首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low responsiveness of cotton to P fertilizer application on soils with low soil-test P values indicates that cotton might take up P from stable P pools. The ability of cotton to acquire P from sparingly soluble P sources was examined by comparing with wheat and white lupin. The plants were grown in washed river sand, with P sources applied at a rate of 40 mg P kg−1, as sparingly soluble AlPO4, FePO4, or hydroxyapatite. Cotton was inefficient in accessing P from any of the sparingly soluble P sources. Thus, the low responsiveness of cotton to P fertilizers could be attributed to factors other than efficient P acquisition from the stable P pool in the soil. In contrast to white lupin which accessed little P from the sparingly soluble P sources in this study, wheat showed an outstanding ability in utilizing AlPO4. When compared with the control, total uptake of P from AlPO4 by wheat was approximately 9 times higher than cotton and 7 times higher than white lupin, which was possibly related to its high root Al concentration and high root:shoot ratio. The study concludes that the three species differed substantially in P acquisition from the sparingly soluble AlPO4, with cotton being least efficient and wheat most efficient.  相似文献   

2.
Phosphorus (P) availability in estuaries may increase with increasing salinity because sulfate from sea salt supports production of sulfide in sediments, which combines with iron (Fe) making it less available to sequester P. Increased P availability with increased salinity may promote the generally observed switch from P limitation of primary production in freshwater ecosystems to nitrogen (N) limitation in coastal marine waters. To investigate this hypothesis, we analyzed pore water from sediment cores collected along the salinity gradients of four Chesapeake Bay estuaries (the Patuxent, Potomac, Choptank, and Bush Rivers) with watersheds differing in land cover and physiography. At salinities of 1–4 in each estuary, abrupt decreases in pore water Fe2+ concentrations coincided with increases in sulfate depletion and PO4 3? concentrations. Peaks in water column PO4 3? concentrations also occur at about the same position along the salinity gradient of each estuary. Increases in pore water PO4 3? concentration with increasing salinity led to distinct shifts in molar NH4 +:PO4 3? ratios from >16 (the Redfield ratio characteristic of phytoplankton N:P) in the freshwater cores to <16 in the cores with salinities >1 to 4, suggesting that release of PO4 3? from Fe where sediments are first deposited in sulfate-rich waters could promote the commonly observed switch from P limitation in freshwater to N limitation in mesohaline waters. Finding this pattern at similar salinities in four estuaries with such different watersheds suggests that it may be a fundamental characteristic of estuaries generally.  相似文献   

3.
4.
5.
The aims of this work were to investigate the microlocalisation of cadmium (Cd) in Lupinus albus L. cv. Multolupa nodules, and to determine its effects on carbon and nitrogen metabolism. Nodulated white lupin plants were grown in a growth chamber with or without Cd (150 μM). Energy-dispersive X-ray microanalysis showed the walls of the outer nodule cortex cells to be the main area of Cd retention, helping to reduce the harmful effect Cd might have on the amount of N2 fixed by the bacteroids. Sucrose synthase activity declined by 33% in the nodules of the Cd-treated plants, and smaller reductions were recorded in glutamine synthetase, aspartate aminotransferase, alkaline invertase and NADP-dependent isocitrate dehydrogenase activities. The Cd treatment also sharply reduced nodule concentrations of malate, succinate and citrate, while that of starch doubled, but that of sucrose experienced no significant change. In summary, the present results show that white lupins accumulate significant amounts of Cd in their root nodules. However, the activity of some enzymes involved in ammonium assimilation did decline, promoting a reduction in the plant N content. The downregulation of sucrose synthase limits the availability of carbon to the bacteroids, which might interfere with their respiration. Carbon metabolism therefore plays a primary role in the impaired function of the white lupin root nodule caused by Cd, while N metabolism appears to have a more secondary involvement.  相似文献   

6.
Release of large amounts of citric acid from specialized root clusters (proteoid roots) of phosphorus (P)-deficient white lupin (Lupinus albus L.) is an efficient strategy for chemical mobilization of sparingly available P sources in the rhizosphere. The present study demonstrates that increased accumulation and exudation of citric acid and a concomitant release of protons were predominantly restricted to mature root clusters in the later stages of P deficiency. Inhibition of citrate exudation by exogenous application of anion-channel blockers such as ethacrynic- and anthracene-9-carboxylic acids may indicate involvement of an anion channel. Phosphorus-deficiency-induced accumulation and subsequent exudation of citric acid seem to be a consequence of both increased biosynthesis and reduced metabolization of citric acid in the proteoid root tissue, indicated by increased in-vitro activity and enzyme protein levels of phosphoenolpyruvate carboxylase (EC 4.1.1.31), and reduced activity of aconitase (EC 4.2.1.3) and root respiration. Similar to citric acid, acid phosphatase, which is secreted by roots and involved in the mobilization of the organic soil P fraction, was released predominantly from proteoid roots of P-deficient plants. Also 33Pi uptake per unit root fresh-weight was increased by approximately 50% in juvenile and mature proteoid root clusters compared to apical segments of non-proteoid roots. Kinetic studies revealed a K m of 30.7 μM for Pi uptake of non-proteoid root apices in P-sufficient plants, versus K m values of 8.5–8.6 μM for non-proteoid and juvenile proteoid roots under P-deficient conditions, suggesting the induction of a high-affinity Pi-uptake system. Obviously, P-deficiency-induced adaptations of white lupin, involved in P acquisition and mobilization of sparingly available P sources, are predominantly confined to proteoid roots, and moreover to distinct stages during proteoid root development. Received: 10 September 1998 / Accepted: 22 December 1998  相似文献   

