首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of greater trochanteric pain syndrome (GTPS) on gluteus medius (GMed) and minimus (GMin) activation in post-menopausal women is unknown. The aim of this study was to compare segmental muscle activation and variability of the GMed, GMin and tensor fascia latae (TFL) during gait in post-menopausal women with and without GTPS.Intramuscular electrodes were inserted into segments of GMin (x2) and GMed (x3) and a surface electrode placed on TFL. Ten control participants and 8 with GTPS completed six walking trials. Peak amplitude, average amplitude and time to peak from each phase of the gait cycle (0–30%, 30%- toe off (TO), total stance and swing) were compared between groups using independent t-tests and effect-size (ES) calculations. Variability of muscle activation was calculated using the mean coefficient of variation (CV). Reversal of anterior GMin electromyographic burst pattern and greater average muscle activity was found in the GTPS group compared to controls: 0-TO for anterior GMin (p < 0.05), anterior and middle GMed (p < 0.01); 0–30% for posterior GMin (p < 0.01) and GMed (p < 0.05). No significant differences were identified in TFL. Overall, this study found increased segmental gluteal muscle activation, decreased hip abduction strength, and reduced variability in muscle activation in post-menopausal women with GTPS, compared with controls.  相似文献   

2.
Subscapularis muscle is divided into two independent segments, upper and lower (USUB and LSUB), but the role of each segment in glenohumeral functioning is unclear. We compared the electromyographic (EMG) activity of USUB and LSUB during a variety of shoulder movements, with and without an external translation force. Intramuscular electrodes were inserted in USUB and LSUB segments of 20 adults without pathology and EMG activity was measured in stabilization trials (with and without an anterior or posterior directed force at the humerus and isometric rotations) and two shoulder positions (shoulder neutral, abduction). Maximal voluntary isometric contraction (MVIC) trials were performed in abduction, internal and external rotation of the shoulder. In MVIC trials, USUB showed higher activity during internal rotation (p = 0.03), whereas LSUB showed higher activity during external rotation (p < 0.01). In stabilization trials, the interaction effects were significant for muscle segment × condition (p < 0.01), and approached significance for muscle segment × position (p = 0.06). In the neutral position, the pattern of activity for LSUB was similar to USUB. In the abducted position the LSUB, unlike USUB, was more active during external rotation (p = 0.06) and also showed increased activity in response to the posterior directed force at the humerus (p = 0.04). Our results suggest that USUB primarily acts as an agonist for internal rotation. In contrast LSUB was particularly active in external rotation in the abducted position and demonstrated increased EMG activity in response to the posteriorly directed force at the humerus in that position, suggesting more of a role in glenohumeral stabilization.  相似文献   

3.
Normalization of electromyographic (EMG) amplitudes is necessary in the study of human motion. However, there is a lack of agreement on the most reliable and appropriate normalization method. This study evaluated the reliability of single leg stance (SLS) and maximal voluntary isometric contraction (MVIC) normalization methods and the relationship between these measures for the gluteus maximus (GMax), gluteus medius (GMed), rectus femoris (RF), vastus lateralis (VL), hip adductor group (ADD), and biceps femoris (BF). Surface EMG was recorded in 20 subjects during three 5 s trials of SLS and MVIC. SLS and MVIC methods both demonstrated good-to-excellent reliability in all muscles (ICCs > 0.80). Intrasubject coefficients of variation were lower for the MVIC method (9–36%) than for the SLS method (20–59%). EMG amplitudes during MVIC and SLS were significantly correlated for all muscles (Pearson r’s = 0.604–0.905, p < 0.005) except GMax (r = 0.250, p = 0.288). Use of SLS normalization for the RF, VL, and BF is not recommended due to a lack of measurement precision. However, this method is justified in the GMax, GMed, and ADD and may provide a better representation of coordinated muscle function during a functional task.  相似文献   

