首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Many plant species can be induced to flower by responding to stress factors. The short-day plants Pharbitis nil and Perilla frutescens var. crispa flower under long days in response to the stress of poor nutrition or low-intensity light. Grafting experiments using two varieties of P. nil revealed that a transmissible flowering stimulus is involved in stress-induced flowering. The P. nil and P. frutescens plants that were induced to flower by stress reached anthesis, fruited and produced seeds. These seeds germinated, and the progeny of the stressed plants developed normally. Phenylalanine ammonialyase inhibitors inhibited this stress-induced flowering, and the inhibition was overcome by salicylic acid (SA), suggesting that there is an involvement of SA in stress-induced flowering. PnFT2, a P. nil ortholog of the flowering gene FLOWERING LOCUS T (FT) of Arabidopsis thaliana, was expressed when the P. nil plants were induced to flower under poor-nutrition stress conditions, but expression of PnFT1, another ortholog of FT, was not induced, suggesting that PnFT2 is involved in stress-induced flowering.Key words: flowering, stress, phenylalanine ammonia-lyase, salicylic acid, FLOWERING LOCUS T, Pharbitis nil, Perilla frutescensFlowering in many plant species is regulated by environmental factors, such as night-length in photoperiodic flowering and temperature in vernalization. On the other hand, a short-day (SD) plant such as Pharbitis nil (synonym Ipomoea nil) can be induced to flower under long days (LD) when grown under poor-nutrition, low-temperature or high-intensity light conditions.19 The flowering induced by these conditions is accompanied by an increase in phenylalanine ammonia-lyase (PAL) activity.10 Taken together, these facts suggest that the flowering induced by these conditions might be regulated by a common mechanism. Poor nutrition, low temperature and high-intensity light can be regarded as stress factors, and PAL activity increases under these stress conditions.11 Accordingly, we assumed that such LD flowering in P. nil might be induced by stress. Non-photoperiodic flowering has also been sporadically reported in several plant species other than P. nil, and a review of these studies suggested that most of the factors responsible for flowering could be regarded as stress. Some examples of these factors are summarized in 1214

Table 1

Some cases of stress-induced flowering
Stress factorSpeciesFlowering responseReference
high-intensity lightPharbitis nilinduction5
low-intensity lightLemna paucicostatainduction29
Perilla frutescens var. crispainduction14
ultraviolet CArabidopsis thalianainduction23
droughtDouglas-firinduction30
tropical pasture Legumesinduction31
lemoninduction3235
Ipomoea batataspromotion36
poor nutritionPharbitis nilinduction3, 4, 13
Macroptilium atropurpureumpromotion37
Cyclamen persicumpromotion38
Ipomoea batataspromotion36
Arabidopsis thalianainduction39
poor nitrogenLemna paucicostatainduction40
poor oxygenPharbitis nilinduction41
low temperaturePharbitis nilinduction9, 12
high conc. GA4/7Douglas-firpromotion42
girdlingDouglas-firinduction43
root pruningCitrus sp.induction44
Pharbitis nilinduction45
mechanical stimulationAnanas comosusinduction46
suppression of root elongationPharbitis nilinduction7
Open in a separate window  相似文献   

3.
4.
5.
6.
7.
8.
Misfolded proteins are at the core of many neurodegenerative diseases, nearly all of them associated with cognitive impairment. For example, Creutzfeldt-Jacob disease is associated with aggregation of prion protein,1,2 Lewy body dementia and Parkinson disease with α-synuclein3,4 and forms of frontotemporal dementia with tau, TDP43 and a host of other proteins.5,6 Alzheimer disease (AD), the most common cause of dementia,7 and its prodromal syndrome mild cognitive impairment (MCI)8 are an increasing public health problem and a diagnostic challenge to many clinicians. AD is characterized pathologically by the accumulation of amyloid β-protein (Aβ)9,10 as senile plaques and in the walls of blood vessels as amyloid angiopathy.11,12 Additionally, there are accumulations of tau-protein as neurofibrillary tangles and dystrophic neurites.11,12 Biological markers of AD and MCI can serve as in vivo diagnostic indicators of underlying pathology, particularly when clinical symptoms are mild1315 and are likely present years before the onset of clinical symptoms.1619 Research to discover and refine fluid and imaging biomarkers of protein aggregation has undergone a rapid evolution2022 and combined analysis of different modalities may further increase diagnostic sensitivity and specificity.2326 Multi-center trials are now investigating whether imaging and/or cerebrospinal fluid (CSF) biomarker candidates can be used as outcome measures for use in phase III clinical trials for AD.2729Key words: dementia, screening, biomarkers, amyloid, tau, Alzheimer disease, preclinical, presymptomaticCurrently, the diagnosis of AD is based on exclusion of other forms of impairment with definitive diagnosis requiring autopsy confirmation.30 Thus, there is a strong need to find easily measurable in vivo AD biomarkers that could facilitate early and accurate diagnosis31 as well as prognostic data to assist in monitoring therapeutic efficacy.32 Although biological markers such as MRI, PET scans and CSF increase the diagnostic likelihood that AD is present,9,1820,33,34 biomarkers are invasive, uncomfortable, expensive and may not be readily available to rural areas, underserved communities, underinsured individuals or developing countries, making them impractical for broad use. However, the lessons learned from biomarkers can be applied to increase the likelihood that clinicians will be able to detect disease at earlier stages in the form of dementia screening.Public health may be best defined as the organized efforts of society to improve health, often framed in terms of primary, secondary and tertiary prevention. Prevention encompasses an understanding of causation, alteration of natural history of disease and understanding of pathophysiological mechanisms.35 The clearest application of this from a public health perspective is in the setting of secondary prevention (i.e., screening)—early detection as a core element, coupled with treatments or preventative actions to reduce the burden of disease.35 In this instance we seek to identify individuals in whom a disease has already begun and who may be experiencing very mild clinical symptoms but have not yet sought out medical care. The objective of effective screening is to detect the disease earlier than it would have been detected with usual care. Recent healthcare reform (Accountable Care Act)36 proposes a Personalized Prevention Plan including screening for cognitive disorders, reimbursable through Medicare. Thus tying knowledge about dementia screening with underlying biology of protein misfolding associated with neurodegenerative disease can have enormous implications.A review of the natural history of dementia illustrates this point (Fig. 1). The timeline of disease from presumptive start to the patient demise is plotted. Stage I marks the biologic onset of disease; however this point often cannot be identified and may begin years to decades before any evidence is apparent (represented by dashed lines). As this stage is subclinical, it is difficult to study in humans but lends itself nicely to animal models. At some point in the progression of the biology, stage II begins heralding the first pathologic evidence of disease could be obtained—in the case of AD this could include CSF measurements of amyloid and tau22,26,27 or PET imaging with amyloid ligands.18,37 Subsequently, the first signs and symptoms of disease develop (stage III). Till this point, the disease process has been entirely presymptomatic. Beginning with the onset of symptoms, the patient may seek medical care (stage IV) and eventually be diagnosed (stage V). From stage III onwards, the patient enters the symptomatic phase of disease. From this point, the patient is typically treated with various pharmacologic and nonpharmacologic approaches towards some outcome. Another way to envision the disease spectrum is from the biological onset to the seeking of medical attention as the preclinical phase of disease with the clinical phase beginning with the initial clinical investigations into the cause of the patients'' symptoms.Open in a separate windowFigure 1Model of the natural history of AD. Timeline from presumptive start of AD through patient diagnosis is plotted. The initiation of biological changes (stage I) marks the onset of disease and begins years to decades before any evidence is apparent (represented by dashed lines). At some point the first pathologic evidence of disease (stage II) begins and in theory can be detected with biomarkers such as CSF measurements of amyloid and tau or PET imaging with amyloid ligands. Subsequently, the first signs and symptoms of disease develop (stage III) followed by the patient seeking medical attention (stage IV) and finally a diagnosis is established (stage V). This timeline can be clustered into a presymptomatic phase (stages I–III) and a symptomatic phase (stages III–V). An alternative way to envision the disease spectrum is from the biological onset to the seeking of medical attention (stages I–IV) as the preclinical phase of disease with the clinical phase beginning with the initial clinical investigations into the cause of the patients'' symptoms (stages IV and V). Stage III is the ideal time for dementia screening.What is the value of thinking about disease in this fashion? Such models allow researchers and clinicians to model the approach to finding and applying new diagnostics and offering new interventions. From stage I to stage III, the patient is the presymptomatic, preclinical phase of disease. The only means of detection would be with a biological marker that reflected protein misfolding or some proxy marker of these events. Although longitudinal evidence of cognitive change exist from 1–3 years before clinical diagnosis, raw scores on neuropsychological testing during this time remains in the normal range.38 After stage IV, the patient is in the symptomatic, clinical phase of disease. Testing here is centered on confirming the suspected diagnosis, correctly staging the disease and initiating the appropriate therapies. Basic scientific approaches focusing on the presymptomatic, preclinical phase and clinical care approaches focusing on the symptomatic, clinical phase are well established and will continue to benefit from additional research.However, if we focus only on these two phases, an opportunity will be missed to make a decidedly important impact in the patient''s well-being. From stage III to stage IV, the patient enters symptomatic, preclinical phase of disease; symptomatic because the patient or family is beginning to detect some aspect of change, but preclinical because these signs and symptoms have not yet been brought to medical attention. In the case of AD (and the other forms of dementia) this period may go for an extended length of time as patients, families and clinicians dismiss early cognitive symptoms as part of the normal aging process. Thus, the rationale for screening is that if we can identify disease earlier in its natural history than would ordinarily occur, intervention measures (those currently available and those that are being developed) would be more effective. Dementia screening therefore would be best suited to detect cognitive impairment at the beginning of disease signs (stage III), particularly if these screening measures reflect what is known about the symptomatic, clinical phase of disease and correlate with the pathologic changes occurring in the brain during the pre-symptomatic, preclinical phase of disease.In a recent paper, we evaluated the relationship between several dementia screening tests and biomarkers of AD.40 We tested whether a reliable and validated informant-based dementia screening test (the AD8)41,42 correlates with changes in AD biomarkers and, if positive, screening with the AD8 clinically supports an AD clinical phenotype, superior to a commonly used performance-based screening tests including the Mini Mental State Exam (MMSE)43 and the Short Blessed Test (SBT).44 A total of 257 participants were evaluated, administered a comprehensive clinical and cognitive evaluation with the Clinical Dementia Rating scale (CDR)45 used as the gold standard. Participants consented to and completed a variety of biomarker studies including MRI, amyloid imaging using the Pittsburgh Compound B (PiB)37,46 and CSF studies of Aβ42, tau and phosphorylated tau at Serine 181 (p-tau181).23,24 The sample had a mean age of 75.4 ± 7.3 years with 15.1 ± 3.2 years of education. The sample was 88.7% Caucasian and 45.5% male with a mean MMSE score of 27.2 ± 3.6. The formal diagnoses of the sample was 156 CDR 0 cognitively normal, 23 CDR 0.5 MCI, 53 CDR 0.5 very mild AD and 25 CDR 1 mild AD. Participants with positive AD8 scores (graded as a score of 2 or greater) exhibited the typical AD fluid biomarker phenotype characterized by significantly lower mean levels of CSF Aβ42, greater CSF tau, p-tau181 and the tau(s)/Aβ42 ratios.26,27 They also exhibited smaller temporal lobe volumes and increased mean cortical binding potential (MCBP) for PiB imaging similar to studies of individuals with AD.18,19 These findings support that informant-based assessments may be superior to performance-based screening measures such as the MMSE or SBT in corresponding to underlying AD pathology, particularly at the earliest stages of decline. The use of a brief test such as the AD8 may improve strategies for detecting dementia in community settings where biomarkers may not be readily available and also may enrich clinical trial recruitment by increasing the likelihood that participants have underlying biomarker abnormalities.40To gain a better understanding of changes in biomarkers in the symptomatic, preclinical phase, a post hoc evaluation of the 156 individuals who were rated as CDR 0 no dementia at the time of their Gold Standard assessment was completed. Some of these nondemented individuals have abnormal AD biomarkers, but in the absence of performing lumbar punctures or PET scans, is it possible to detect evidence of change? AD8 scores for 132 individuals were less than 2; thus their screening test suggests no impairment (mean AD8 score = 0.30 ± 0.46). However 25 of these individuals had AD8 scores (≥2) suggesting impairment (mean AD8 score = 2.4 ± 0.91). Applying the model described in Figure 1, some of these individuals are hypothesized to be in the symptomatic, preclinical phase of disease. No difference in age, education, gender or brief performance tests (MMSE or SBT) were detected between groups (45 is increased in the individuals with higher AD8 scores supporting that informants were noticing and reporting changes in the participants cognitive function. A review of the individual AD8 questions that were first reported to change suggest that informants endorsement of subtle changes in memory (repeats questions, forgets appointments) and executive ability (trouble with judgment, appliances, finances) are valuable early signs. This is consistent with previous reports that changes in memory and judgment/problem solving CDR boxscores in nondemented individuals correlate with findings of AD pathology at autopsy.17 Although biomarkers do not reach significance in this small sample, the direction of change in favor of “Alzheimerization” of this group suggests that some of these individuals may be in the symptomatic, preclinical phase of disease. More research with larger sample sizes and longitudinal follow-up is needed to confirm this hypothesis. It should be also noted that not all individuals with an AD8 score of 2 or greater have AD. The AD8 was designed to detect cognitive impairment from all causes, and as such, these mildly affected individuals may have other causes for their cognitive change such as depression, Lewy body dementia or vascular cognitive impairment.41,42

