of ADP. In contrast, an E. faecalis bkd mutant constructed by disruption of the bkdA gene did not benefit from having alpha-ketoisocaproate in the growth medium, and conversion to isovalerate was less than 2% of the wild-type conversion. It is concluded that the bkd gene cluster encodes the enzymes that constitute a catabolic pathway for branched-chain alpha-keto acids that was previously unidentified in E. faecalis.  相似文献   

13.
The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all three PDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a single PDC gene demonstrated that both PDC1- and PDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production.Saccharomyces cerevisiae has been used for centuries in the production of bread and alcoholic beverages. Along with ethanol and carbon dioxide, fermenting cultures of this yeast produce a variety of low-molecular-weight flavor compounds (including alcohols, diacetyl, esters, organic acids, organic sulfides, and carbonyl compounds). The compounds 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-1-propanol, commonly known as fusel alcohols, and their esters make an important contribution to the flavor of alcoholic beverages and bread (1, 14).A metabolic pathway for production of fusel alcohols by yeast was first proposed by Ehrlich (6). The Ehrlich pathway starts with the enzyme-catalyzed decarboxylation of branched-chain 2-oxo acids to the corresponding aldehydes. Subsequently, the aldehyde is reduced to the corresponding fusel alcohol by an alcohol dehydrogenase (11, 16, 24). The branched-chain 2-oxo acid substrates for the Ehrlich pathway can be produced by the deamination of l-leucine, l-isoleucine, or l-valine. Growth of S. cerevisiae with any of these three amino acids as the nitrogen source results in the accumulation of the corresponding fusel alcohol (2, 3, 21). Alternatively, branched-chain 2-oxo acids may be synthesized de novo from carbohydrates as intermediates of branched-chain amino acid synthesis (13).The conversion of branched-chain oxo acids into their respective aldehydes and alcohols via the Ehrlich pathway resembles the fermentative metabolism of pyruvate, which yields ethanol and carbon dioxide. In both cases, the decarboxylation of a 2-oxo acid is followed by the reduction of the resulting aldehyde. Partially purified preparations of yeast pyruvate decarboxylase have been shown to catalyze the decarboxylation of various 2-oxo acids, including the putative intermediates of the Ehrlich pathway (8, 12, 16, 21). However, it has not been conclusively proven that pyruvate decarboxylase is essential for or even involved in fusel alcohol production by S. cerevisiae.Dickinson and Dawes (4) have reported that, at least under some conditions, oxidative decarboxylation by a mitochondrial branched-chain oxo acid dehydrogenase complex (17) is involved in the catabolism of branched-chain 2-oxo acids. Mutants that did not express the lipoamide dehydrogenase subunit of this enzyme complex accumulated branched-chain oxo acids in batch cultures grown on media containing leucine, isoleucine, or valine (4), thus casting some doubt on the exclusive role of pyruvate decarboxylase in the decarboxylation of branched-chain oxo acids.The aim of this study was to reinvestigate the role of pyruvate decarboxylase in the production of fusel alcohols by S. cerevisiae. The S. cerevisiae genome harbors three structural genes (PDC1, PDC5, and PDC6) that can each encode an active pyruvate decarboxylase (9). In wild-type yeast strains, PDC6 expression is either very low or absent (7, 9). However, revertants of pdc1-pdc5 double mutants, in which a recombination event has caused a fusion of the PDC1 promoter and the PDC6 open reading frame, express a functional enzyme (10). Therefore, studies on the physiological effects of pyruvate decarboxylase deficiency are most easily interpreted when they are performed with strains in which all three PDC genes are disrupted.In the present study, the decarboxylation of branched-chain 2-oxo acids was studied in cell extracts of wild-type S. cerevisiae and in extracts of an isogenic pyruvate decarboxylase-negative mutant. Furthermore, conversion of branched-chain amino acids to the corresponding fusel alcohols by intact cells was analyzed in ethanol-grown cultures of a wild-type S. cerevisiae strain and in those of the Pdc mutant.  相似文献   