4.
Electromyographic (EMG) studies into gluteus medius (GMed) typically involve surface EMG electrodes. Previous comparisons of surface and fine wire electrode recordings in other muscles during high load isometric tasks suggest that recordings between electrodes are comparable when the muscle is contracting at a high intensity, however, surface electrodes record additional activity when the muscle is contracting at a low intensity. The purpose of this study was to compare surface and fine wire recordings of GMed at high and low intensities of muscle contractions, under high load conditions (maximum voluntary isometric contractions, MVICs). Mann–Whitney U tests compared median electrode recordings during three MVIC hip actions; abduction, internal rotation and external rotation, in nine healthy adults. There were no significant differences between electrode recordings in positions that evoked a high intensity contraction (internal rotation and abduction, fine wire activity >77% MVIC; effect size, ES < 0.42; p > 0.277). During external rotation, the intensity of muscle activity was low (4.2% MVIC), and surface electrodes recorded additional myoelectric activity (ES = 0.67, p = 0.002). At low levels of muscle activity during high load isometric tasks, the use of surface electrodes may result in additional myoelectric recordings of GMed, potentially reflective of cross-talk from surrounding muscles.  相似文献   

5.
《IRBM》2014,35(1):46-52
BackgroundQuantified gait analysis is a rising technology used increasingly to assess motor disorders. Normal reference data are required in order to evaluate patients, but there are no reference data available for the Tunisian healthy population.AimTo assess the features of normal Tunisian gait pattern, and examine the intrinsic reliability of spatio-temporal, kinematic and kinetic parameters within a new specific reference database.MethodsEighteen healthy active-young adults (age: 23.30 ± 2.54 years, height: 1.78 ± 0.04 m and, weight: 70.00 ± 4.80 kg) have participated to five trials of step gait where the dominant lower limb were recorded. Two over the five trials were randomly selected to be further analyzed. Twenty-three spatio-temporal, kinematic and kinetic parameters determined from 3-dimensional gait analysis. The intrinsic reliability was examined for each variable and our results were compared with those available in the literature.ResultsTwelve over 23 parameters have an excellent intrinsic reliability (P > 0.05, ICC > 0.9 and SEM < 5% of the grand mean). There are similarities with other studies (P < 0.05) but we noticed the existence of some specificity (the height of hip extension peak and the low cadence of gait) that could characterize the Tunisian population.ConclusionA specific reference database of the gait cycle has been established for healthy Tunisian active-young adults and excellent inter-trial reliability may be observed for different variables.  相似文献   

6.
The aims of this study were to assess the effect of the pelvic compression belt on the electromyographic (EMG) activities of gluteus medius (GM), quadratus lumborum (QL), and lumbar multifidus (LM) during side-lying hip abduction. Thirty-one volunteers (15 men and 16 women) with no history of pathology volunteered for this study. Subjects were instructed to perform hip abduction in side-lying position with and without applying the pelvic compression belt. The pelvic compression belt was adjusted just below the anterior superior iliac spines with the stabilizing pressure using elastic compression bands. Surface EMG data were collected from the GM, QL, and LM of the dominant limb. Significantly decreased EMG activity in the QL (without the pelvic compression belt, 60.19 ± 23.66% maximal voluntary isometric contraction [MVIC]; with the pelvic compression belt, 51.44 ± 23.00% MVIC) and significantly increased EMG activity in the GM (without the pelvic compression belt, 26.71 ± 12.88% MVIC; with the pelvic compression belt, 35.02 ± 18.28% MVIC) and in the LM (without the pelvic compression belt, 30.28 ± 14.60% MVIC; with the pelvic compression belt, 37.47 ± 18.94% MVIC) were found when the pelvic compression belt was applied (p < 0.05). However, there were no significant differences of the EMG activity between male and female subjects. The findings suggest that the pelvic compression belt may be helpful to prevent unwanted substitution movement during side-lying hip abduction, through increasing the GM and LM and decreasing the QL.  相似文献   