Table 1

Characteristics of nondemented CDR 0 individuals stratified by AD8 scores
VariableAD8 <2AD8 ≥2p value
Clinical Characteristics
Age, y75.2 (7.1)76.5 (8.4)0.41
Education, y15.4 (3.2)15.9 (2.7)0.47
Gender, % Men42.136.40.45
ApoE status, % at least 1 e4 allele25.834.40.08
Dementia Ratings
CDR sum boxes0.04 (0.13)0.12 (0.22)0.01
MMSE28.6 (1.5)29.2 (1.1)0.07
SBT2.4 (3.1)2.3 (2.9)0.82
AD8 Questions Endorsed “Yes,” %
Problems with judgment12.972.0<0.001
Reduced interest04.00.02
Repeats8.340.0<0.001
Trouble with appliances1.540.0<0.001
Forgets month/year0.800.66
Trouble with finances0.816.00.002
Forgets appointments2.328.0<0.001
Daily problems with memory20.066.70.008
Biomarkers
MCBP, units0.12 (0.23)0.26 (0.39)0.06
CSF Aβ42, pg/ml596.7 (267.9)591.9 (249.9)0.95
CSF tau, pg/ml300.3 (171.5)316.7 (155.0)0.76
CSF p-tau181, pg/ml51.9 (24.0)56.9 (22.6)0.49
Open in a separate windowApoE, apolipoprotein E; CDR, Clinical Dementia Rating; MMSE, Mini Mental State Exam; SBT, Short Blessed Test; MCBp, mean cortical binding potential; CSF, cerebrospinal fluidTo explore this further, changes in AD biomarkers (CSF Aβ42, Tau and PiB-PET) were plotted against the age of the participant (Fig. 2). Previous research suggest that biomarker changes are more commonly seen in older populations47 and increasing age is the greatest risk factor for developing AD.7 AD8 scores of 0 or 1 (no impairment) are depicted as filled circles while AD8 scores of 2 or greater (impairment) are depicted as open squares. Regression lines are plotted for the entire cohort (dashed black line) and for each subset (black for AD8 no impairment; gray for AD8 Impairment). The top row (Parts A–C) represents biomarker profiles for the entire sample of 257 individuals divided by their AD8 scores. With age, there are changes in biomarkers with decreasing CSF Aβ42 (A), increasing CSF Tau (B) and increased PiB-PET binding potential (C). The effect of age on CSF biomarkers is most marked in the AD8 No Impairment group (black line) while changes in PiB binding is seen only in the AD8 Impaired group (gray line). The second row in Figure 2 (Parts D–F) represents biomarker profiles for the 156 individuals who were rated as CDR 0 no dementia at the time of their Gold Standard, 25 of whom had AD8 scores in the impaired range. Some of these individuals are hypothesized to be in the symptomatic, preclinical phase of AD. Similar age-related changes in CSF Aβ42 and PiB binding are seen with CSF Aβ42 having the greatest rate of decline in the AD8 no impairment group and PiB binding having the greatest rate of change in the AD8 impairment group. Increases in CSF Tau are seen as a function of age regardless of group.Open in a separate windowFigure 2Changes in AD biomarkers by age and AD8 scores. AD biomarkers are plots as a function of age (x-axis) and AD8 scores. AD8 scores of 0 or 1 (no impairment) are depicted as filled circles while AD8 scores of 2 or greater (impairment) are depicted as open squares. Regression lines are plotted for the entire cohort (dashed black line) and for each subset (black for AD8 no impairment; gray for AD8 impairment). The top row (A–C) represents biomarker profiles for the entire cohort (n = 257) divided by their AD8 scores. With age, there are changes in biomarkers with decreasing CSF Aβ42 (A), increasing CSF Tau (B) and increased PiB-PET binding potential (C). The effect of age on CSF biomarkers is most marked in the AD8 no impairment group (black line) while changes in PiB binding is seen only in the AD8 impaired group (gray line). The bottom row (D–F) represents biomarker profiles for the individuals rated CDR 0 no dementia (n = 156), 25 of whom had AD8 scores in the impaired range. Similar age-related changes in CSF Aβ42 and PiB binding are seen with CSF Aβ42 having the greatest rate of decline in the AD8 no impairment group and PiB binding having the greatest rate of change in the AD8 impairment group. Increases in CSF Tau are seen as a function of age regardless of group.While a number of interpretations are possible from this type of data, if one considers the model of disease in Figure 1 it appears that CSF changes in Aβ42 and Tau precede PiB binding changes in the presymptomatic, preclinical phase of disease consistent with previous attempts at modeling AD.25 Even with sensitive measurements, this phase is unlikely to be detected without some biological evaluation. At the start of the symptomatic, preclinical phase of AD, PiB binding increases and this may be detected by careful evaluation of the patient and a knowledgeable informant with a validated dementia screening instrument such as the AD8. As patients move into the symptomatic, clinical phase of disease, biomarkers are markedly abnormal as is most cognitive testing permitting careful staging and prognostication.AD and related disorders will become a public health crisis and a severe burden on Medicare in the next two decades unless actions are taken to (1) develop disease modifying medications,48 (2) provide clinicians with valid and reliable measures to detect disease at the earliest possible stage and (3) reimburse clinicians for their time to do so. While this perspective does not address development of new therapeutics, it should be clear that regardless of what healthcare reform in the US eventually looks like,1 dementia screening is a viable means to detect early disease as it enters its symptomatic phase. Dementia screening with the AD8 offers the additional benefit of corresponding highly with underlying disease biology of AD that includes alteration of protein conformation, protein misfolding and eventual aggregation of these misfolded proteins as plaques and tangles.  相似文献   

9.
Interactions between endothelial cells and the surrounding extracellular matrix are continuously adapted during angiogenesis, from early sprouting through to lumen formation and vessel maturation. Regulated control of these interactions is crucial to sustain normal responses in this rapidly changing environment, and dysfunctional endothelial cell behaviour results in angiogenic disorders. The proteoglycan decorin, an extracellular matrix component, is upregulated during angiogenesis. While it was shown previously that the absence of decorin leads to dysregulated angiogenesis in vivo, the molecular mechanisms were not clear. These abnormal endothelial cell responses have been attributed to indirect effects of decorin; however, our recent data provides evidence that decorin directly regulates endothelial cell-matrix interactions. This data will be discussed in conjunction with findings from previous studies, to better understand the role of this proteoglycan in angiogenesis.Key words: decorin, angiogenesis, motility, α2β1 integrin, insulin-like growth factor I receptor, Rac GTPaseLed by appropriate cues, the vascular system undergoes postnatal remodelling (angiogenesis), to maintain tissue homeostasis. Thus while much of the mature endothelium is quiescent, locally activated endothelial cells re-enter the cell cycle, and assume a motile phenotype essential for sprouting and neo-vessel formation. Concomitantly, the surrounding extracellular matrix (ECM) is significantly altered through de novo protein expression, deposition of plasma components and protease-mediated degradation. The latter liberates cryptic binding sites and sequestered growth factors in addition to intact and degraded ECM components, which themselves possess pro- and anti-angiogenic signalling properties. For supported blood flow, endothelium quiescence and integrity is re-established, and the ECM is organized into mature, cross-linked networks. In short, endothelial cells regulate ECM synthesis, assembly and turnover while the structure and composition of ECM in turn influences cellular phenotype. The ECM therefore, plays a critical role in control of endothelial cell behaviour during angiogenesis.Decorin is a member of the small leucine-rich repeat proteoglycan (SLRP) family, which was first discovered ‘decorating’ collagen I fibrils and was subsequently shown to regulate fibrillogenesis.1,2 Both the protein core and the single, covalently attached glycosaminoglycan (GAG) moieties of decorin are involved in this function, the relevance of which is demonstrated by the phenotype of the decorin null mouse, which exhibits loose, fragile skin due to dysregulated fibrillogenesis.2 Interestingly, a role for decorin in postnatal angiogenesis was also revealed by studies in the decorin null background. Corneal neoangiogenesis was reduced.3 Conversely, neo-angiogenesis was enhanced during dermal wound healing, although surprisingly this led to delayed wound closure.4 In this case, skin fragility due to the absence of decorin may have hindered wound closure, despite an increased blood supply. It is apparent however, that decorin plays a role in inflammation-associated angiogenesis. Indeed, endothelial cells undergoing angiogenic morphogenesis in this environment express decorin, while quiescent endothelial cells do not,36 indicating that decorin modulates endothelial cell behaviour specifically during inflammatory-associated remodelling of the vascular system.To understand decorin effects on angiogenic morphogenesis within a minimalist environment, various in vitro models of angiogenesis have been employed (6 Similarly, decorin expression enhanced tube formation on matrigel,8 but in other studies utilising this substrate was found to either have no influence9 or to inhibit tubulogenesis induced by growth factors.10 In yet another study, decorin inhibited tube formation when presented as a substrate prior to addition of collagen I.7 These contrasting observations may reflect the importance of the micro-environment within which decorin is presented. Alternatively, controversial results could result from different sources of decorin since cell types differ in their post-translational modifications of the GAG moiety. Hence, varying length or sulfation patterns of GAG chains may account for different biological activities of decorin. Discrepancies can also be explained as artefacts due to different purification protocols, such as when denaturing conditions are used to extract decorin from tissue. Taken together however, these observations suggest that decorin is neither a pro- nor an anti-angiogenic factor per se, but rather a regulator of angiogenesis, dependent on local cues for different activities. Further, that decorin is capable of both enhancing and inhibiting tubulogenesis may suggest a role in balancing vessel regression versus persistence. Immature vessels have a period of plasticity prior to maturation, during which they can be remodelled, and either regress, or given the appropriate signals, proceed to maturity.11 As a modulator of tube formation, it is tempting to speculate that decorin could influence the switch from immature to mature vessels, favouring one or the other in conjunction with signals from the local environment.