7.
8.
9.
Urbanization is an important component of global change. Urbanization affects species interactions, but the evolutionary implications are rarely studied. We investigate the evolutionary consequences of a common pattern: the loss of high trophic‐level species in urban areas. Using a gall‐forming fly, Eurosta solidaginis, and its natural enemies that select for opposite gall sizes, we test for patterns of enemy loss, selection, and local adaptation along five urbanization gradients. Eurosta declined in urban areas, as did predation by birds, which preferentially consume gallmakers that induce large galls. These declines were linked to changes in habitat availability, namely reduced forest cover in urban areas. Conversely, a parasitoid that attacks gallmakers that induce small galls was unaffected by urbanization. Changes in patterns of attack by birds and parasitoids resulted in stronger directional selection, but loss of stabilizing selection in urban areas, a pattern which we suggest may be general. Despite divergent selective regimes, gall size did not very systematically with urbanization, suggesting but not conclusively demonstrating that environmental differences, gene flow, or drift, may have prevented the adaptive divergence of phenotypes. We argue that the evolutionary effects of urbanization will have predictable consequences for patterns of species interactions and natural selection.  相似文献   

10.
11.
In situ 15N-labelling was used to provide a quantitative assessment of the total contribution of lupin (Lupinus angustifolius) to below-ground (BG) N accumulation during a growing season under field conditions, and to directly trace the fate of the lupin BG N in the next season, including quantifying the N benefit from lupin to a following wheat (Triticum aestivum) crop. The experiments were conducted at two sites, both experiencing a semi-arid Mediterranean-type climate in the wheat-growing region of Western Australia but with differing soil types, a deep sand (Moora) and a sand-over-clay shallow duplex soil (East Beverley, EB). Lupin shoot and root dry matter and total plant N accumulation, proportional dependence on nitrogen fixation and grain yield were greater at the deep sand site than the duplex soil site, although there was a similar proportion of shoot N to estimated total BG N at both sites. The proportion of total plant BG N decreased from the vegetative stage (42–51%) to peak biomass (25–39%) and maturity (23–34%). From 56–67% of BG N on the deep sand and 74–86% on the duplex soil was not recovered in coarse roots (>2 mm) or as soluble N, but was present in the insoluble organic N fraction. There was evidence for cycling of lupin root-derived N into soil microbial biomass and soluble organic N during lupin growth (by the late vegetative stage), but no evidence for leaching of legume derived BG N during the lupin season. Estimates of fixed N input BG were at least four times greater if based on total lupin BG N rather than on N recovered in coarse roots (>2 mm). There were no apparent losses of lupin BG N during the summer fallow period subsequent to lupin harvest at either site. Also, immediately prior to sowing of wheat there were similar proportions of lupin BG N in the inorganic (20–25%) and microbial biomass (6–9%) pools at both sites, with the majority of BG N detected in the <2 mm fraction of the soil column. However, the proportion of residual lupin BG N estimated to benefit the aboveground wheat biomass was relatively low, 10% on the deep sand and only 3% on the shallow duplex. Some (14%) residual lupin BG N was leached as nitrate to 1 m on the deep sand compared to 8% of residual lupin BG N leached to the clay layer (0.3 m) on the shallow duplex. About 27% of the residual lupin BG N on the deep sand at Moora had apparently mineralised by the end of the succeeding wheat season (i.e. recovered either in the wheat shoots, as inorganic N in the soil profile or as leached nitrate) compared to only 12% at EB. There was an unaccounted for large loss of residual lupin BG N (50%) from the duplex soil at EB during the wheat season, postulated to be chiefly via denitrification. At both sites after the wheat season a substantial proportion (32–55%) of legume derived BG N was still present as residual insoluble organic N, considered to be an important contribution to structural and nutritional long-term sustainability of these soils.  相似文献   