7.
Alterations in scapular muscle activity, including excess activation of the upper trapezius (UT) and onset latencies of the lower trapezius (LT) and serratus anterior (SA) muscles, are associated with abnormal scapular motion and shoulder impingement. Limited information exists on the reliability of neuromuscular activity to demonstrate the efficacy of interventions. The purpose of this study was to characterize the reproducibility of scapular muscle activity (mean activity, relative onset timing) over time and establish the minimal detectable change (MDC). Surface electromyography (sEMG) of the UT, LT, SA and anterior deltoid (AD) muscles in 16 adults were captured during an overhead lifting task in two sessions, one-week apart. sEMG data were also normalized to maximum isometric contraction and the relative onset and mean muscle activity during concentric and eccentric phases of the scapular muscles were calculated. Additionally, reliability of the absolute sEMG data during the lifting task and MVIC was evaluated. Both intrasession and intersession reliability of normalized and absolute mean scapular muscle activity, assessed with intraclass correlation coefficients (ICC), ranged from 0.62 to 0.99; MDC values were between 1.3% and 11.7% MVIC and 24 to 135 mV absolute sEMG. Reliability of sEMG during MVIC was ICC = 0.82–0.99, with the exception of intersession upper trapezius reliability (ICC = 0.36). Within session reliability of muscle onset times was ICC = 0.88–0.97, but between session reliability was lower with ICC = 0.43–0.73; MDC were between 39 and 237 ms. Small changes in scapular neuromuscular mean activity (>11.7% MVIC) can be interpreted as meaningful change, while change in muscle onset timing in light of specific processing parameters used in this study is more variable.  相似文献   

8.
Cryotherapy and ankle bracing are often used in conjunction as a treatment for ankle injury. No studies have evaluated the combined effect of these treatments on reflex responses during inversion perturbation. This study examined the combined influence of ankle bracing and joint cooling on peroneus longus (PL) muscle response during ankle inversion. A 2 × 2 RM factorial design guided this study; the independent variables were: ankle brace condition (lace-up brace, control), and treatment (ice, control), and the dependent variables studied were PL stretch reflex latency (ms), and PL stretch reflex amplitude (% of max). Twenty-four healthy participants completed 5 trials of a sudden inversion perturbation to the ankle/foot complex under each ankle brace and cryotherapy treatment condition. No two-way interaction was observed between ankle brace and treatment conditions on PL latency (P = 0.283) and amplitude (P = 0.884). The ankle brace condition did not differ from control on PL latency and amplitude. Cooling the ankle joint did not alter PL latency or amplitude compared to the no-ice treatment. Ankle bracing combined with joint cooling does not have a deleterious effect on dynamic ankle joint stabilization during an inversion perturbation in normal subjects.  相似文献   

9.
A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three-dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20 s on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis.  相似文献   

10.
Treadmill has been broadly used in laboratory and rehabilitation settings for the purpose of facilitating human locomotion analysis and gait training. The objective of this study was to determine whether dynamic gait stability differs or resembles between the two walking conditions (overground vs. treadmill) among young adults. Fifty-four healthy young adults (age: 23.9 ± 4.7 years) participated in this study. Each participant completed five trials of overground walking followed by five trials of treadmill walking at a self-selected speed while their full body kinematics were gathered by a motion capture system. The spatiotemporal gait parameters and dynamic gait stability were compared between the two walking conditions. The results revealed that participants adopted a “cautious gait” on the treadmill compared with over ground in response to the possible inherent challenges to balance imposed by treadmill walking. The cautious gait, which was achieved by walking slower with a shorter step length, less backward leaning trunk, shortened single stance phase, prolonged double stance phase, and more flatfoot landing, ensures the comparable dynamic stability between the two walking conditions. This study could provide insightful information about dynamic gait stability control during treadmill ambulation in young adults.  相似文献   