Table 1

Summary of the key functions of decorin in controlling cell behaviour
Cell typeFunctionDecorin additionEnvironment/MechanismReferences
Endothelial (HUVEC derived)Enhanced tubulogenesisOverexpressionCollagen I lattices, enhanced survival potentially IGF-IR mediated6, 18
Mouse cerebral endothelial cellsEnhanced tubulogenesisOverexpressionMatrigel substrate, EGFR activation leads to VEGF upregulation8
HUVECNo effect on tubulogenesisExogenousMatrigel substrate9
HUVECInhibited tubulogenesisExogenousMatrigel substrate, growth factor induced10
HUVEC, HDMECInhibited tubulogenesisSubstrateCollagen I lattice overlay7
HUVECMinimal adhesionSubstrateDecorin substrate7
HUVECInhibited adhesionExogenousCollagen I and fibronectin10
HUVECInhibited migrationExogenousVEGF-mediated chemotaxis through gelatin10
Endothelial (HUVEC derived)Enhanced adhesionExogenousCollagen I, fibronectin17
BAEInhibited migrationOverexpressionCollagen I, enhanced fibronectin fibrilllogenesis by decorin12
Endothelial (HUVEC derived)Enhanced motilityExogenousCollagen I, Decorin activates IGF-IR/Rac-1 and α2β1 integrin activity17
Human lung fibroblastEnhanced motilityExogenousDecorin activates Rho GTPases, mediators of motility20
Human foreskin fibroblastInhibited adhesionExogenousDecorin GAG moiety competes with CD44 for binding to collagen XIV14
Mouse Fibroblast (3T3)Inhibited adhesionExogenousDecorin competes with cells for interaction with thrombospondin at the cell-binding domain15
Human fibroblastInhibits adhesionExogenousDecorin GAG competes with cell-surface heparin-sulphate for interaction with fibronectin16
PlateletsSupported adhesionSubstrateDecorin interacts with, and signals through α2β1 integrin on platelets19
Open in a separate windowDecorin has been demonstrated to influence cell adhesion and motility, in particular, its influence on endothelial cell adhesion, migration and tube formation is controversial, and is the main focus of this table. Some additional key effects of decorin on fibroblast and platelet adhesion and motility are also summarised. In each case, the extracellular matrix environment in which the assay was conducted is shown, and where known, the proposed mechanism is stated.What are the molecular mechanisms by which decorin influences tubulogenesis? Since endothelial cell-matrix interactions control all aspects of angiogenesis, from motility, sprouting and lumen formation, to survival and proliferation, the role of decorin should be considered in this regard. Indirectly, decorin could quite feasibly modulate cell-matrix interactions through regulation of matrix structure and organisation2,12 and growth factor activity.13 However in vitro studies have begun to unravel rather more direct mechanisms. Studies on fibroblasts indicate that decorin can inhibit cell-matrix interactions by binding to and masking integrin attachment sites in matrix substrates. For instance, decorin inhibits fibroblast adhesion by competing with cell-surface GAG-containing CD44 for GAG binding sites on collagen XIV;14 similarly, decorin inhibits fibroblast adhesion to thrombospondin by interacting with the cell-binding domain of this substrate15 and may compete with fibroblast cell-surface heparin sulphate proteoglycans for binding to fibronectin.16 While such studies are rather lacking in endothelial cell systems, any one of these interactions could be relevant to endothelial cells. However, that decorin slightly enhanced endothelial cell attachment to fibronectin and collagen I in our system points to the existence of alternative mechanisms.17Indeed, a recent study demonstrated that decorin is an important signalling molecule in endothelial cells, where it both signals through the insulin-like growth factor I receptor (IGF-IR) and competes with the natural ligand for interaction.18 Further, decorin appears to be biologically available and relevant for interaction with this receptor in vivo. Increased receptor expression was observed in both native and neo-vessels in decorin knockout mouse cornea in conjunction with reduced neoangiogenesis. In accordance with this, decorin downregulates the IGF-IR in vitro,18 indicating that signalling through, and control of IGF-IR levels by decorin could be an important factor in regulating angiogenesis. Additionally, immobilised decorin supports platelet adhesion through interactions with the collagen I-binding integrin, α2β1.19 We have shown that decorin—α2β1 integrin interaction may play a part in modulating endothelial cell—collagen I interactions, and further, have demonstrated that decorin promotes motility in this context through activation of IGF-IR and the small Rho GTPase, Rac.17 Similarly, decorin stimulates fibroblast motility through activation of small Rho GTPases,20 supporting a direct mechanism by which decorin influences cell-matrix interactions and motility, via activation of key regulators of cytoskeleton and focal adhesion dynamics. It should also be noted that signalling by decorin directly through ErbB receptors has also been extensively demonstrated in cancer cell systems where these receptors are frequently overexpressed.21 This interaction was not relevant to human umbilical vein endothelial cells18 although a recent study found that decorin activated the epidermal growth factor receptor in mouse cerebral endothelial cells.8 These differences presumably depend on cell-specific factors such as receptor availability as well as relative receptor affinities. In a complex system such as angiogenesis, multiple mechanisms doubtlessly are involved. However, it is clear that modulation of cell-matrix interactions by decorin could certainly be expected to play a key role in contributing to regulation of postnatal angiogenesis.Signals from the extracellular matrix via integrins and from growth factors to their receptors are co-ordinately integrated into the complex angiogenic cascade. Evidence exists to suggest that decorin could regulate cell-matrix interactions during early tube formation, i.e., endothelial cell sprouting and cell alignment, through both influencing integrin activity and signalling through IGF-IR.17 Later stages of angiogenesis, such as lumen formation and maturation are also potentially regulated by decorin through activation of Rac and α2β1 integrin,17 since activity of both these molecules is integral to this phase of angiogenesis.22 Additionally, Rac activity is implicated in regulating endothelium permeability and integrity,23 providing further possibilities in control of endothelium function by decorin. Further investigations would be required however, to establish whether decorin exerts its effects on tubulogenesis through these molecular mechanisms.Of relevance to α2β1 integrin-dependent endothelial cell interaction with collagen I, sprouting endothelial cells would encounter interstitial ECM, of which collagen I is a major component. Further, a ‘provisional’ matrix containing collagen I is secreted by sprouting endothelial cells and may be required for motility,24 and tube formation.25 Theoretically, various interactions could exist between decorin, collagen type I and α2β1 integrin in this context, which may be differentially supported through various stages of angiogenesis. Up to eleven interaction sites of α2β1 integrin have been postulated to exist within collagen I, albeit with different affinities towards this receptor. Some of these binding sites may only be recognized by the integrin in its highly active conformation.26 By influencing the collagen I binding activity of α2β117 decorin could thus alter the number of endothelial cell—collagen I contacts, thereby modulating adhesion and motility. Additionally, some decorin and α2β1 integrin binding sites may overlap, or are in close proximity.27 By virtue of this location, decorin would be ideally placed to locally modulate collagen I—binding activity of the integrin. Interestingly, modulation of activity of both α2β1 integrin and the small Rho GTPase Rac by decorin also could have implications for collagen I fibrillogenesis, which in turn, would indirectly influence cell-matrix interactions. Both the related Rho GTPase RhoA, and α2β1 integrin are involved in cellular control of pericellular collagen I fibrillogenesis.28 Thus in addition to regulating cell independent fibrillogenesis1 decorin could potentially influence cell-mediated aspects of this process. Pertinent questions remain therefore, as to under which biological situations is the interaction between α2β1 integrin and decorin relevant, and does decorin influence α2β1 integrin activity on the cell-surface through direct interactions, and/or by inside-out signalling through the IGF-I receptor (or alternative receptors)? Further, how do differential decorin/α2β1 integrin/collagen I interactions mediate fibrillogenesis and cell-matrix interactions?Interaction of decorin with multiple binding partners makes it challenging to fully understand the role of decorin in angiogenesis (Fig. 1). A consideration of the relative accessibility and affinity of binding sites on both decorin and its'' binding partners would facilitate further understanding. It is still an open question whether collagen I—bound decorin can simultaneously interact with other ligands. In the case of the IGF-IR, the binding site on the concave surface of decorin overlaps with that of collagen I, thus mutually exclusive interactions seem more likely. That decorin clearly influences both collagen I matrix integrity and IGF-IR activity in vivo, would suggest that decorin is not exclusively associated with collagen I. Perhaps decorin occurs in a more ‘soluble’ form when locally secreted by endothelial cells undergoing angiogenic morphogenesis. Does collagen-bound decorin interact simultaneously with α2β1 integrin? This could be a possibility, since decorin core protein interacts with collagen I, allowing the possibility of GAG—integrin interaction. In this scenario however, interaction of α2β1 integrin with the GAG moiety of decorin in preference to collagen I might sound improbable. Nevertheless, during remodelling, interactions such as these could occur in a transient manner, and be crucial in controlling cell-matrix interactions in a rapidly changing environment. Interestingly, decorin interacts with IGF-IR via the core protein,18 and with α2β1 integrin via the GAG moiety17 raising yet another possibility of simultaneous decorin interaction with multiple binding partners. Additionally, while it is a matter of some debate whether decorin exists predominantly as a monomer or as a dimer in a physiologically relevant environment, it has been proposed that collagen-bound decorin could support simultaneous interactions of decorin with additional binding partners, and that dimer-monomer transitions also could facilitate differential interactions.29 Perhaps supporting multiple simultaneous interactions of decorin, the phenotype of patients with a progeroid variant of Ehlers-Danlos Syndrome indicates an essential role for properly glycosylated decorin (and the related SLRP biglycan). These patients exhibit skeletal and craniofacial abnormalities, loose skin and deficiencies in wound healing as a direct result of abnormal decorin and biglycan glycosylation, such that approximately half the population of decorin is secreted as the core protein only.30 Notably, the defect in loose skin and in wound healing is similar to the phenotype of the decorin knockout mouse.2,4 Evidently, the core protein alone cannot maintain normal function in vivo, despite being responsible for several important interactions of decorin, in particular, binding to collagen I and the IGF-IR. These studies may therefore support a requirement for simultaneous interactions of the core protein and GAG moieties for proper function of decorin.Open in a separate windowFigure 1Decorin influences cell-matrix interactions through multiple mechanisms. Decorin signals through the IGF-IR via the core protein moiety (grey diamond), and may simultaneously interact with the α2 subunit (cross-hatched subunit) of α2β1 integrin via the GAG moiety (wavy black line) (A). Activation of Rac through IGF-IR enhances motility by modulating cytoskeleton dynamics and may influence α2β1 integrin activity for collagen I through inside-out signalling (B). Decorin induces large, peripheral vinculin (grey oval)-positive focal adhesions by signalling through IGF-IR and/or α2β1 integrin (C and D). Decorin could also directly influence α2β1 integrin activity through binding to the α2 subunit and/or simultaneous interactions with collagen I (thick wavy black line) through the core protein. Collagen I interacts with the A-domain (white circle) of the α2 subunit at a site distinct to that of decorin (D). In summary, activation of IGF-IR, Rac and modulation of α2β1 integrin affinity for collagen I by decorin modulates cell-matrix interactions and contributes to enhanced motility and tubulogenesis in a collagen I environment.Modulation of cell-matrix interactions by decorin plays a key role in modulating endothelial cell motility and angiogenesis in vivo, and some of the mechanisms responsible have been elucidated in conjunction with in vitro studies. The large number of potential interactions of decorin with multiple matrix components and cell-surface receptors makes a clear understanding difficult. However, direct activation of signalling pathways by decorin has been highlighted recently as likely to play an important role. In conclusion, a better understanding of the mechanisms by which decorin regulates vessel formation and persistence would contribute to understanding how angiogenesis is dysregulated in a clinical setting, and how rational therapeutic strategies can be developed to restore tissue function and homeostasis.  相似文献   

10.
Brassinosteroids (BRs) are perceived by Brassinosteroid Insensitive 1 (BRI1), that encodes a leucine-rich repeat receptor kinase. Tomato BRI1 has previously been implicated in both systemin and BR signalling. The role of tomato BRI1 in BR signalling was confirmed, however it was found not to be essential for systemin/wound signalling. Tomato roots were shown to respond to systemin but this response varied according to the species and growth conditions. Overall the data indicates that mutants defective in tomato BRI1 are not defective in systemin-induced wound signalling and that systemin perception can occur via a non-BRI1 mechanism.Key words: tomato BRI1, brassinosteroids, systemin, wound signallingBrassinosteroids (BRs) are steroid hormones that are essential for normal plant growth. The most important BR receptor in Arabidopsis is BRASSINOSTERIOD INSENSITIVE 1 (BRI1), a serine/threonine kinase with a predicted extracellular domain of ∼24 leucine-rich repeats (LRRs).1,2 BRs bind to BRI1 via a steroid-binding domain that includes LRR 21 and a so-called “island” domain.2,3 In tomato a BRI1 orthologue has been identified that when mutated, as in the curl3 (cu3) mutation, results in BR-insensitive dwarf plants.4 Tomato BRI1 has also been purified as a systemin-binding protein.5 Systemin is an eighteen amino acid peptide, which is produced by post-translational cleavage of prosystemin. Systemin has been implicated in wound signalling and is able to induce the production of jasmonate, protease inhibitors (PIN) and rapid alkalinization of cell suspensions (reviewed in ref. 6).To clarify whether tomato BRI1 was indeed a dual receptor it was important to first confirm its role in BR signalling. Initially this was carried out by genetic complementation of the cu3 mutant phenotype.7 Overexpression of tomato BRI1 restored the dwarf phenotype and BR sensitivity and normalized BR levels (
35S:TomatoBRI1 complemented lineWt*cu3*
6-deoxocathasterone566964676
6-deoxoteasteronend4748
3-dehydro-6-deoxoteasterone876269
6-deoxotyphasterolnd588422
6-deoxocastasterone1,7556,24726,210
castasterone25563717,428
brassinolidendndnd
Open in a separate windowBR content ng/kg fw.*Montoya et al.4 nd, not detected.To show the role of tomato BRI1 in systemin signalling tomato BR mutants and the complemented line were tested for their systemin response. Tomato cu3 mutants were shown not to be defective in systemin-induced proteinase inhibitor (PIN) gene induction, nor were they defective in PIN gene induction in response to wounding. Cell suspensions made from cu3 mutant tissue exhibited an alkalinization of culture medium similar to wild-type cell suspension. These data taken together indicated that BRI1 was not essential for systemin signalling. However, Scheer et al.8 demonstrated that the overexpression of tomato BRI1 in tobacco suspension cultures results in an alkalinization in response to systemin, which was not observed in untransformed cultures. This suggests that BRI1 is capable of eliciting systemin responsiveness and that in tomato BRI1 mutants another mechanism is functioning to enable systemin signalling.Root elongation is a sensitive bioassay for BR action with BRs inhibiting root growth. Solanum pimpinellifolium roots elongate in response to systemin, in a BRI1-dependent fashion. In Solanum lycopersicum root length was reduced in response to systemin and BR and jasmonate synthesis mutants indicated that the inhibition did not require jasmonates or BRs. Normal ethylene signalling was required for the root response to systemin. When a tobacco, Nicotiana benthamiana, BRI1 orthologue was transformed into cu3 both the dwarfism and systemin-induced root elongation was restored to that of wild type. Tobacco plants however do not respond to systemin. This is puzzling as the introduction of tomato BRI1 into tobacco enabled systemin responsiveness.8 Further investigation as to how tomato BRI1 elicits this response is therefore required.Systemin has been demonstrated to bind to two tomato proteins BRI1/SR1605 and SBP50.9 The data presented by Holton et al.7 indicates that tomato BRI1 is not essential for systemin-induced wound responses and that a non-BRI1 pathway is present that is able to facilitate a systemin response. Whether this is via a related LRR receptor kinase or by another protein remains to be elucidated.  相似文献   