12.
Chickpea and white lupin roots are able to exude large amounts of carboxylates, but the resulting concentrations in the rhizosphere vary widely. We grew chickpea in pots in eleven different Western Australian soils, all with low phosphorus concentrations. While final plant mass varied more than two-fold and phosphorus content almost five-fold, there were only minor changes in root morphological traits that potentially enhance phosphorus uptake (e.g., the proportion of plant mass allocated to roots, or the length of roots per unit root mass). In contrast, the concentration of carboxylates (mainly malonate, citrate and malate, extracted using a 0.2 mM CaCl2 solution) varied ten-fold (averaging 2.3 mol g–1 dry rhizosphere soil, approximately equivalent to a soil solution concentration of 23 mM). Plant phosphorus uptake was positively correlated with the concentration of carboxylates in the rhizosphere, and it was consistently higher in soils with a smaller capacity to sorb phosphorus. Phosphorus content was not correlated with bicarbonate-extractable phosphorus or any other single soil trait. These results suggest that exuded carboxylates increased the availability of phosphorus to the plant, however, the factors that affected root exudation rates are not known. When grown in the same six soils, three commonly used Western Australian chickpea cultivars had very similar rhizosphere carboxylate concentrations (extracted using a 0.2 mM CaCl2 solution), suggesting that there is little genetic variation for this trait in chickpea. Variation in the concentration of carboxylates in the rhizosphere of white lupin did not parallel that of chickpea across the six soils. However, in both species the proportion of citrate decreased and that of malate increased at lower soil pH. We conclude that patterns of variation in root exudates need to be understood to optimise the use of this trait in enhancing crop phosphorus uptake.  相似文献   

13.
康喜坤  陈小红  龚伟  张腾驹 《生态学报》2019,39(11):4049-4055
非结构性碳水化合物(non-structural carbohydrates, NSC)、氮(N)和磷(P)是植物生长的重要能源物质和影响植物分布的限制生长因子,圆叶玉兰(Magnolia sinensis)是四川省特有的珍稀濒危极小种群野生植物,研究其NSC、N和P可以反映它的营养供应水平及对环境的适应策略。选取芦山6个海拔梯度(1840,1960,2070,2170,2270,2390 m)的圆叶玉兰为对象,研究不同海拔下圆叶玉兰叶片中NSC与N、P及其化学计量间的关系。结果表明,圆叶玉兰叶片可溶性糖含量在2390 m处显著高于1840 m处, NSC含量在不同海拔差异极显著,随海拔增加呈"低-高-低"的单峰变化,2170 m处叶片NSC含量最高,碳水化合物供应充足;可溶性糖/淀粉的比值随海拔升高呈增大趋势,N含量和N/P比都随海拔上升而下降,且N/P比在各海拔上均小于14,NSC/N比在2390 m处显著高于1840 m处。总之,圆叶玉兰叶片的可溶性糖和NSC含量显著不受海拔的影响,较高的可溶性糖含量有利于抵御低温环境,其生长主要受氮元素限制而不受碳限制,反映了濒危植物圆叶玉兰在其有限的分布范围内NSC及N、P的保护策略,为圆叶玉兰的碳代谢和生长适应对策提供数据基础。  相似文献   

14.

Background and aims

We determined the relationship between site N supply and decomposition rates with respect to controls exerted by environment, litter chemistry, and fungal colonization.

Methods

Two reciprocal transplant decomposition experiments were established, one in each of two long-term experiments in oak woodlands in Minnesota, USA: a fire frequency/vegetation gradient, along which soil N availability varies markedly, and a long-term N fertilization experiment. Both experiments used native Quercus ellipsoidalis E.J. Hill and Andropogon gerardii Vitman leaf litter and either root litter or wooden dowels.

Results

Leaf litter decay rates generally increased with soil N availability in both experiments while belowground litter decayed more slowly with increasing soil N. Litter chemistry differed among litter types, and these differences had significant effects on belowground (but not aboveground) decay rates and on aboveground litter N dynamics during decomposition. Fungal colonization of detritus was positively correlated with soil fertility and decay rates.

Conclusions

Higher soil fertility associated with low fire frequency was associated with greater leaf litter production, higher rates of fungal colonization of detritus, more rapid leaf litter decomposition rates, and greater N release in the root litter, all of which likely enhance soil fertility. During decomposition, both greater mass loss and litter N release provide mechanisms through which the plant and decomposer communities provide positive feedbacks to soil fertility as ultimately driven by decreasing fire frequency in N-limited soils and vice versa.  相似文献   