11.
This study aims at determining the applicability of a segment weight dynamic movement (SWDM) method as an alternative for normalizing gait EMGs in comparison with the conventional isometric maximal voluntary contraction (MVC) method. The SWDM method employs reference exercises, each being a dynamic, repetitive movement of a joint under the load of the segment weight (i.e., the total weight of all segments distal to the joint). EMG amplitudes of 28 healthy male subjects walking at 120 steps/min were normalized by the two methods. CV and VR were used to assess the inter-individual variability of both the normalized gait EMG for 8 muscles. The CV and VR values attained with the two methods were close to each other, as well as to those obtained by other researchers using the isometric MVC method. These results suggest that the SWDM method has a comparable level of applicability to gait EMG normalization as the isometric MVC method.  相似文献   

12.
During gait, a failure to acknowledge the low-frequency component of a segmental acceleration signal will result in an overestimation of impact-related shock and may lead to inappropriately drawn conclusions. The present study was undertaken to investigate the significance of this low-frequency component in two distinctly different modalities of gait: barefoot (BF) and shod (SHOD) walking. Twenty-seven participants performed five walking trials at self-selected speed in each condition. Peak positive accelerations (PPA) at the shank and spine were first derived from the time-domain signal. The raw acceleration signals were then resolved in the frequency-domain and the active (low-frequency) and impact-related components of the power spectrum density (PSD) were quantified. PPA was significantly higher at the shank (P < 0.0001) and spine (P = 0.0007) in the BF condition. In contrast, no significant differences were apparent between conditions for shank (P = 0.979) or spine (P = 0.178) impact-related PSD when the low-frequency component was considered. This disparity between approaches was due to a significantly higher active PSD in both signals in the BF condition (P < 0.0001; P = 0.008, respectively), due to kinematic differences between conditions (P < 0.05). These results indicate that the amplitude of the low-frequency component of an acceleration signal during gait is dependent on knee and ankle joint coordination behaviour, and highlight that impact-related shock is more accurately quantified in the frequency-domain following subtraction of this component.  相似文献   

13.
Aim of the study was to identify the different modalities of activation of gastrocnemius lateralis (GL) and tibialis anterior (TA) during gait at self-selected speed, by a statistical analysis of surface electromyographic signal from a large number (hundreds) of strides per subject. The analysis on fourteen healthy adults showed a large variability in the number of activation intervals, in their occurrence rate, and in the on-off instants, within different strides of the same walk. For each muscle, the assessment of the different modalities of activation (five for muscle) allowed to identify a single pattern, common for all the modalities and able to characterize the behavior of muscles during normal gait. The pattern of GL activity centered in two regions of the gait cycle: the transition between flat foot contact and push-off (observed in 100% of total strides) and the final swing (67.1 ± 15.9%). Two regions characterized also the pattern of TA activity: from pre-swing to following loading response (100%), and the mid-stance (30.5 ± 15.0%). This “normality” pattern represents the first attempt for the development in healthy young adults of a reference for dynamic EMG activity of GL and TA, in terms of variability of on-off muscular activity and occurrence rate during gait.  相似文献   

14.
This study examined correlations between type I percent myosin heavy chain isoform content (%MHC) and mechanomyographic amplitude (MMGRMS) during isometric muscle actions. Fifteen (age = 21.63 ± 2.39) participants performed 40% and 70% maximal voluntary contractions (MVC) of the leg extensors that included increasing, steady force, and decreasing segments. Muscle biopsies were collected and MMG was recorded from the vastus lateralis. Linear regressions were fit to the natural-log transformed MMGRMS–force relationships (increasing and decreasing segments) and MMGRMS was selected at the targeted force level during the steady force segment. Correlations were calculated among type I%MHC and the b (slopes) terms from the MMGRMS–force relationships and MMGRMS at the targeted force. For the 40% MVC, correlations were significant (P < 0.02) between type I%MHC and the b terms from the increasing (r = −0.804) and decreasing (r = −0.568) segments, and MMGRMS from the steady force segment (r = −0.606). Type I%MHC was only correlated with MMGRMS during the steady force segment (P = 0.044, r = −0.525) during the 70% MVC. Higher type I%MHC reduced acceleration in MMGRMS (b terms) during the 40% MVC and the amplitude during the steady force segments. The surface MMG signal recorded during a moderate intensity contraction provided insight on the contractile properties of the VL in vivo.  相似文献   