11.
Regulatory models of RhoA suppression by dematin,a cytoskeletal adaptor protein     
Morvarid Mohseni  Athar H Chishti 《Cell Adhesion & Migration》2009,3(2):191-194
Cell motility, adhesion and actin cytoskeletal rearrangements occur upon integrin-engagement to the extracellular matrix and activation of the small family of Rho GTPases, RhoA, Rac1 and Cdc42. The activity of the GTPases is regulated through associations with guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine dissociation inhibitors (GDIs). Recent studies have demonstrated a critical role for actin-binding proteins, such as ezrin, radixin and moesin (ERM), in modulating the activity of small GTPases through their direct associations with GEFs, GAPs and GDI''s. Dematin, an actin binding and bundling phospho-protein was first identified and characterized from the erythrocyte membrane, and has recently been implicated in regulating cell motility, adhesion and morphology by suppressing RhoA activation in mouse embryonic fibroblasts. Although the precise mechanism of RhoA suppression by dematin is unclear, several plausible and hypothetical models can be invoked. Dematin may bind and inhibit GEF activity, form an inactive complex with GDI-RhoA-GDP, or enhance GAP function. Dematin is the first actin-binding protein identified from the erythrocyte membrane that participates in GTPase signaling, and its broad expression suggests a conserved function in multiple tissues.Key words: dematin, RhoA, actin, GTPase, signalingCell adhesion and motility are mediated through activation of integrin receptors and the family of small Rho GTPases.1 Engagement of integrin receptors to the extracellular matrix leads to the activation of multiple kinase pathways (i.e., FAK, Src), inducing the assembly of the focal adhesion complex and actin/myosin contraction. Furthermore, activation of the receptor tyrosine kinases (i.e., insulin receptor) or G-protein coupled receptors (i.e., LPA receptor), leads to downstream signaling events that also trigger multiple kinase pathways that regulate the protrusive and contractile actin/myosin dynamics. These adhesion-dependent or receptor-driven signaling cascades ultimately result in the activation of the small family of Rho GTPases: Cdc42, Rac1 and RhoA, key regulators of actin cytoskeleton assembly. The activation of these GTPases induces lamellipodia (Rac1), filopodia (Cdc42), actin stress fiber formation (RhoA) and focal adhesion complex formation (Rac1 and RhoA). Nascent focal adhesion complex formation within the lamellipodia is a result of Rac1 activation;2 however, mature focal adhesions and actin cytoskeletal rearrangements are a direct consequence of RhoA activation.3The regulation of RhoA activity occurs through its interactions with guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine dissociation inhibitors (GDIs) (reviewed in refs. 46). The regulatory intricacies that govern RhoA association with GEFs, GAPs and GDIs remain poorly understood. However, it is now well accepted that actin-binding proteins participate and play a significant role in regulating the functional activity of RhoA GTPase through their direct association with RhoGEFs, GDI''s and RhoGAPs (7

Table 1

List of actin-binding proteins that are known to directly bind to GEFs, GAPs or GDIs and regulate RhoA activation
GEF/GAP/GDIActin binding proteinRef.
GEFsdblRadixin31
TrioTARA32
LfcSpinophilin33
LfcNeurobin33
GAPsCdGAPActopaxin19
Rgd1Vrp120
GDIsRhoGDIEzrin/Radixin/Moesin21
RhoGDIMerlin34
Open in a separate windowDematin, previously known as erythrocyte membrane protein band 4.9, is a member of the villin family of headpiece-containing actin-binding proteins. It contains a c-terminal actin-binding domain, and an N-terminal “core-domain” of unknown function.8,9 Dematin was first isolated and characterized from the mature erythrocyte membrane,10,11 where it functions to maintain erythrocyte shape and membrane structural integrity via a novel linkage at the actin-spectrin junctional complex through glucose transporter-1 (GLUT1) in a species specific manner.12 Despite its wide-spread expression, relatively little is known about the biological function of this actin-binding protein in non-erythroid cells. Previous studies have shown that the human dematin gene (EPB4.9) maps to 8p21.1,9 a chromosomal region that is frequently deleted in prostate cancers. Interestingly, it was demonstrated that a sub-set of metastatic prostate tumors show a loss of heterozygosity of the dematin gene. Furthermore, it was demonstrated that in PC-3 cells, a prostate cancer cell line, the overexpression of the dematin gene was able to revert the oncogenic morphology (cell rounding) to a normal prostate epithelial morphology (microvillar and cytoplasmic extensions), thus suggesting a possible role for dematin in modulating these cellular processes.13 To determine the in vivo function of dematin, a dematin headpiece-null mouse (HPKO) model was generated in our laboratory, lacking the c-terminal actin binding headpiece domain. Consequently, the HPKO model expresses a truncated variant of dematin containing the N-terminal “core-domain.” Hematological analysis of the HPKO erythrocytes revealed evidence of membrane fragility, spherocytosis and mild hemolytic anemia.14 Since the loss of the dematin actin-binding headpiece resulted in morphological defects in the erythrocyte, we extended these studies to investigate if these defects would manifest in non-erythroid cells. Isolated mouse embryonic fibroblasts from HPKO mice display abnormal cell morphology, motility and adhesion, presumably resulting from RhoA hyperactivation and subsequent phosphorylation of downstream signaling molecules, such as focal adhesion kinase (FAK) and myosin light chain (MLC).7 These data suggest that dematin acts upstream of RhoA perhaps by associating with one of the known regulators of RhoA activation: GEFs, GAPs and GDIs (Fig. 1).Open in a separate windowFigure 1Hypothetical models of dematin mediated regulation of RhoA signaling. (A) Dematin has been shown to bind the DH domain of RasGRF2, but does not modulate Rac1 or Ras activation through RasGRF2. In several yeast-2-hybrid RasGRF2 clones, an insert from the GEFD2 domain of the RhoA GEF, Trio, was identified. It is possible that dematin may bind to and inhibits the RhoA GEF activity on Trio. (B) Dematin may complex with GDI and inactive RhoA-GDP, by tethering GDI to the actin cytoskeleton. The release of dematin from the cytoskeleton results in RhoA-GDP release and activation. (C) Dematin may also act to spatially localize RhoGAP to enhance the activity on RhoA-GTP, which in turn results in RhoA suppression.Previous evidence has shown that dematin binds to calcium activated Ras-guanine nucleotide-releasing factor 2 (RasGRF2).15 RasGRF2 is a bifunctional guanine nucleotide exchange factor (GEF) that can modulate the activation of Ras through its Cdc25 domain and Rac1 through its DH-PH domains (Dbl and Plekstrin homology domains).16 Although dematin binds to the DH domain of RasGRF2, dematin was unable to modulate the activation of Rac1 or Ras. Moreover, the yeast-2 hybrid results revealed that several of the isolated RasGRF2 clones contained an insert from the GEFD2 domain of Trio, a RhoA GEF.17 It is therefore plausible, that in vivo, dematin associates with Trio, and inhibits RhoA activation, similar to TRIPalpha, the first known inhibitor of a RhoA GEF, which specifically blocks the Trio GEFD2-exchange activity of RhoA.18 The significance of the postulated in vivo dematin interactions with Ras-GRF2 and TrioRhoGEF has not been established, but taken together; this model may provide a mechanistic link between dematin and RhoA (Fig. 1).RhoGAPs catalyze the hydrolysis of the active GTP-bound state of RhoA to the inactive GDP-bound form through intrinsic GTPase activity. Although there is no indication that dematin binds to a RhoGAP, it is possible that dematin behaves similarly to actopaxin19 and VRP1,20 actin-binding proteins that provide spatial and temporal regulation of RhoGAP function, and consequently RhoA inhibition. In addition to the regulation of RhoA through GEFs and GAPs, the actin-binding proteins, ezrin, radixin and moesin (ERMs) are known to sequester the guanine dissociation inhibitor, GDI, from RhoGDP.21 The tethering of GDI to the actin cytoskeleton reduces GDI activity, resulting in an increase in RhoA activation. Furthermore, recent studies have shown that PKA phosphorylation of GDI results in an increase in the association between GDI and RhoA-GDP, thus resulting in a decrease in RhoA activity.22 Interestingly, PKA phosphorylates and inhibits dematin''s actin-bundling activity by inducing a conformational change in the dematin actin-binding headpiece domain.10,23 It is possible that in the absence of PKA, dematin robustly interacts with GDI resulting in a stronger and tighter linkage to the actin cytoskeleton; thus in turn resulting in an increase in RhoA activation. Phosphorylation of dematin by PKA may result in the release of GDI from dematin and the actin cytoskeleton and causing subsequent suppression of RhoA activity. It is also possible that dematin retains inactive Rho-GDP in the cytosol, through an association with RhoGDI and the actin cytoskeleton. RhoA activation would occur when the dematin-RhoGDI-RhoA-GDP complex disassociates from the cytoskeleton via intracellular signaling events (Fig. 1).In addition to the aforementioned mechanisms of RhoA regulation through GEFs, GAPs and GDIs, it is also possible that dematin participates in the signaling cascade several steps upstream of RhoA activation. Dematin''s interaction with GLUT1,12 and with the scaffolding protein 14-3-3ζ may provide alternative models to investigate the mechanism of dematin-mediated suppression of RhoA. Since dematin interacts with GLUT1, it is possible that dematin mediates GLUT1 trafficking to the plasma membrane. In the absence of dematin, GLUT1 trafficking may be altered, thus resulting in abnormal glucose uptake. Metabolic defects have significant effects on intracellular signaling, which manifest itself in a variety of phenotypes, such as altered cell morphology, motility and adhesion.25 Proteomic analysis, as well as seven consensus 14-3-3 binding motifs, suggests that dematin may interact in vivo with the scaffolding protein, 14-3-3ζ.24 Recent evidence has shown that PI3-Kinase/Akt activation induces the association of an ankyrin repeat domain-containing protein, KANK, with 14-3-3ζ, which in turn results in RhoA activation.26 The mechanism by which KANK negatively regulates 14-3-3ζ-activation of RhoA is unknown. However, it has been reported that the RhoGEF, AKAP-Lbc, is inhibited by anchoring PKA to 14-3-3ζ.27 It is thus possible that dematin exists in a similar complex to suppress RhoA activation.The unexpected finding that dematin functions as a suppressor of RhoA activity has its significance as being the first protein isolated from the erythrocyte that has been functionally linked to a small GTPase and regulates its activity. There is a significant amount of RhoA in the human erythrocytes,28 and it is possible that other cytoskeletal components of the erythrocyte membrane are also able to modulate small Rho-GTPases in vivo. Recent evidence has implicated the small GTPase, Rac1 and Rac2 in modulating the deformability of the erythrocyte membrane29 and Rac GTPases together with mDia2 regulate enucleation in mammalian erythroblasts.30 Although the precise mechanism of these processes is not yet clear, it raises the possibility that the erythrocyte membrane yet again serves as a paradigm for elucidating fundamental biochemical processes beyond the field of red cell biology. Future studies on the dematin-RhoA signaling pathway will be directed toward elucidating the mechanism by which dematin is able to suppress RhoA activation in relevant cell types.  相似文献   

12.
What Makes each Aux/IAA Gene Unique in its Gene Family,Expression Pattern or Properties of the Gene Product?     
Hideki Muto  Masaaki K Watahiki  Kotaro T Yamamoto 《Plant signaling & behavior》2007,2(5):390-392
  相似文献   

13.
De novo mammalian prion synthesis     
Federico Benetti  Giuseppe Legname 《朊病毒》2009,3(4):213-219
Prions are responsible for a heterogeneous group of fatal neurodegenerative diseases. They can be sporadic, genetic, or infectious disorders involving post-translational modifications of the cellular prion protein (PrPC). Prions (PrPSc) are characterized by their infectious property and intrinsic ability to convert the physiological PrPC into the pathological form, acting as a template. The “protein-only” hypothesis, postulated by Stanley B. Prusiner, implies the possibility to generate de novo prions in vivo and in vitro. Here we describe major milestones towards proving this hypothesis, taking into account physiological environment/s, biochemical properties and interactors of the PrPC.Key words: prion protein (PrP), prions, amyloid, recombinant prion protein, transgenic mouse, protein misfolding cyclic amplification (PMCA), synthethic prionPrions are responsible for a heterogeneous group of fatal neurodegenerative diseases (1 They can be sporadic, genetic or infectious disorders involving post-translational modifications of the cellular prion protein (PrPC).2 Prions are characterized by their infectious properties and by their intrinsic ability to encipher distinct biochemical properties through their secondary, tertiary and quaternary protein structures. In particular, the transmission of the disease is due to the ability of a prion to convert the physiological PrPC into the pathological form (PrPSc), acting as a template.3 The two isoforms of PrP appear to be different in terms of protein structures, as revealed by optical spectroscopy experiments such as Fourier-transform infrared and circular dichroism.4 PrPC contains 40% α-helix and 3% β-sheet, while the pathological isoform, PrPSc, presents approximately 30% α-helix and 45% β-sheet.4,5 PrPSc differs from PrPC because of its altered physical-chemical properties such as insolubility in non-denaturing detergents and proteinases resistance.2,6,7

