首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TRAF3 is a highly versatile regulator that negatively regulates JNK and alternative nuclear factor-κB signalling, but positively controls type I interferon production. To investigate TRAF3 function in innate immune responses among invertebrate especially mollusk, we characterized TRAF3 (PfTRAF3) from pearl oyster Pinctada fucata, one of the most important bivalve mollusks for seawater pearl production. PfTRAF3 cDNA is 2261 bp with an open reading frame of 1623 bp encoding a putative protein of 541 amino acids. The deduced PfTRAF3 contains a RING finger domain, two TRAF domains with zinc finger domains and a conserved C-terminal meprin and TRAF homology (MATH) domain. Comparison and phylogenetic analysis revealed that PfTRAF3 from mollusk shared a higher identity with Ciona intestinalis TRAF3 from urochordata, Branchiostoma belcheri TRAF3 from cephalochordate, and even TRAF3 from vertebrate than with insect homologues. Furthermore, gene expression analyses suggested that PfTRAF3 was involved in the immune response to Vibrio alginolyticus.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
In this study, we have reported a first murrel interferon regulatory factor-1 (designated as Murrel IRF-1) which is identified from a constructed cDNA library of striped murrel Channa striatus. The identified sequence was obtained by internal sequencing method from the library. The Murrel IRF-1 varies in size of the polypeptide from the earlier reported fish IRF-1. It contains a DNA binding domain along with a tryptophan pentad repeats, a nuclear localization signal and a transactivation domain. The homologous analysis showed that the Murrel IRF-1 had a significant sequence similarity with other known fish IRF-1 groups. The phylogenetic analysis exhibited that the Murrel IRF-1 clustered together with IRF-1 members, but the other members including IRF-2, 3, 4, 5, 6, 7, 8, 9 and 10 were clustered individually. The secondary structure of Murrel IRF-1 contains 27 % α-helices (85 aa residues), 5.7 % β-sheets (19 aa residues) and 67.19 % random coils (210 aa residues). Furthermore, we predicted a tertiary structure of Murrel IRF-1 using I-Tasser program and analyzed the structure on PyMol surface view. The RNA structure of the Murrel IRF-1 along with its minimum free energy (?284.43 kcal/mol) was also predicted. The highest gene expression was observed in spleen and its expression was inducted with pathogenic microbes which cause epizootic ulcerative syndrome in murrels such as fungus, Aphanomyces invadans and bacteria, Aeromonas hydrophila, and poly I:C, a viral RNA analog. The results of cell protection assay suggested that the Murrel IRF-1 regulates the early defense response in C. striatus. Moreover, it showed Murrel IRF-1 as a potential candidate which can be developed as a therapeutic agent to control microbial infections in striped murrel. Overall, these results indicate the immune importance of IRF-1, however, the interferon signaling mechanism in murrels upon infection is yet to be studied at proteomic level.  相似文献   

10.
11.
12.
Ebola hemorrhagic fever is a rapidly progressing acute febrile illness characterized by high virus replication, severe immunosuppression, and case fatalities of ca. 80%. Inhibition of phosphorylation of interferon regulatory factor 3 (IRF-3) by the Ebola VP35 protein may block the host innate immune response and play an important role in the severity of disease. We used two precisely defined reverse genetics-generated Ebola viruses to investigate global host cell responses resulting from the inhibition of IRF-3 phosphorylation. The two viruses encoded either wild-type (WT) VP35 protein (recEbo-VP35/WT) or VP35 with an arginine (R)-to-alanine (A) amino acid substitution at position 312 (recEbo-VP35/R312A) within a previously defined IRF-3 inhibitory domain. When sucrose-gradient purified virus was used for infection, host cell whole-genome expression profiling revealed striking differences in human liver cell responses to these viruses differing by a single amino acid. The inhibition of host innate immune responses by WT Ebola virus was so potent that little difference in interferon and antiviral gene expression could be discerned between cells infected with purified WT, inactivated virus, or mock-infected cells. However, infection with recEbo-VP35/R312A virus resulted in a strong innate immune response including increased expression of MDA-5, RIG-I, RANTES, MCP-1, ISG-15, ISG-54, ISG-56, ISG-60, STAT1, IRF-9, OAS, and Mx1. The clear gene expression differences were obscured if unpurified virus stocks were used to initiate infection, presumably due to soluble factors present in virus-infected cell supernatant preparations. Ebola virus VP35 protein clearly plays a pivotal role in the potent inhibition of the host innate immune responses, and the present study indicates that VP35 has a wider effect on host cell responses than previously shown. The ability to eliminate this inhibitory effect with a single amino acid change in VP35 demonstrates the critical role this protein must play in the severe aspects this highly fatal disease.  相似文献   

13.
Growing numbers of studies have shown that circular RNAs (circRNAs) can function as regulatory factors to regulate the innate immune response, cell proliferation, cell migration, and other important processes in mammals. However, the function and regulatory mechanism of circRNAs in lower vertebrates are still unclear. Here, we discovered a novel circRNA derived from the gene encoding Bcl-2-like protein 1 (BCL2L1) gene, named circBCL2L1, which was related to the innate immune responses in teleost fish. Results indicated that circBCL2L1 played essential roles in host antiviral immunity and antibacterial immunity. Our study also identified a microRNA, miR-30c-3-3p, which could inhibit the innate immune response by targeting inflammatory mediator TRAF6. And TRAF6 is a key signal transduction factor in innate immune response mediated by TLRs. Moreover, we also found that the antiviral and antibacterial effects inhibited by miR-30c-3-3p could be reversed with the expression of circBCL2L1. Our data revealed that circBCL2L1 functioned as a competing endogenous RNA (ceRNA) of TRAF6 by competing for binding with miR-30c-3-3p, leading to activation of the NF-κB/IRF3 inflammatory pathway and then enhancing the innate immune responses. Our results suggest that circRNAs can play an important role in the innate immune response of teleost fish.  相似文献   

14.
15.
16.
17.
18.
Interferon regulatory factors (IRFs) are involved in gene regulation in many biological processes including the antiviral, growth regulatory, and immune modulatory functions of the interferon system. Several studies have demonstrated that IRF-3, IRF-5, and IRF-7 specifically contribute to the innate antiviral response to virus infection. It has been reported that virus-specific phosphorylation leads to IRF-5 nuclear localization and up-regulation of interferon, cytokine, and chemokine gene expression. Two nuclear localization signals have been identified in IRF-5, both of which are sufficient for nuclear translocation and retention in virus-infected cells. In the present study, we demonstrate that a CRM1-dependent nuclear export pathway is involved in the regulation of IRF-5 subcellular localization. IRF-5 possesses a functional nuclear export signal (NES) that controls dynamic shuttling between the cytoplasm and the nucleus. The NES element is dominant in unstimulated cells and results in the predominant cytoplasmic localization of IRF-5. Mutation of two leucine residues in the NES motif to alanine, or three adjacent Ser/Thr residues to the phosphomimetic Asp, results in constitutively nuclear IRF-5 and suggests that phosphorylation of adjacent Ser/Thr residues may contribute to IRF-5 nuclear accumulation in virus-induced cells. IKK-related kinases TBK1 and IKKepsilon have been shown to phosphorylate and activate IRF-3 and IRF-7, leading to the production of type 1 interferons and the development of a cellular antiviral state. We examined the phosphorylation and activation of IRF-5 by TBK1 and IKKepsilon kinases. Although IRF-5 is phosphorylated by IKKepsilon and TBK1 in co-transfected cells, the phosphorylation of IRF-5 did not lead to IRF-5 nuclear localization or activation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号