15.
The aim of the current study was to analyze the activation characteristics and potential compartmentalization of the latissimus dorsi (LD) muscle during common maximal voluntary isometric contractions (MVICs) and functional dynamic tasks. Surface electromyography (sEMG) was used to measure activation magnitudes from four electrode sites (referenced to the T10, T12, L1 & L4 LD vertebral origins) across the fanning muscle belly of the LD. In addition, EMG waveforms were cross-correlated to study temporal activation timing between electrode sites (T10-T12, T12-L1, L1-L4 & T10-L4). The MVICs that were tested included a humeral adduction, humeral adduction with internal rotation, a chest-supported row and a humeral extension. Dynamic movements included sagittal lift/lowers from the floor to knee, knee to hip and hip to shoulder. No magnitude-based (p = 0.6116) or temporal-based differences were observed between electrode sites during the MVIC trials. During dynamic movements no temporal-based, but some magnitude-based differences between electrode sites were observed to be present; these differences were small in magnitude and were observed for both the maximum (p = 0.0002) and mean (p = 0.0002) EMG magnitudes. No clear pattern of compartmentalization was uncovered in the contractions studied here. In addition to these findings, it was determined that the most effective MVIC technique for LD EMG normalization purposes was a chest-supported row MVIC, paired with a T12 electrode site.  相似文献   

16.
ObjectiveTo analyze electromyographic (EMG) patterns and isokinetic muscle performance of shoulder abduction movement in individuals who sustained a cerebrovascular accident (CVA).DesignTwenty-two individuals who sustained a CVA and 22 healthy subjects volunteered for EMG activity and isokinetic shoulder abduction assessments. EMG onset time, root mean square (RMS) for upper trapezius and deltoid muscles, as well as the isokinetic variables of peak torque, total work, average power and acceleration time were compared between limbs and groups.ResultsThe paretic side showed a different onset activation pattern in shoulder abduction, along with a lower RMS for both muscles (21.8 ± 13.4% of the maximal voluntary isometric contraction (MVIC) for the deltoid and 25.9 ± 15.3% MVIC for the upper trapezius, about 50% lower than the control group). The non-paretic side showed a delay in both muscles activation and a lower RMS for the deltoid (32.2 ± 13.7% MVIC, about 25% lower than the control group). Both sides of the group of individuals who sustained a CVA presented a significantly lower isokinetic performance compared to the control group (paretic side ~60% lower; non-paretic side ~35% lower).ConclusionsShoulder abduction muscle performance is impaired in both paretic and non-paretic limbs of individuals who sustained a CVA.  相似文献   

17.
BackgroundAgeing has been linked to a high prevalence of cognitive impairment, which, in turn, has been related to balance disturbances and gait disorders. The aim of this study was to identify whether there are differences between subjects with and without cognitive impairment regarding the quality of gait and balance.Material and methodsAn observational study was conducted on institutionalised people older than 65 years (n = 82). Gait and balance was evaluated after the assessment of cognitive impairment using the Mini-Mental State Examination (MMSE). Single and dual tests were used including, the 6-minute walking, stride length, and gait speed. Timed Up and Go tests were also used to evaluate balance.ResultsThe participants were divided into three groups: 28 subjects in the group without cognitive impairment (MMSE  27), 29 subjects with mild (27 < MMSE  21) and 26 subjects with moderate cognitive impairment (MMSE < 21). Gait assessment showed significant between-groups differences in all the variables (P < .05). The variables assessing balance also showed significantly worse values in those groups with cognitive impairment.ConclusionThe severity of cognitive impairment is related to impaired balance and gait, thus the clinical monitoring of these variables in population at risk is needed.  相似文献   