Table 1

The prion diseases
Prion diseaseHostMechanism
iCJDhumansinfection
vCJDhumansinfection
fCJDhumansgenetic: octarepeat insertion, D178N-129V, V180I, T183A, T188K, T188R-129V, E196K, E200K, V203I, R208H, V210I, E211Q, M232R
sCJDhumans?
GSShumansgenetic: octarepeat insertion, P102L-129M, P105-129M, A117V-129V, G131V-129M, Y145*-129M, H197R-129V, F198S-129V, D202N-129V, Q212P, Q217R-129M, M232T
FFIhumansgenetic: D178-129M
Kurufore peopleinfection
sFIhumans?
Scrapiesheepinfection
BSEcattleinfection
TMEminkinfection
CWDmule deer, elkcontaminated soils?
FSEcatsinfection
Exotic ungulate encephalopathygreater kudu, nyala, oryxinfection
Open in a separate windowi, infective form; v, variant; f, familial; s, sporadic; CJD, Creutzfeldt-Jakob disease; GSS, Gerstmann-Straüssler-Sheinker disease; FFI, fatal familial insomnia; sFI, sporadic fatal insomnia; BSE, bovine spongiform encephalopathy; TME, transmissible mink encephalopathy; CWD, chronic wasting disease; FSE, feline spongiform encephalopathy.73,78The prion conversion occurring in prion diseases seems to involve only conformational changes instead of covalent modifications. However, Mehlhorn et al. demonstrated the importance of a disulfide bond between the two cysteine residues at position 179 and 214 (human (Hu) PrP numbering) to preserve PrP into its physiological form. In the presence of reducing conditions and pH higher than 7, recombinant (rec) PrP tends to assume high β-sheet content and relatively low solubility like PrPSc.8  相似文献   

14.
Prion interference with multiple prion isolates     
Charles R Schutt  Jason C Bartz 《朊病毒》2008,2(2):61-63
Co-inoculation of prion strains into the same host can result in interference, where replication of one strain hinders the ability of another strain to cause disease. The drowsy (DY) strain of hamster-adapted transmissible mink encephalopathy (TME) extends the incubation period or completely blocks the hyper (HY) strain of TME following intracerebral, intraperitoneal or sciatic nerve routes of inoculation. However, it is not known if the interfering effect of the DY TME agent is exclusive to the HY TME agent by these experimental routes of infection. To address this issue, we show that the DY TME agent can block hamster-adapted chronic wasting disease (HaCWD) and the 263K scrapie agent from causing disease following sciatic nerve inoculation. Additionally, per os inoculation of DY TME agent slightly extends the incubation period of per os superinfected HY TME agent. These studies suggest that prion strain interference can occur by a natural route of infection and may be a more generalized phenomenon of prion strains.Key words: prion diseases, prion interference, prion strainsPrion diseases are fatal neurodegenerative diseases that are caused by an abnormal isoform of the prion protein, PrPSc.1 Prion strains are hypothesized to be encoded by strain-specific conformations of PrPSc resulting in strain-specific differences in clinical signs, incubation periods and neuropathology.27 However, a universally agreed upon definition of prion strains does not exist. Interspecies transmission and adaptation of prions to a new host species leads to the emergence of a dominant prion strain, which can be due to selection of strains from a mixture present in the inoculum, or produced upon interspecies transmission.8,9 Prion strains, when present in the same host, can interfere with each other.Prion interference was first described in mice where a long incubation period strain 22C extended the incubation period of a short incubation period strain 22A following intracerebral inoculation.10 Interference between other prion strains has been described in mice and hamsters using rodent-adapted strains of scrapie, TME, Creutzfeldt-Jacob disease and Gerstmannn-Sträussler-Scheinker syndrome following intracerebral, intraperitoneal, intravenous and sciatic nerve routes of inoculation.1015 We previously demonstrated the detection of PrPSc from the long incubation period DY TME agent correlated with its ability to extend the incubation period or completely block the superinfecting short incubation period HY TME agent from causing disease and results in a reduction of HY PrPSc levels following sciatic nerve inoculation.12 However, it is not known if a single long incubation period agent (e.g., DY TME) can interfere with more than one short incubation period agent or if interference can occur by a natural route of infection.To examine the question if one long incubation period agent can extend the incubation period of additional short incubation period agents, hamsters were first inoculated in the sciatic nerve with the DY TME agent 120 days prior to superinfection with the short-incubation period agents HY TME, 263K scrapie and HaCWD.1618 The HY TME and 263K scrapie agents have been biologically cloned and have distinct PrPSc properties.19,20 The HaCWD agent used in this study is seventh hamster passage that has not been biologically cloned and therefore will be referred to as a prion isolate. Sciatic nerve inoculations were performed as previously described.11,12 Briefly, hamsters were inoculated with 103.0 i.c. LD50 of the DY TME agent or equal volume (2 µl of a 1% w/v brain homogenate) of uninfected brain homogenate 120 days prior to superinfection of the same sciatic nerve with either 104.6 i.c. LD50 of the HY TME agent, 105.2 i.c. LD50 of the HaCWD agent or 104.6 i.c. LD50/g 263K scrapie agent (Bartz J, unpublished data).16,18,21 Animals were observed three times per week for the onset of clinical signs of HY TME, 263K and HaCWD based on the presence of ataxia and hyperexcitability, while the clinical diagnosis of DY TME was based on the appearance of progressive lethargy.1618 The incubation period was calculated as the number of days between the onset of clinical signs of the agent strain that caused disease and the inoculation of that strain. The Student''s t-test was used to compare incubation periods.12 We found that sciatic nerve inoculation of both the HaCWD agent and 263K scrapie agent caused disease with a similar incubation period to animals infected with the HY TME agent (12 In hamsters inoculated with the DY TME agent 120 days prior to superinfection with the HaCWD or 263K agents, the animals developed clinical signs of DY TME with an incubation period that was not different from the DY TME agent control group (12 The PrPSc migration properties were consistent with the clinical diagnosis and all co-infected animals had PrPSc that migrated similar to PrPSc from the DY TME agent infected control animal (Fig. 1, lanes 1–10). This data indicates that the DY TME agent can interfere with more than one isolate and that interference in the CNS may be a more generalized phenomenon of prion strains.Open in a separate windowFigure 1The strain-specific properties of PrPSc correspond to the clinical diagnosis of disease. Western blot analysis of 250 µg brain equivalents of proteinase K digested brain homogenate from prion-infected hamsters following intracerebral (i.c.), sciatic nerve (i.sc.) or per os inoculation with either the HY TME (HY), DY TME (DY), 263K scrapie (263K), hamster-adapted CWD (CWD) agents or mock-infected (UN). The unglycoyslated PrPSc glycoform of HY TME, 263K scrapie and hamster-adapted CWD migrates at 21 kDa. The unglycosylated PrPSc glycoform of DY PrPSc migrates at 19 kDa. Migration of 19 and 21 kDa PrPSc are indicated by the arrows on the left of the figure. n.a., not applicable.

Table 1

Clinical signs and incubation periods of hamsters inoculated in the sciatic nerve with either the HY TME, HaCWD or 263K scrapie agents, or co-infected with the DY TME agent 120 days prior to superinfection of hamsters with the HY TME, HaCWD or 263K agents
Onset of clinical signs
First inoculationInterval between inoculationsSecond inoculationClinical signsPrP-res migrationA/IaAfter 1st inoculationAfter 2nd inoculation
Mock120 daysHY TMEHY TME21 kDa5/5n.a.72 ± 3b
Mock120 daysHaCWDHaCWD21 kDa5/5n.a.73 ± 3
Mock120 days263K263K21 kDa5/5n.a.72 ± 3
DY TME120 daysMockDY TME19 kDa4/4224 ± 2n.a.
DY TME120 daysHY TMEDY TME19 kDa5/5222 ± 2c102 ± 2
DY TME120 daysHaCWDDY TME19 kDa5/5223 ± 3c103 ± 3
DY TME120 days263KDY TME19 kDa5/5222 ± 2c102 ± 2
Open in a separate windowaNumber affected/number inoculated;bAverage days postinfection ± standard deviation;cIncubation period similar compared to control animals inoculated with the DY TME agent alone (p > 0.05). n.a., not applicable.To examine the question if prion interference can occur following a natural route of infection, hamsters were first inoculated per os with the DY TME agent and then superinfected per os with the HY TME agent at various time points post DY TME agent infection. Hamsters were per os inoculated by drying the inoculum on a food pellet and feeding this pellet to an individual animal as described previously.22 For the per os interference experiment, 105.7 i.c. LD50 of the DY TME agent or an equal volume of uninfected brain homogenate (100 µl of a 10% w/v brain homogenate) was inoculated 60, 90 or 120 days prior to per os superinfection of hamsters with 107.3 i.c. LD50 of the HY TME agent. A 60 or 90 day interval between DY TME agent infection and HY TME agent superinfection resulted in all of the animals developing clinical signs of HY TME with incubation periods that are similar to control hamsters inoculated with the HY TME agent alone (Fig. 1, lanes 11–16). The eight-day extension in the incubation period of HY TME in the 120 day interval co-infected group is consistent with a 1 log reduction in titer.21 This is the first report of prion interference by the per os route of infection, a likely route of prion infection in natural prion disease and provides further evidence that prion strain interference could occur in natural prion disease.2325

Table 2

Clinical signs and incubation periods of hamsters per os inoculated with either the HY TME or DY TME agent, or per os co-infected with the DY TME agent 60, 90 or 120 days prior to superinfection of hamsters with the HY TME agent
Onset of clinical signs
First inoculationInterval between inoculationsSecond inoculationClinical signsPrP-res migrationA/IaAfter 1st inoculationAfter 2nd inoculation
Mock120 daysHY TMEHY TME21 kDa5/5n.a.140 ± 5b
DY TME60 daysHY TMEHY TME21 kDa5/5195 ± 6135 ± 6
DY TME90 daysHY TMEHY TME21 kDa5/5230 ± 5140 ± 5
DY TME120 daysHY TMEHY TME21 kDa5/5269 ± 3149 ± 3c
Open in a separate windowaNumber affected/number inoculated;bAverage days postinfection ± standard deviation;cIncubation period extended compared to control animals inoculated with the HY TME agent alone (p < 0.01); n.a., not applicable.The capacity of the DY TME agent to replicate modulates its ability to interfere with the HY TME agent. TME interference, following sciatic nerve inoculation, occurs in the lumbar spinal cord and DY PrPSc abundance in this structure correlates with the ability of the DY TME agent to interfere with the HY TME agent.12 Following extraneural routes of infection, DY TME agent replication and PrPSc deposition are not detected in spleen or lymph nodes, which is the major site of extraneural HY TME agent replication.11,21,26 The DY TME agent can interfere with the HY TME agent following intraperitoneal and per os infection, suggesting that the DY TME agent is replicating in other locations that are involved in HY TME agent neuroinvasion (11  相似文献   