14.
The prsA-like gene from Lactococcus lactis encoding its single homologue to PrsA, an essential protein triggering the folding of secreted proteins in Bacillus subtilis, was characterized. This gene, annotated pmpA, encodes a lipoprotein of 309 residues whose expression is increased 7- to 10-fold when the source of nitrogen is limited. A slight increase in the expression of the PrsA-like protein (PLP) in L. lactis removed the degradation products previously observed with the Staphylococcus hyicus lipase used as a model secreted protein. This shows that PmpA either triggers the folding of the secreted lipase or activates its degradation by the cell surface protease HtrA. Unlike the case for B. subtilis, the inactivation of the gene encoding PmpA reduced only slightly the growth rate of L. lactis in standard conditions. However, it almost stopped its growth when the lipase was overexpressed in the presence of salt in the medium. Like PrsA of B. subtilis and PrtM of L. lactis, the L. lactis PmpA protein could thus have a foldase activity that facilitates protein secretion. These proteins belong to the third family of peptidyl-prolyl cis/trans-isomerases (PPIases) for which parvulin is the prototype. Almost all PLP from gram-positive bacteria contain a domain with the PPIase signature. An exception to this situation was found only in Streptococcaceae, the family to which L. lactis belongs. PLP from Streptococcus pneumoniae and Enterococcus faecalis possess this signature, but those of L. lactis, Streptococcus pyogenes, and Streptococcus mutans do not. However, secondary structure predictions suggest that the folding of PLP is conserved over the entire length of the proteins, including the unconserved signature region. The activity associated with the expression of PmpA in L. lactis and these genomic data show that either the PPIase motif is not necessary for PPIase activity or, more likely, PmpA foldase activity does not necessarily require PPIase activity.  相似文献   

15.
The success rate of introducing new functions into a living species is still rather unsatisfactory. Much of this is due to the very essence of the living state, i.e. its robustness towards perturbations. Living cells are bound to notice that metabolic engineering is being effected, through changes in metabolite concentrations. In this study, we asked whether one could engage in such engineering without changing metabolite concentrations. We have illustrated that, in silico, one can do so in principle. We have done this for the case of substituting the yeast glucose transporter plus hexokinase for the Lactococcus lactis phosphotransferase system, in an L. lactis network, this engineering is 'silent' in terms of metabolite concentrations and almost all fluxes.  相似文献   

16.
We report the development of a nonantibiotic and nonpathogenic host-plasmid selection system based on lactococcal genes and threonine complementation. We constructed an auxotrophic Lactococcus lactis MG1363Δthr strain which carries deletions in two genes encoding threonine biosynthetic enzymes. To achieve plasmid-borne complementation, we then constructed the minimal cloning vector, pJAG5, based on the genes encoding homoserine dehydrogenase-homoserine kinase (the hom-thrB operon) as a selective marker. Using strain MG1363Δthr, selection and maintenance of cells carrying pJAG5 were obtained in threonine-free defined media. Compared to the commonly used selection system based on erythromycin resistance, the designed complementation system offers a competitive and stable plasmid selection system for the production of heterologous proteins in L. lactis. The potential of pJAG5 to deliver genes for expression in eukaryotes was evaluated by insertion of a mammalian expression unit encoding a modified green fluorescent protein. The successful delivery and expression of genes in human kidney fibroblasts indicated the potential of the designed nonantibiotic host-plasmid system for use in genetic immunization.  相似文献   

17.
A functional pyc gene was isolated from Lactococcus lactis subsp. lactis C2 and was found to complement a Pyc defect in L. lactis KB4. The deduced lactococcal Pyc protein was highly homologous to Pyc sequences of other bacteria. The pyc gene was also detected in Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis bv. diacetylactis strains.  相似文献   

18.
The Lactococcus lactis subsp. lactis KP3 Lac genetic element was investigated. KP3 is a lactose-positive (Lac+) transconjugant which contains no detectable plasmid DNA. The KP3 Lac genetic element was self-transmissible (Tra+) and encoded a reduced bacteriophage sensitivity (Rbs+) phenotype. Matings of KP3 with a recombination-deficient (Rec-) recipient resulted in Lac+ transconjugants which were phenotypically indistinguishable from KP3 and contained a 96-MDa plasmid (pJS96). Phenotypic and physical analyses of pJS96 indicated that it was a deletion derivative of a putative pKB32::pJS88 Lac+ Tra+ cointegrate. pKB32 is the Lac plasmid and pJS88 is the Tra+ Rbs+ plasmid in L. lactis subsp. lactis 11007, the donor used in obtaining KP3. The results presented suggest that pJS96 is an episome, since it appeared to replicate both as a plasmid and as an integrated part of the chromosome. Conjugal transfer of chromosomal DNA mediated by pJS96 was not observed. Conjugal transfer of pJS96 resulted in Lac+ transconjugants containing plasmids ranging in size from 21 to 90 MDa. Only in Rec+ recipients were transconjugants isolated which appeared to contain pJS96 integrated into the host chromosome. Restriction analysis of several plasmids in the 21 to 90 MDa range suggested the deletions were due to intramolecular transposition of a transposable element on pJS96. This report suggests that a self-transmissible episome exists in KP3 and provides an explanation of how plasmids which vary in size yet encode similar phenotypes may be formed and disseminated.  相似文献   

19.
20.
A functional pyc gene was isolated from Lactococcus lactis subsp. lactis C2 and was found to complement a Pyc defect in L. lactis KB4. The deduced lactococcal Pyc protein was highly homologous to Pyc sequences of other bacteria. The pyc gene was also detected in Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis bv. diacetylactis strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号