18.
PurposeLumbar multifidus is a complex muscle with multi-fascicular morphology shown to be differentially controlled in healthy individuals during sagittal-plane motion. The normal behaviour of multifidus muscle regions during walking has only received modest attention in the literature. This study aimed to determine activation patterns for deep and superficial multifidus in young adults during walking at different speeds and inclination.MethodsThis observational cohort study evaluated ten healthy volunteers in their twenties (three women, seven men) as they walked on a treadmill in eight conditions; at 2 km/h and 4 km/h, each at 0, 1, 5, and 10% inclination. Intramuscular EMG was recorded from the deep and superficial multifidus unilaterally at L5. Activity was characterized by: amplitude of the peak of activation, position of peak within the gait cycle (0–100%), and duration relative to the full gait cycle.ResultsAcross all conditions superficial multifidus showed higher normalised EMG amplitude (p < 0.01); superficial multifidus peak amplitude was 232 ± 115% higher when walking at 4 km/h/10%, versus only 172 ± 77% higher for deeper region (p < 0.01). The percentage of the gait cycle where peak EMG amplitude was detected did not differ between regions (49 ± 13%). Deep multifidus duration of activation was longer when walking at the faster vs slower speed at all inclinations (p < 0.01), which was not evident for superficial multifidus (p < 0.05). Thus, a significantly longer activation of deep multifidus was observed compared to superficial multifidus when walking at 4 km/h (p < 0.05).ConclusionsDifferential activation within lumbar multifidus was shown in young adults during walking. The prolonged, more tonic activation of deep relative to superficial regions of multifidus during gait supports a postural function of deeper fibres.  相似文献   

19.
Introduction: Quadriceps voluntary activation, assessed via the superimposed burst technique, has been extensively studied in a variety of populations as a measure of quadriceps function. However, a variety of stimulus delivery techniques have been employed, which may influence the level of voluntary activation as calculated via the central activation ratio (CAR). The purpose was to determine the effect of visual feedback, stimulus delivery, and perceived discomfort on maximal voluntary isometric contraction (MVIC) peak torque and the CAR. Methods: Quadriceps CAR was assessed in 14 individuals on two days using three stimulus delivery methods; (1) manual without visual feedback, (2) manual with visual feedback, and (3) automated with visual feedback. Results: MVIC peak torque and the CAR were not different between the automated with visual feedback (MVIC = 3.25, SE = 0.14 N m/kg; CAR = 88.63, SE = 1.75%) and manual with visual feedback (MVIC = 3.26, SE = 0.13 N m/kg, P = 0.859; CAR = 89.06, SE = 1.70%, P = 0.39) stimulus delivery methods. MVIC (2.99, SE = 0.12 N m/kg) and CAR (85.32, SE = 2.10%) were significantly lower using manual without visual feedback compared to manual with visual feedback and automated with visual feedback (CAR P < 0.001; MVIC P < 0.001). Perceived discomfort was lower in the second session (P < 0.05). Conclusion: Utilizing visual feedback ensures participant MVIC, and may provide a more accurate assessment of quadriceps voluntary activation.  相似文献   

20.
Excessive knee joint laxity is often used as an indicator of joint disease or injury. Clinical assessment devices are currently limited to anterior–posterior drawer measurements, while tools used to measure movement in the remaining degrees of freedom are either invasive or prone to soft tissue artefact. The objective of this work was, therefore, to develop a methodology whereby in vivo knee joint kinematics could be measured in three dimensions under torsional loading while still maintaining a non-invasive procedure. A device designed to administer a subject-normalized torque in the transverse plane of the knee was securely fastened to the outer frame of an open magnetic resonance imaging (MRI) magnet. Low resolution 3D T1-weighted images (6.25 mm slice thickness) were generated by the 0.2 Tesla MRI scanner in less than 3 min while the joint was under load. The 3D image volume was then shape-matched to a high resolution image volume (1.56 mm slice thickness) scanned in a no-load position. Three-dimensional rotations and translations of the tibia with respect to the femur were calculated by comparing the transformation matrices before and after torque was applied. Results from six subjects showed that this technique was repeatable over five trials with the knee in extended and flexed positions. Differences in range of rotation were shown between subjects and between knee positions, suggesting that this methodology has sufficient utility for further application in clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号