15.
Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice     
Pavan Umate 《Plant signaling & behavior》2011,6(3):335-338
The enzymes called lipoxygenases (LOXs) can dioxygenate unsaturated fatty acids, which leads to lipoperoxidation of biological membranes. This process causes synthesis of signaling molecules and also leads to changes in cellular metabolism. LOXs are known to be involved in apoptotic (programmed cell death) pathway, and biotic and abiotic stress responses in plants. Here, the members of LOX gene family in Arabidopsis and rice are identified. The Arabidopsis and rice genomes encode 6 and 14 LOX proteins, respectively, and interestingly, with more LOX genes in rice. The rice LOXs are validated based on protein alignment studies. This is the first report wherein LOXs are identified in rice which may allow better understanding the initiation, progression and effects of apoptosis, and responses to bitoic and abiotic stresses and signaling cascades in plants.Key words: apoptosis, biotic and abiotic stresses, genomics, jasmonic acid, lipidsLipoxygenases (linoleate:oxygen oxidoreductase, EC 1.13.11.-; LOXs) catalyze the conversion of polyunsaturated fatty acids (lipids) into conjugated hydroperoxides. This process is called hydroperoxidation of lipids. LOXs are monomeric, non-heme and non-sulfur, but iron-containing dioxygenases widely expressed in fungi, animal and plant cells, and are known to be absent in prokaryotes. However, a recent finding suggests the existence of LOX-related genomic sequences in bacteria but not in archaea.1 The inflammatory conditions in mammals like bronchial asthama, psoriasis and arthritis are a result of LOXs reactions.2 Further, several clinical conditions like HIV-1 infection,3 disease of kidneys due to the activation of 5-lipoxygenase,4,5 aging of the brain due to neuronal 5-lipoxygenase6 and atherosclerosis7 are mediated by LOXs. In plants, LOXs are involved in response to biotic and abiotic stresses.8 They are involved in germination9 and also in traumatin and jasmonic acid biochemical pathways.10,11 Studies on LOX in rice are conducted to develop novel strategies against insect pests12 in response to wounding and insect attack,13 and on rice bran extracts as functional foods and dietary supplements for control of inflammation and joint health.14 In Arabidopsis, LOXs are studied in response to natural and stress-induced senescence,15 transition to flowering,16 regulation of lateral root development and defense response.17The arachidonic, linoleic and linolenic acids can act as substrates for different LOX isozymes. A hydroperoxy group is added at carbons 5, 12 or 15, when arachidonic acid is the substrate, and so the LOXs are designated as 5-, 12- or 15-lipoxygenases. Sequences are available in the database for plant lipoxygenases (EC:1.13.11.12), mammalian arachidonate 5-lipoxygenase (EC:1.13.11.34), mammalian arachidonate 12-lipoxygenase (EC:1.13.11.31) and mammalian erythroid cell-specific 15-lipoxygenase (EC:1.13.11.33). The prototype member for LOX family, LOX-1 of Glycine max L. (soybean) is a 15-lipoxygenase. The LOX isoforms of soybean (LOX-1, LOX-2, LOX-3a and LOX-3b) are the most characterized of plant LOXs.18 In addition, five vegetative LOXs (VLX-A, -B, -C, -D, -E) are detected in soybean leaves.19 The 3-dimensional structure of soybean LOX-1 has been determined.20,21 LOX-1 was shown to be made of two domains, the N-terminal domain-I which forms a β-barrel of 146 residues, and a C-terminal domain-II of bundle of helices of 693 residues21 (Fig. 1). The iron atom was shown to be at the centre of domain-II bound by four coordinating ligands, of which three are histidine residues.22Open in a separate windowFigure 1Three-dimensional structure of soybean lipoxygenase L-1. The domain I (N-terminal) and domain II (C-terminal) are indicated. The catalytic iron atom is embedded in domain II (PDB ID-1YGE).21This article describes identification of LOX genes in Arabidopsis and rice. The Arabidopsis genome encodes for six LOX proteins23 (www.arabidopsis.org) (LocusAnnotationNomenclatureA*B*C*AT1G55020lipoxygenase 1 (LOX1)LOX185998044.45.2049AT1G17420lipoxygenase 3 (LOX3)LOX3919103725.18.0117AT1G67560lipoxygenase family proteinLOX4917104514.68.0035AT1G72520lipoxygenase, putativeLOX6926104813.17.5213AT3G22400lipoxygenase 5 (LOX5)LOX5886101058.86.6033AT3G45140lipoxygenase 2 (LOX2)LOX2896102044.75.3177Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.Interestingly, the rice genome (rice.plantbiology.msu.edu) encodes for 14 LOX proteins as compared to six in Arabidopsis (and22). Of these, majority of them are composed of ∼790–950 aa with the exception for loci, LOC_Os06g04420 (126 aa), LOC_Os02g19790 (297 aa) and LOC_Os12g37320 (359 aa) (Fig. 2).Open in a separate windowFigure 2Protein alignment of rice LOXs and vegetative lipoxygenase, VLX-B,28 a soybean LOX (AA B67732). The 14 rice LOCs are indicated on left and sequence position on right. Gaps are included to improve alignment accuracy. Figure was generated using ClustalX program.

Table 2

Genes encoding lipoxygenases in rice
ChromosomeLocus IdPutative functionA*B*C*
2LOC_Os02g10120lipoxygenase, putative, expressed9271035856.0054
2LOC_Os02g19790lipoxygenase 4, putative29733031.910.4799
3LOC_Os03g08220lipoxygenase protein, putative, expressed9191019597.4252
3LOC_Os03g49260lipoxygenase, putative, expressed86897984.56.8832
3LOC_Os03g49380lipoxygenase, putative, expressed87898697.57.3416
3LOC_Os03g52860lipoxygenase, putative, expressed87197183.56.5956
4LOC_Os04g37430lipoxygenase protein, putative, expressed79889304.610.5125
5LOC_Os05g23880lipoxygenase, putative, expressed84895342.97.6352
6LOC_Os06g04420lipoxygenase 4, putative12614054.76.3516
8LOC_Os08g39840lipoxygenase, chloroplast precursor, putative, expressed9251028196.2564
8LOC_Os08g39850lipoxygenase, chloroplast precursor, putative, expressed9421044947.0056
11LOC_Os11g36719lipoxygenase, putative, expressed86998325.45.3574
12LOC_Os12g37260lipoxygenase 2.1, chloroplast precursor, putative, expressed9231046876.2242
12LOC_Os12g37320lipoxygenase 2.2, chloroplast precursor, putative, expressed35940772.78.5633
Open in a separate window*A, amino acids; B, molecular weight; C, isoelectric point.

Table 3

Percent homology of rice lipoxygenases against Arabidopsis
Loci (Os)Homolog (At)Identity/similarity (%)No. of aa compared
LOC_Os02g10120LOX260/76534
LOC_Os02g19790LOX554/65159
LOC_Os03g08220LOX366/79892
LOC_Os03g49260LOX556/73860
LOC_Os03g49380LOX560/75861
LOC_Os03g52860LOX156/72877
LOC_Os04g37430LOX361/75631
LOC_Os05g23880LOX549/66810
LOC_Os06g04420LOX549/62114
LOC_Os08g39840LOX249/67915
LOC_Os08g39850LOX253/70808
LOC_Os11g36719LOX552/67837
LOC_Os12g37260LOX253/67608
LOC_Os12g37320LOX248/60160
Open in a separate windowOs, Oryza sativa L.; At, Arabidopsis thaliana L.; aa, amino acids.In plants, programmed cell death (PCD) has been linked to different stages of development and senescence, germination and response to cold and salt stresses.24,25 To conclude, this study indicates that rice genome encodes for more LOX proteins as compared to Arabidopsis. The LOX members are not been thoroughly investigated in rice. The more advanced knowledge on LOXs function might spread light on the significant role of LOXs in PCD, biotic and abiotic stress responses in rice.  相似文献   

16.
Indirect effects of tending ants on holm oak volatiles and acorn quality     
Carolina I Paris  Joan Llusia  Josep Pe?uelas 《Plant signaling & behavior》2011,6(4):547-550
The indirect effect of ants on plants through their mutualism with honeydew-producing insects has been extensively investigated. Honeydew-producing insects that are tended by ants impose a cost on plant fitness and health by reducing seed production and/or plant growth. This cost is associated with sap intake and virus transmissions but may be overcompesated by tending ants if they deter or prey on hebivorous insects. The balance between cost and benefits depends on the tending ant species. In this study we report other indirect effects on plants of the mutualism between aphids and ants. We have found that two Lasius ant species, one native and the other invasive, may change the composition of volatile organic compounds (VOCs) of the holm oak (Quercus ilex) blend when they tend the aphid Lachnus roboris. The aphid regulation of its feeding and honeydew production according to the ant demands was proposed as a plausible mechanism that triggers changes in VOCs. Additionally, we now report here that aphid feeding, which is located most of the time on acorns cap or petiole, significantly increased the relative content of linolenic acid in acorns from holm oak colonized by the invasive ant. This acid is involved in the response of plants to insect herbivory as a precursor or jasmonic acid. No effect was found on acorn production, germination or seedlings quality. These results suggest that tending-ants may trigger the physiological response of holm oaks involved in plant resistance toward aphid herbivory and this response is ant species-dependent.Key words: tended aphid, invasive ants, linolenic acid, jasmonic acid, monoterpene emissionsTo achieve an indirect effect it is necessary to have a minimun of three species, two focal species that interact directly and an associate species whose presence promotes an indirect effect on one or both focal species. In general, indirect effects of a third species are defined by how and to what degree a pairwise species interaction is influenced by the presence and density of this third species.1 There are several examples of interactions presenting indirect effects: apparent competition,1 facilitation,2 tri-trophic level interactions,3 cascading effects4 and exploitative competition. 5 But, indirect effects have been studied most extensively in the context of trophic cascades when top predators are removed6 or added7 and in the context of mutualisms.810 Usually, indirect effects are investigated as changes in abundance of the focal species occur. However, indirect effects may result in biologically significant changes in a species that are not reflected only to its abundance.11 There are many examples of changes in physiology, behavior, morphology and/or genotypic composition of the focal species.11,12 These changes on density and/or morphological, physiological and behavioral traits of the focal species are not mutually exclusive, and all can act at the same time.13 The magnitude and direction of both direct and indirect effects should influence the relative resilience of communities to perturbation, which in turn will affect species coexistence and community evolution.14 In this regard, indirect effects had been postulated as one of the main forces structuring communities2 and shaping the evolution of communities.14In terrestrial communities ants interact with plants both directly and indirectly. They can disperse or consume seeds, feed from specialized plant structures such as food bodies and extrafloral nectaries, act as or deter pollinitators, prey on herbivorous insects and/or develop mutualisms with honeydew-producing insects indirectly modifying plant fitness.1517 Additionally, through their nesting activities in soil, ants increase soil nutrient content available to plants, may change water infiltration and soil holding-capacity and modify biodiversity and abundance of soil organisms related to the decomposition process.18,19 As a consequence of their activities, ants may thus change behavior, density, physiology or fitness of other species.12,22,23 In the case of ants that tend honeydew-producing insects, evidence shows that their attention may change some traits of insect life history, 22 their abundance or physiology.18 For the plant, the net outcome of the mutualism between ants and honeydew-producing insects will depend on the balance between the costs for plant fitness via consumption of plant sap and transmission of plant pathogens and the benefit of ants deterring herbivorous insects.18,23 As a consequence, plant seed production, pod production or even plant growth may decrease when the cost of honeydew-producing insects exceed the benefit provided by tending ants.18,23Recently, we have described the changes that two tending ant species may exert indirectly on monoterpene emissions of holm oak (Quercus ilex) saplings through its mutualism with Lachnus roboris aphids.24 One of these tending ant species was Lasius neglectus, an invasive ant species that displaces the local ant Lasius grandis. We found that aphids feeding on holm oak increased the emission of total volatile organic carbon (VOCs) by 31%. In particular, aphids feeding elicited the emission of a new monoterpene, Δ3-carene, and increased the emission of myrcene (mean ± SE; sapling alone: 0.105 ± 0.011 µg g−1 h−1; sapling plus not tended aphid: 0.443 ± 0.057 µg g1 h1) and γ-terpinene (sapling alone: 0.0013 ± 0.0001; sapling plus not tended aphid: 0.0122 ± 0.0022 µg g1 h1) (Mann-Whitney, sapling alone vs. sapling plus not tended aphids, U4,4 = 0, p < 0.05 for both compounds). Changes of VOC emission in response to aphid infestation were noticed also in boreal trees.24 When the aphids became tended by the invasive ant, L. neglectus, VOCs emissions increased only 19% because myrcene, the main compound of the blend, decreased significantly (25 When our data was recalculated on leaf area basis (nmol m−2 s−1), the general pattern was the same independently of the units, but the differences among treatments were not statistically significant (26 These slight differences in the statitiscal significance of the differences of VOC emissions depending on the reference unit may be due to differences in leaf morphology, i.e., changes of leaf area and mass. However, in our study, all holm oaks showed a similar leaf morphology among treatments (Kruskal-Wallis, leaf mass: H3,20 = 2.16, p = 0.53; leaf area: H3,20 = 2.64, p = 0.45) (24,27 This lack of consistence of aphid effect on leaf area and mass limits the development of a clear pattern linking aphids feeding, leaf area or mass and VOC emissions. On the other hand, to achieve statistical significance of emitted VOCs among treatments, values should differ strongly given the high variability of VOC emission within treatments.26 Under this scenario, we recommend giving the values of leaf morphology and to give VOC emissions on both unit bases to facilite comparisons among different studies.

