首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression.

Results

We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55 % were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52 % exhibited expression oscillations in a 24 h period. This number increased to 39.23 % when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period.

Conclusions

Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1731-x) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.

Aims

Epidemiological studies suggest that sex has a role in the pathogenesis of cardioembolic stroke. Since stroke is a vascular disease, identifying sexually dimorphic gene expression changes in blood leukocytes can inform on sex-specific risk factors, response and outcome biology. We aimed to examine the sexually dimorphic immune response following cardioembolic stroke by studying the differential gene expression in peripheral white blood cells.

Methods and Results

Blood samples from patients with cardioembolic stroke were obtained at ≤3 hours (prior to treatment), 5 hours and 24 hours (after treatment) after stroke onset (n = 23; 69 samples) and compared with vascular risk factor controls without symptomatic vascular diseases (n = 23, 23 samples) (ANCOVA, false discovery rate p≤0.05, |fold change| ≥1.2). mRNA levels were measured on whole-genome Affymetrix microarrays. There were more up-regulated than down-regulated genes in both sexes, and females had more differentially expressed genes than males following cardioembolic stroke. Female gene expression was associated with cell death and survival, cell-cell signaling and inflammation. Male gene expression was associated with cellular assembly, organization and compromise. Immune response pathways were over represented at ≤3, 5 and 24 h after stroke in female subjects but only at 24 h in males. Neutrophil-specific genes were differentially expressed at 3, 5 and 24 h in females but only at 5 h and 24 h in males.

Conclusions

There are sexually dimorphic immune cell expression profiles following cardioembolic stroke. Future studies are needed to confirm the findings using qRT-PCR in an independent cohort, to determine how they relate to risk and outcome, and to compare to other causes of ischemic stroke.  相似文献   

5.

Background

MicroRNAs are required for maintenance of pluripotency as well as differentiation, but since more microRNAs have been computationally predicted in genome than have been found, there are likely to be undiscovered microRNAs expressed early in stem cell differentiation.

Methodology/Principal Findings

SOLiD ultra-deep sequencing identified >107 unique small RNAs from human embryonic stem cells (hESC) and neural-restricted precursors that were fit to a model of microRNA biogenesis to computationally predict 818 new microRNA genes. These predicted genomic loci are associated with chromatin patterns of modified histones that are predictive of regulated gene expression. 146 of the predicted microRNAs were enriched in Ago2-containing complexes along with 609 known microRNAs, demonstrating association with a functional RISC complex. This Ago2 IP-selected subset was consistently expressed in four independent hESC lines and exhibited complex patterns of regulation over development similar to previously-known microRNAs, including pluripotency-specific expression in both hESC and iPS cells. More than 30% of the Ago2 IP-enriched predicted microRNAs are new members of existing families since they share seed sequences with known microRNAs.

Conclusions/Significance

Extending the classic definition of microRNAs, this large number of new microRNA genes, the majority of which are less conserved than their canonical counterparts, likely represent evolutionarily recent regulators of early differentiation. The enrichment in Ago2 containing complexes, the presence of chromatin marks indicative of regulated gene expression, and differential expression over development all support the identification of 146 new microRNAs active during early hESC differentiation.  相似文献   

6.
7.

Background

Pathogenesis and factors for determining progression of alcoholic and non-alcoholic steatosis to steatohepatitis with risk of further progression to liver cirrhosis and cancer are poorly understood. In the present study, we aimed to identify potential molecular signatures for discrimination of steatohepatitis from steatosis.

Methodology and Results

Global microarray gene expression analysis was applied to unravel differentially expressed genes between steatohepatitis compared to steatosis and control samples. For functional annotation as well as the identification of disease-relevant biological processes of the differentially expressed genes the gene ontology (GO) database was used. Selected candidate genes (n = 46) were validated in 87 human liver samples from two sample cohorts by quantitative real-time PCR (qRT-PCR). The GO analysis revealed that genes down-regulated in steatohepatitis were mainly involved in metabolic processes. Genes up-regulated in steatohepatitis samples were associated with cancer progression and proliferation. In surgical liver resection samples, 39 genes and in percutaneous liver biopsies, 30 genes were significantly up-regulated in steatohepatitis. Furthermore, immunohistochemical investigation of human liver tissue revealed a significant increase of AKR1B10 protein expression in steatohepatitis.