15.
  • 1 We wanted to determine if changes in algae in the Everglades were due to increased phosphorus (P) loading. Epiphytic algae, water chemistry, and surface sediment chemistry were characterized from 32 sloughs along a P gradient in the Everglades and changes in the algal assemblages along the P gradient were compared with those along an experimental P gradient of in situ mesocosms. The sloughs are the wettest open water habitats characterized by floating and submerged aquatic plants in the Everglades.
  • 2 Algal species composition was much more sensitive to P concentration than algal biomass. The diatom species variance among sloughs, captured by 1st ordination axis, was more highly correlated with total P (TP) in surface sediments (r = ‐ 0.79), than soluble reactive P (SRP) (r = ‐ 0.08) and TP (r = ‐ 0.48) in the water column. Algal biomass (µg chl a cm‐2) was not significantly correlated with P (SRP: r = 0.22, TP: r = 0.19, sediment TP: r = 0.07) along the P gradient in the Everglades. Cluster analysis classified diatom species assemblages in 32 sloughs into three groups (TWIN I, II, III), which corresponded to three zones along the P gradient. Dominant diatom species shifted from Mastogloia smithii (40.3%), Cymbella scotica (22.3%), and Fragilaria synegrotesca (21.8%) in TWIN I to Nitzschia amphibia (22.4%) and C. microcephala (12.4%) in TWIN III. TP in surface sediments and TP in epiphyton assemblages increased 4‐ and 5‐fold from TWIN I to TWIN III, respectively.
  • 3 Patterns in epiphytic assemblages along the experimental P gradient in the mesocosms were very similar to those along the Everglades P gradient. Shannon diversity indices and species richness significantly increased along both P gradients. TN : TP ratio in epiphyton assemblages significantly decreased as sediment TP increased along both P gradient. Ordination analysis showed that diatom assemblages in the impacted zone (TWIN III) were ordinated closely to the assemblages from the highest P treatments in the mesocosms. The assemblages from the less impacted zone (TWIN I) were ordinated closely to the assemblages from controls in the mesocosms.
  • 4 Concurrence between results of our survey and experiments suggest that changes in epiphytic assemblages along the P gradient in the Everglades are caused by increases in P concentrations.
  相似文献   

16.
17.
Plant adaptations associated with a high efficiency of phosphorus (P) acquisition can be used to increase productivity and sustainability in a world with a growing population and decreasing rock phosphate reserves. White lupin (Lupinus albus) produces cluster roots that release carboxylates to efficiently mobilize P from P‐sorbing soils. It has been hypothesized that an increase in the activity of the alternative oxidase (AOX) would allow for the mitochondrial oxidation of NAD(P)H produced during citrate synthesis in cluster roots at a developmental stage when there is a low demand for ATP. We used the oxygen‐isotope fractionation technique to study the in vivo respiratory activities of the cytochrome oxidase pathway (COP) and the alternative oxidase pathway (AOP) in different root sections of white lupins grown hydroponically with and without P. In parallel, AOX protein levels and internal carboxylate concentrations were determined in cluster and non‐cluster roots. Higher in vivo AOP activity was measured in cluster roots when malate and citrate concentrations were also high, thus confirming our hypothesis. AOX protein levels were not always correlated with in vivo AOP activity, suggesting post‐translational regulation of AOX.  相似文献   

18.
《植物生态学报》2017,41(12):1228
Aims Leaf is the organ of plant photosynthesis, and it is important to understand the drivers for the variations of leaf nitrogen (N) and phosphorus (P) stoichiometry along geographical and climatic gradients. Here we aimed to explore: 1) the changes in leaf nitrogen (N) and phosphorus (P) stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, and 2) the relative contribution of climate, plant characteristics, and phylogeny to the changes in leaf N, P concentration and N:P.  相似文献   

19.
Summary In a pot culture study, copper addition to soil increased the crop yield only in presence of nitrogen. The latter increased the utilization of both native as well as applied copper but more that of applied. It also minimised the adverse effect of applied phosphorus on copper utilization. Phosphorus at the rate 45 ppm had the tendency of decreasing copper uptake by wheat if applied without nitrogen or with its low level.  相似文献   

20.
子叶磷在白羽扇豆缺磷适应性反应中的作用   总被引:5,自引:0,他引:5  
实验用液体培养的方法,对比分析了在不同供磷条件下,白羽扇豆子叶中的磷对植物生长发育的影响,以及排根和根尖中有机酸积累和分泌的作用,结果表明,子叶中的磷能使白羽扇豆在完全缺磷23d的环境中,不仅没有使干物质的积累减少,反而使干物质的积累略有增加,相反,如果没有子叶磷的供给,则使白羽扇豆在缺磷环境中产生强烈的抗胁迫反应,表现在干物质的积累明显下降,根系能产生大量的排根,排根能积累和分泌大量的柠檬酸,而根尖能积累和分泌萍果酸,在整个缺磷反应过程中,根尖中苹果酸的分泌要早于排根可柠檬酸的积累和分泌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号