Table 1

Means and standard error of the emission rates of the main compounds emitted by Quercus ilex saplings (n = 4 for T1 and T2 and n = 8 for T3) infested with untended aphids (T1) or infested with aphids tended by the native ant Lasius grandis (T2) or by the invasive ant Lasius neglectus (T3)
Emission rates: µg g−1 h−1 above and nmol m−2 s−1 below
CompoundT1T2T3
Non tendedTended by native antTended by invasive ant
α-Thujene0.007 ± 0.004a0.015 ± 0.005a0.005 ± 0.001a
0.006 ± 0.004a0.006 ± 0.003a0.009 ± 0.008a
α-Pinene0.391 ± 0.182a2.072 ± 0.033b0.551 ± 0.105a
0.244 ± 0.139a0.532 ± 0.082a0.244 ± 0.127a
Camphene0.007 ± 0.003a0.047 ± 0.014b0.012 ± 0.004ab
0.005 ± 0.003a0.014 ± 0.004a0.007 ± 0.004a
Sabinene0.084 ± 0.042a0.387 ± 0.045b0.075 ± 0.017a
0.100 ± 0.076a0.210 ± 0.097a0.128 ± 0.107a
β-Pinene0.227 ± 0.105a1.454 ± 0.269b0.306 ± 0.075a
0.159 ± 0.097a0.322 ± 0.134a0.179 ± 0.097a
Myrcene0.443 ± 0.057a0.482 ± 0.044a0.093 ± 0.020b
0.101 ± 0.034a0.119 ± 0.026a0.060 ± 0.034a
Δ3-Carene0.003 ± 0.002a0.018 ± 0.001b0.010 ± 0.003ab
0.001 ± 0.001a0.004 ± 0.001a0.002 ± 0.001a
α-Terpine0.004 ± 0.001a0.003 ± 0.001a0.001 ± 0.000a
0.001 ± 0.000a0.004 ± 0.003a0.001 ± 0.001a
γ-Terpinene0.012 ± 0.002a0.011 ± 0.004a0.013 ± 0.005a
0.003 ± 0.001a0.013 ± 0.010a0.006 ± 0.003a
Terpinolene0.001 ± 0.000a0.002 ± 0.001a0.005 ± 0.002a
0.001 ± 0.000a0.002 ± 0.001a0.001 ± 0.001a
Leaf mass (g)0.001 ± 0.000a0.002 ± 0.001a0.005 ± 0.002a
Leaf area (m2)0.104 ± 0.005a0.146 ± 0.026a0.113 ± 0.006a
Open in a separate windowThe emission rate were compared first by Kruskal-Wallis test. Values given above were calculated as µg g−1 h−1, while values below were calculated as nmols m−2 s−1. At the last row, leaf morphology is shown for each treatment. Different letters indicate statistical differences of multiple non parametrical post hoc comparisons (Dunn''s test, p < 0.05).The tended aphid, Lachnus roboris, feed most of the time on the petiole or on the cap of acorns of holm oaks.28 Therefore, acorn quantity and quality (lipid content) and seedlings quality could be affected by tending ants through their mutualism with aphids. We analyzed lipid content as an estimator of acorn quality. Lipids and starches are synthetized in acorns from carbohydrates translocated from leaves.29 However, before being used for metabolic functions, lipid content of acorns must be transformed into glucids and then can be used as respiratory substrate during germination.29 As a consequence, when aphids suck sap from acorns they may act as a sink of translocated carbohydrates, thus decreasing the amount that reaches the seeds.30During two consecutive years, we counted all acorns from one branch (8–11 cm diameter) for each one of 6 holm oaks colonized by L. neglectus and 6 holm oaks colonized by L. grandis that we studied. We followed them at different stages of their development (July, September and December). Among holm oaks, the loss of acorn production varied between 87.9–96.8%. Acorn production (acorns that started to develop and reached maturity) did not differ between the tree colonized by one or another ant species (mean number of acorns per branch ± SE, 2003: L. neglectus trees: 2.67 ± 1.38, L. grandis trees: 2.67 ± 2.01; Mann Whitney, U = 15, p = 0.69; 2004: L. neglectus trees: 35.83 ± 19.23, L. grandis trees: 49.80 ± 27.99; Mann Whitney, U = 12, p = 0.66). The only work in which researchers evaluated the effect of ants on acorn production was conducted by Ito and Higashi.31 These authors showed that the acorn production of Quercus dentata in the presence of the tending ant Formica yessensis did not differ either. However, there was a significantly lower proportion of infested acorns with weevil larvae when Formica yessensis were tending aphids.31 So, ants may indirectly increase the probability that acorns reach the maturity in healthy conditions, improving in this way one component of the fitness of the oak. In the case of the larvae of weevils, wasps and moth species that infest holm oak acorns32 during their development, they do not move to other acorn as in the case reported by Ito and Higashi.31 This behavior prevents ant predation during the move from one acorn to another.Lipid content of acorn cotyledons was analyzed by gas cromatography-flame ionization detector (FID) after performing the derivatization of lipid acids to methyl esters with BF3 in methanol.33 Acorn quality only differed in the content of linolenic acid, which was significantly higher in acorns from oaks colonized by the invasive ant Lasius neglectus (Fig. 1). Linolenic acid acts as a precursor for the synthesis of jasmonic acid,34 a signaling molecule involved in responses associated with insect herbivory.35 The increase of linolenic acid suggests that a local response to aphid feeding was triggered during acorn development. In boreal trees, aphid feeding increased up to 50% the emission of methyl salicylate, a defence compound of plants, that acts as aphid repellent and an attractor of foraging predators and parasitoids.24Open in a separate windowFigure 1Mean (±SE) of the percentage of each fatty acid relative to the total amount of fatty acids of acorns from holm oaks colonized by invasive ants L. neglectus (in grey) or by native ants L. grandis (in white). Asterisk shows significant differences of linolenic content (Mann Whitney, U = 7.5, p = 0.026).We then performed a germination test at the second year when enough acorns reached maturity. We picked mature acorns from trees colonized by the invasive or by the native ant. Those acorns with visual evidence of being infested by insect larvae were discarded as non-viable. From the group of healthy acorns, we chose randomly between 6 to 18 acorns per tree comprising in total 94 or 97 acorns for holm oaks colonized by L. neglectus or L. grandis, respectively. We performed a laboratory germination test at 20–25°C under natural light conditions. Acorns were planted in nursery flats of 300 cc filled with commercial compost (70% organic matter, pH = 6.5), watered twice a week and inspected daily from January to April until emergency. After 90 days, acorn viability (germination + seedling emergence) was 89% and 87% for acorns from holm oaks colonized by the invasive or by native ant, respectevily. Puerta-Piñeiro et al. obtained a 90% acorn viability when acorns where sown in sterilized river sand. On the other hand, Leiva and Fernαndez-Alés37 sowed 20 acorns per 7l pots filled with peat and obtained 59% of acorn viability. In our test, we sowed acorns in separate flats under a less competitive environment. The mean time of seedling emergence was 47.8 ± 13.1 days for acorns from holm oaks colonized by L. neglectus and 47.3 ± 14.1 days for acorns from holm oaks colonized by L. grandis. We randomly chose 10 one-month-old seedlings to calculate their quality using the Dickson index.38 This index indicates the potentiality of a seedling to survive and to grow by combining the ratio between root biomass and total biomass with the height and the diameter of the sapling. Seedlings with a higher quality have a higher index. Seedlings showed a very low and similar Dickson index (Mann-Whitnney, L. neglectus: 0.072 ± 0.015; L. grandis: 0.075 ± 0.015, U = 44, p = 0.68, n = 10 seedlings). The low values of Dickson index of the two treatments suggest that from the chosen acorns, emerged seedlings had, per se, a low quality. Only a long term experiment, i.e., at least 10 years to achieve at least two masting years with reproductive holm oaks that never had been infested with aphids, and another group that was infested, could reveal if the effect of aphid feeding on acorns really affect holm oak fitness.We conclude that ants, through their mutualism with tended aphids, may promote considerable changes of holm oaks VOCs emission and acorn quality. However, there was no effect on seedling quality in spite of the decrease of linolenic acid content of acorns from holm oaks where aphids were tended by the invasive ant. These results indicate that the physiological response of acorns to aphid feeding tended by invasive or local ants does not necessary imply a low quality of seedlings as we previously expected. Under natural conditions, the emission of mature holm oak doubled those of saplings from a plantation.39 So considering that we performed our experiment using 4-year-old saplings, it is probable that the indirect effect of ants on VOCs emissions and acorn quality could be magnified when aphid outbreaks occur in mature holm oak forest. Taking into account the contribution of monoterpenes and isoprene emitted by mediterranean and boreal forests to atmospheric VOC pools40 and the species richness of aphids in the north hemisphere,41 we suggest, in agreement with Blande et al., that aphid infestations should be considered in future models of biogenic VOC emissions from forests.  相似文献   