Conclusions

The development of steatohepatitis is characterized by distinct molecular changes. The most striking examples in this respect were KRT23 and AKR1B10, which we found to be highly differentially expressed in steatohepatitis compared to steatosis and normal liver. We propose that KRT23 and AKR1B10 may serve as future potential biomarkers for steatohepatitis as well as markers for progression to HCC.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.

Background

Chromatin compactness has been considered a major determinant of gene activity and has been associated with specific chromatin modifications in studies on a few individual genetic loci. At the same time, genome-wide patterns of open and closed chromatin have been understudied, and are at present largely predicted from chromatin modification and gene expression data. However the universal applicability of such predictions is not self-evident, and requires experimental verification.

Results

We developed and implemented a high-throughput analysis for general chromatin sensitivity to DNase I which provides a comprehensive epigenomic assessment in a single assay. Contiguous domains of open and closed chromatin were identified by computational analysis of the data, and correlated to other genome annotations including predicted chromatin “states”, individual chromatin modifications, nuclear lamina interactions, and gene expression. While showing that the widely trusted predictions of chromatin structure are correct in the majority of cases, we detected diverse “exceptions” from the conventional rules. We found a profound paucity of chromatin modifications in a major fraction of closed chromatin, and identified a number of loci where chromatin configuration is opposite to that expected from modification and gene expression patterns. Further, we observed that chromatin of large introns tends to be closed even when the genes are expressed, and that a significant proportion of active genes including their promoters are located in closed chromatin.

Conclusions

These findings reveal limitations of the existing predictive models, indicate novel mechanisms of epigenetic regulation, and provide important insights into genome organization and function.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-988) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
19.

Background

Morbidity and mortality rates of low birth weight (LBW) newborns at term are higher than rates in normal birth weight (NBW) newborns. LBW newborns are at greater risk to acquire recurrent bacterial and viral infections during their first few weeks of life possibly as an outcome of compromised innate immune functions. As adaptive immunity is in a naive state, increased risk of infection of LBW as compared to NBW newborns may reflect impairments in innate immunity.

Methodology

To characterize the increased susceptibility to infections in LBW newborns we used microarray technology to identify differences in gene expression in LBW newborns (n = 8) compared to NBW newborns (n = 4) using cord blood. The results obtained from the microarray study were validated on a larger number of samples using real time RT-PCR (LBW = 22, NBW = 18) and western blotting (LBW = 12, NBW = 12). The Interferome database was used to identify interferon (IFN) signature genes and ingenuity pathway analysis identified canonical pathways and biological functions associated with the differentially expressed genes in LBW newborns. ELISAs for IFNs and bactericidal/permeability-increasing protein were performed in both LBW and NBW newborns and in adults (LBW = 18, NBW = 18, Adults  = 8).

Principal Findings

Upon microarray analysis, we identified 1,391 differentially expressed genes, of which, 1,065 genes were down-regulated and 326 genes were up-regulated in the LBW compared to NBW newborns. Of note, 70 IFN-signature genes were found to be significantly down-regulated in LBW compared to NBW newborns. Ingenuity pathway analysis revealed pattern recognition receptors signaling including Toll-Like Receptors (TLRs) -1, -5, and -8 genes and IFN signaling as the most significantly impacted pathways. Respiratory infectious diseases were the most significantly affected bio-functions in LBW newborns.

Conclusion and Significance

Diminished PRRs, IFN-signature, and BPI gene expression raises the possibility that impairments in these pathways contribute to the susceptibility of LBW term infants to infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号