17.
Induction of systemic resistance in rice by leaf extracts of Zizyphus jujuba and Ipomoea carnea against Rhizoctonia solani     
Sateesh Kagale  Thambiayya Marimuthu  Jayashree Kagale  Balsamy Thayumanavan  Ramasamy Samiyappan 《Plant signaling & behavior》2011,6(7):919-923
Plants accumulate a great diversity of natural products, many of which confer protective effects against phytopathogenic attack. Earlier we had demonstrated that the leaf extracts of Zizyphus jujuba and Ipomoea carnea inhibit the in vitro mycelial growth of Rhizoctonia solani, and effectively reduce the incidence of sheath blight disease in rice.7 Here we demonstrate that foliar application of the aqueous leaf extracts of Z. jujuba and I. carnea followed by challenge inoculation with R. solani induces systemic resistance in rice as evident from significantly increased accumulation of pathogenesis-related proteins such as chitinase, β-1,3-glucanase and peroxidase, as well as defense-related compounds such as phenylalanine ammonia-lyase and phenolic substances. Thin layer chromatographic separation of secondary metabolites revealed presence of alkaloid and terpenoid compounds in the leaf extracts of Z. jujuba that exhibited toxicity against R. solani under in vitro condition. Thus, the enhanced sheath blight resistance in rice seedlings treated with leaf extracts of Z. jujuba or I. carnea can be attributed to the direct inhibitory effects of these leaf extracts as well as their ability to elicit systemic resistance against R. solani.Key words: sheath blight, Zizyphus jujuba, Ipomoea carnea, Rhizoctonia solani, induced systemic resistance, antimicrobial compoundsSheath blight disease of rice, caused by Rhizoctonia solani, has become a major production constraint in intensive rice cropping systems where semi-dwarf, nitrogen-responsive and high-yielding rice cultivars are grown. The disease causes an annual yield loss of upto 50%.1 R. solani is both soil- and water-borne, and can infect more than 27 families of both monocot and dicot species.2 Natural host genetic resistance to R. solani has not been recorded in cultivars or wild relatives of rice.3 Several broad spectrum fungicides have been recommended for control of sheath blight, however, chemical method of disease management is neither practical due to high cost of fungicides nor sustainable as it can affect the balance of ecosystem by destroying beneficial microbial population. In addition, the environmental pollution problems associated with indiscriminate use of synthetic pesticides have prompted investigations on exploiting bio-pesticides of plant and microbial origin.Plants accumulate an enormous variety of over 100,000 secondary metabolites,4 which can act as pre-existing chemical inhibitors to invading pathogens and/or help strengthen defense response of host plant. The pre-formed infectional barriers in plants are generally referred to as “phytoanticipins;” whereas, the antimicrobial compounds that are synthesized de novo in response to pathogen attack are referred to as “phytoalexins.”5 Because of years of selective breeding leading to removal of natural products, the endogenous levels of phytoanticipins in commonly cultivated crop species are generally low and often not sufficient to fight pathogen attack, effectively.4 Various weed species and wild relatives of crop plants that are not subjected to selective breeding are believed to contain higher levels of antimicrobial compounds, consistent with their ability to fight invading pathogens more effectively than cultivated crop species. Identification of such weed/plant species that are enriched with antimicrobial principles, isolation of bio-active compounds from them, and application in the form of concentrated formulations to crop plants can augment their disease resistance capability by directly inhibiting the growth of pathogen and inducing defense responses. Indeed, the antimicrobial properties of tissue extracts of several weed/plant species have been reported by a number of research groups world-wide, especially in Asia and Latin America.613Earlier, we had evaluated the antimicrobial activity of leaf extracts of 16 different plant species belonging to 16 different families and demonstrated that leaf extracts of most of these plant species exhibit growth-inhibitory activities against R. solani and Xanathomoas oryzae pv. oryzae (Xoo).7 Among these, the leaf extracts of Datura metel were found to be the most effective in inhibiting the mycelial growth and sclerotia formation of R. solani, and the growth of Xoo, as well as in reducing the incidence of sheath blight and bacterial blight diseases caused by these pathogens, respectively, under greenhouse condition.7 We further demonstrated that rice seedlings treated with leaf extracts of D. metel accumulated significantly higher levels of pathogenesis-related (PR) proteins and other defense related compounds following challenge inoculation with R. solani or Xoo.7 Our attempts to identify biologically active compounds from D. metel revealed the presence of a withanolide compound “daturilin” that exhibited remarkable antibacterial activity against Xoo.7Apart from D. metel, two other plants species, Zizyphus jujuba and Ipomoea carnea, were found to possess remarkable antifungal activity against R. solani.7 Z. jujuba is a thorny rhamnaceous plant that is widely distributed in Europe and South-eastern Asia. I. carnea of convolvulaceae family, commonly known as morning glory, is a toxic weed found in abundance in India, Brazil, the United States and other countries.14 Both of these plant species have allelopathic effect and are commonly used in folklore medicine for curing multiple diseases.1518 The aqueous and methanol leaf extracts of Z. jujuba and I. carnea have been found to be highly effective in reducing in vitro mycelial growth, and therefore, sclerotia production of R. solani.7 In the greenhouse experiments, rice seedlings sprayed with leaf extracts of Z. jujuba and I. carnea exhibited 44 and 34% reduction in severity of sheath blight disease over the control, respectively.7 While these findings are encouraging, the mechanisms by which the leaf extracts of Z. jujuba and I. carnea modulate defense responses in rice have not yet been explored.Plants are endowed with defense genes which remain quiescent or are expressed at basal levels in healthy plants. Activation of defense genes results in induction of systemic resistance in host plant; this defense response, designated as induced systemic resistance (ISR), plays an important role in development of disease resistance.19 The onset of ISR in plants correlates with accumulation of phytoalexins and increased activity of PR proteins such as chitinases, β-1,3-glucanases and peroxidases;2023 consequently, PR proteins are generally used as ISR markers.19 The classical inducers of ISR include both biotic and abiotic factors, including disease causing microorganisms themselves,24,25 plant growth promoting rhizobacteria,22,26 chemicals27,28 and natural plant products.7,10,12,13,29,30 Plant products have been considered as one of the major groups of compounds that induce ISR. To date, extracts of at least a few plant species have been reported to contain allelopathic substances which can act as elicitors and induce systemic resistance in host plants resulting in reduction or inhibition of disease development.7,10,12,13In the present study, with the objective of understanding the mechanisms of disease suppression by leaf extracts of Z. jujuba and I. carnea, we investigated their ability to induce ISR in rice by analyzing the activities of ISR markers including PR-proteins and other defense enzymes involved in phenylpropanoid metabolism. The changes in activities of chitinase, β-1,3-glucanase, peroxidase, phenylalanine ammonia-lyase (PAL) and phenolic compounds induced in rice seedlings that were elicited with leaf extracts (at 1:10 dilution; w/v) of Z. jujuba or I. carnea and infected with R. solani were analyzed, and compared to changes in non-elicited and uninfected seedlings. Rice seedlings that were both elicited with leaf extracts of Z. jujuba or I. carnea and infected with R. solani accumulated significantly higher levels (2–5-fold) of ISR markers as compared to non-elicited and/or uninfected seedlings (Fig. 1). About two-fold increase in activities of ISR markers was also observed in seedlings that were either infected but not elicited or elicited but not infected; however, this increase was significantly lower than the changes in seedlings that were both elicited and infected (Fig. 1). Although the activity of all ISR markers began to increase around or after 24 h post-infection, at least two distinct induction patterns were observed. For instance, the activities of chitinase and phenolic substances gradually increased to reach maximum levels at 164 h post-infection (Fig. 1A and E); whereas, the activities of β-1,3-glucanase, peroxidase and PAL reached maximum levels at 72 to 96 h post-infection and decreased thereafter (Fig. 1B–D). The leaf extracts of Z. jujuba were found slightly more effective in inducing ISR markers than the leaf extracts of I. carnea. There was no significant change in the activity of ISR markers in control seedlings sprayed with sterile distilled water (Fig. 1). Collectively, these results suggested that the leaf extracts of Z. jujuba and I. carnea have the ability to induce systemic resistance in rice seedlings infected with R. solani. The fungitoxicity of the leaf extracts of Z. jujuba and I. carnea 7 combined with their ability to elicit ISR is possibly responsible for low sheath blight disease incidence observed in rice seedlings treated with these leaf extracts.7Open in a separate windowFigure 1Activity of ISR markers and defense-related compounds in rice seedlings elicited with the leaf extracts of Zizyphus jujuba or Ipomoea carnea and challenge inoculated with Rhizoctonia solani. Total activity of chitinase (A), β-1,3-glucanase (B), peroxidase (C) phenylalanine ammonia-lyase (PAL; D) and phenolic substances (E) was analyzed in rice seedlings. The inoculation of rice seedlings with R. solani was performed 45 days after planting. Spraying of leaf extracts (1:10 dilution; w/v) of Z. jujuba or I. carnea was performed two days prior to inoculation. Tissue samples (sheath) from elicited and/or infected seedlings were collected for analysis at various time intervals.The in vitro antimicrobial and in vivo disease inhibitory effects of natural plant products are generally attributed to the allelopathic substances present in them. However, very few attempts have been made to purify and characterize active principles from bio-active natural plant products. We have previously identified a withanolide compound from leaf extracts of D. metel which exhibited antibacterial activity against Xoo.7 Both Z. jujuba and I. carnea are rich source of secondary metabolites including alkaloids, terpenoids, flavonoids and phenolic compounds.3135 To determine the composition of bio-active ingredients within the leaf extracts of Z. jujuba and I. carnea, we performed thin layer chromatographic separation of alkaloid, terpenoid and phenolic compounds. The partially purified compounds, as reported in Leaf extractRf valueAnti-fungal activity against R. solani*VisibleIodine vaporsUV-lightSpray reagentPhenolic substances1Z. jujuba0.6960.696-0.696-I. carnea-0.807-0.807-Terpenoid compounds2Z. jujuba---0.189-0.3580.3580.3580.3585.1 mm---0.4463.7 mmI. carnea-0.5900.5900.590-Alkaloid compounds3Z. jujuba-0.784-0.7845.1 mmI. carnea-0.806-0.806-Open in a separate window*Inhibition zone diameter (mm) as mean of triplicate tests.1Solvent-acetic acid:chloroform (1:9); Spray reagent-Diazotised sulphanilic acid.2Solvent-methanol:chloroform (2:9); Spray reagent-10% vanillin-sulphuric acid.3Solvent-methanol:chloroform (1:1); Spray reagent-Drag endorffs reagent.In conclusion, our results together with several other reports in the literature have established that natural plant products possess antimicrobial substances that can inhibit the growth of the pathogens and augment disease resistance capability of plants by eliciting ISR in host plants. In the immediate future, identification and characterization of additional novel bio-active compounds from natural plant products is essential for developing commercial formulations of potential use in controlling pathogenic diseases in crop plants.Rice cultivar, IR-50 (susceptible to sheath blight) and virulent isolate of R. solani (RS7 Anastamosis group AG1),36 were used in all experiments. The leaf tissues of Z. jujuba and I. carnea were collected from local areas around Coimbatore, India and aqueous extracts were prepared, as described previously in reference 7. Forty-five-day-old rice seedlings were sprayed with either aqueous leaf extracts (1:10 dilution) or sterile distilled water, two-days prior to inoculation with sclerotia of R. solani.37 Sheath tissues from infected seedlings were collected at various time intervals, including 0, 24, 48, 72, 96 and 164 h after pathogen inoculation. The changes in the chitinase and peroxidase activities were determined by colorimetric assays, as described previously by Boller and Mauch,38 and Hammerschmidt et al.39 respectively. β-1,3-glucanase activity was assayed by the laminarin-dinitrosalicylic acid method.40 PAL activity was determined as the rate of conversion of L-phenylalanine to trans-cinnamic acid at 290 nm as described by Dickerson et al.41 The amount of trans-cinnamic acid synthesized was calculated using its extinction coefficient of 9,630 M−1. Estimation of phenolic substances was carried out as described previously in reference 7.TLC was carried out on 20 × 20 cm glass plate coated with0.5 mm thickness silica gel. Twenty microliters of Z. jujuba and I. carnea leaf extracts (1 g/ml) were spotted on each plate. The mixture of solvents comprising acetic acid:chloroform (1:9), methanol:chloroform (2:9) or methanol:chloroform (1:1) were used to develop the chromatograms for detection of phenolic, terpenoid or alkaloid compounds, respectively. The developed chromatograms were observed under visible, UV light and after exposing to iodine vapours. Additionally, the chemical class specific visualization spray reagents were used for detection of phenolic substances (Diazotized sulphanilic acid), terpenoids (10% vanillin-sulphuric acid) and alkaloids (Dragendorffs reagent). Preparative TLC was carried out using 2 mm thickness silica gel. The Rf value of each spot detected on the chromatogram was recorded. The silica gel corresponding to each spot was scraped off and the chemical compound was eluted using sterile water. The eluted compound was tested for its antimicrobial activity using the inhibition zone technique.42  相似文献   

18.
Immunomodulation by Mesenchymal Stem Cells in Veterinary Species     
Danielle D Carrade  Dori L Borjesson 《Comparative medicine》2013,63(3):207-217
Mesenchymal stem cells (MSC) are adult-derived multipotent stem cells that have been derived from almost every tissue. They are classically defined as spindle-shaped, plastic-adherent cells capable of adipogenic, chondrogenic, and osteogenic differentiation. This capacity for trilineage differentiation has been the foundation for research into the use of MSC to regenerate damaged tissues. Recent studies have shown that MSC interact with cells of the immune system and modulate their function. Although many of the details underlying the mechanisms by which MSC modulate the immune system have been defined for human and rodent (mouse and rat) MSC, much less is known about MSC from other veterinary species. This knowledge gap is particularly important because the clinical use of MSC in veterinary medicine is increasing and far exceeds the use of MSC in human medicine. It is crucial to determine how MSC modulate the immune system for each animal species as well as for MSC derived from any given tissue source. A comparative approach provides a unique translational opportunity to bring novel cell-based therapies to the veterinary market as well as enhance the utility of animal models for human disorders. The current review covers what is currently known about MSC and their immunomodulatory functions in veterinary species, excluding laboratory rodents.Abbreviations: AT, adipose tissue; BM, Bone marrow; CB, umbilical cord blood; CT, umbilical cord tissue; DC, dendritic cell; IDO, indoleamine 2;3-dioxygenase; MSC, mesenchymal stem cells; PGE2, prostaglandin E2; VEGF, vascular endothelial growth factorMesenchymal stem cells (MSC, alternatively known as mesenchymal stromal cells) were first reported in the literature in 1968.39 MSC are thought to be of pericyte origin (cells that line the vasculature)21,22 and typically are isolated from highly vascular tissues. In humans and mice, MSC have been isolated from fat, placental tissues (placenta, Wharton jelly, umbilical cord, umbilical cord blood), hair follicles, tendon, synovial membrane, periodontal ligament, and every major organ (brain, spleen, liver, kidney, lung, bone marrow, muscle, thymus, pancreas, skin).23,121 For most current clinical applications, MSC are isolated from adipose tissue (AT), bone marrow (BM), umbilical cord blood (CB), and umbilical cord tissue (CT; 11,87,99 Clinical trials in human medicine focus on the use of MSC both for their antiinflammatory properties (graft-versus-host disease, irritable bowel syndrome) and their ability to aid in tissue and bone regeneration in combination with growth factors and bone scaffolds (clinicaltrials.gov).131 For tissue regeneration, the abilities of MSC to differentiate and to secrete mediators and interact with cells of the immune system likely contribute to tissue healing (Figure 1). The current review will not address the specific use of MSC for orthopedic applications and tissue regeneration, although the topic is covered widely in current literature for both human and veterinary medicine.57,62,90

Table 1.

Tissues from which MSC have been isolated
Tissue source (reference no.)
SpeciesFatBone marrowCord bloodCord tissueOther
Cat1348356
Chicken63
Cow13812108
Dog973, 5978, 119139Periodontal ligament65
Goat66964
Horse26, 13037, 40, 12367130Periodontal ligament and gingiva88
Nonhuman primate28, 545
Pig1351147014, 20, 91
Rabbit1288032Fetal liver93
Sheep849542, 55
Open in a separate windowOpen in a separate windowFigure 1.The dual roles of MSC: differentiation and modulation of inflammation.Long-term studies in veterinary species have shown no adverse effects with the administration of MSC in a large number of animals.9,10,53 Smaller, controlled studies on veterinary species have shown few adverse effects, such as minor localized inflammation after MSC administration in vivo.7,15,17,45,86,92,98 Private companies, educational institutions, and private veterinary clinics (including Tufts University, Cummins School of Veterinary Medicine, University of California Davis School of Veterinary Medicine, VetStem, Celavet, Alamo Pintado Equine Medical Center, and Rood and Riddle Equine Hospital) offer MSC as a clinical treatment for veterinary species. Clinical uses include tendon and cartilage injuries, tendonitis, and osteoarthritis and, to a lesser extent, bone regeneration, spinal cord injuries, and liver disease in both large and small animals.38,41,113 Even with this broad clinical use, there have been no reports of severe adverse effects secondary to MSC administration in veterinary patients.  相似文献   

19.
Low temperature-induced necrosis shows phenotypic plasticity in wheat triploid hybrids     
Shigeo Takumi  Nobuyuki Mizuno 《Plant signaling & behavior》2011,6(10):1431-1433
  相似文献   

20.
Deepening into the proteome of maize cells habituated to the cellulose biosynthesis inhibitor dichlobenil     
Hugo Mélida  David Caparrós-Ruiz  Jesús álvarez  José Luis Acebes  Antonio Encina 《Plant signaling & behavior》2011,6(1):143-146
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号