首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Plants take nutrients from the rhizosphere via two pathways: (i) by absorbing soil nutrients directly via their roots and (ii) indirectly via symbiotic associations with nutrient‐providing microbes. Herbivorous insects can alter these pathways by herbivory, adding their excrement to the soil, and affecting plant–microbe associations. 2. Little is known, however, about the effects of herbivorous insects on plant nutrient uptake. Greenhouse experiments with soybean, aphids, and rhizobia were carried out to examine the effects of aphids on plant nutrient uptake. 3. First, the inorganic soil nitrogen and the sugar in aphid honeydew between aphid‐infected and ‐free plants were compared. It was found that aphid honeydew added 41 g m?2 of sugar to the soil, and that aphids decreased the inorganic soil nitrogen by 86%. This decrease may have been caused by microbial immobilisation of soil nitrogen followed by increased microbial abundance as a result of aphid honeydew. 4. Second, nitrogen forms in xylem sap between aphid‐infected and ‐free plants were compared to examine nitrogen uptake. Aphids decreased the nitrogen uptake via both pathways, and strength of the impact on direct uptake via plant roots was greater than indirect uptake via rhizobia. The reduced nitrogen uptake by the direct pathway was as a result of microbial immobilisation, and that by the indirect pathway was probably because of the interaction of microbial immobilisation and carbon stress, which was caused by aphid infection. 5. The present results demonstrate that herbivorous insects can negatively influence the two pathways of plant nutrient uptake and alter their relative importance.  相似文献   

2.
3.
The transition zone between terrestrial and freshwater habitats is highly dynamic, with large variability in environmental characteristics. Here, we investigate how these characteristics influence the nutritional status and performance of plant life forms inhabiting this zone. Specifically, we hypothesised that: (i) tissue nutrient content differs among submerged, amphibious and terrestrial species, with higher content in submerged species; and (ii) PNUE gradually increases from submerged over amphibious to terrestrial species, reflecting differences in the availability of N and P relative to inorganic C across the land–water ecotone. We found that tissue nutrient content was generally higher in submerged species and C:N and C:P ratios indicated that content was limiting for growth for ca. 20% of plant individuals, particularly those belonging to amphibious and terrestrial species groups. As predicted, the PNUE increased from submerged over amphibious to terrestrial species. We suggest that this pattern reflects that amphibious and terrestrial species allocate proportionally more nutrients into processes of importance for photosynthesis at saturating CO2 availability, i.e. enzymes involved in substrate regeneration, compared to submerged species that are acclimated to lower availability of CO2 in the aquatic environment. Our results indicate that enhanced nutrient loading may affect relative abundance of the three species groups in the land–water ecotone of stream ecosystems. Thus, species of amphibious and terrestrial species groups are likely to benefit more from enhanced nutrient availability in terms of faster growth compared to aquatic species, and that this can be detrimental to aquatic species growing in the land–water ecotone, e.g. Ranunculus and Callitriche.  相似文献   

4.
5.
Soil health is essential and irreplaceable for plant growth and global food production, which has been threatened by climate change and soil degradation. Degraded coastal soils are urgently required to reclaim using new sustainable technologies. Interest in applying biochar to improve soil health and promote crop yield has rapidly increased because of its multiple benefits. However, effects of biochar addition on the saline–sodic coastal soil health and halophyte growth were poorly understood. Response of two halophytes, Sesbania (Sesbania cannabina) and Seashore mallow (Kosteletzkya virginica), to the individual or co‐application of biochar and inorganic fertilizer into a coastal soil was investigated using a 52 d pot experiment. The biochar alone or co‐application stimulated the plant growth (germination, root development, and biomass), primarily attributed to the enhanced nutrient availability from the biochar‐improved soil health. Additionally, the promoted microbial activities and bacterial community shift towards the beneficial taxa (e.g. Pseudomonas and Bacillus) in the rhizosphere also contributed to the enhanced plant growth and biomass. Our findings showed the promising significance because biochar added at an optimal level (≤5%) could be a feasible option to reclaim the degraded coastal soil, enhance plant growth and production, and increase soil health and food security.  相似文献   

6.
We studied the root foraging ability and its consequences for the nutrient acquisition of five grass species that differ in relative growth rate and that occur in habitats that differ widely in nutrient availability. Foraging responses were quantified, based on the performance of the plants in homogeneous and heterogeneous soil environments of the same overall nutrient availability. Although all species tended to produce a significantly higher root length density in a nutrient-rich patch, this response was significant only for the faster-growing species. The increased root length density resulted from small, though not significant, changes in root biomass and specific root length. The effectiveness of root proliferation was determined by quantifying the total amount of nutrients (N and P) accumulated by the plants over the course of the experiment. Plants acquired more N in a heterogeneous environment than in a homogeneous environment, although the total nutrient availability was the same. The ability to acquire nutrients (N or P) in the heterogeneous environment was not related to the ability of species to increase root length density in response to local nutrient enrichment. In contrast to other studies, our results suggest that the role of morphological plasticity of roots in acquiring patchily distributed resources is limited. Possible reasons for this discrepancy are discussed. Received: 11 September 1997 / Accepted: 28 February 1998  相似文献   

7.
Marine invertebrates are sources of a diverse array of bioactive metabolites with great potential for development as drugs and research tools. In many cases, microorganisms are known or suspected to be the biosynthetic source of marine invertebrate natural products. The application of molecular microbiology to the study of these relationships will contribute to basic biological knowledge and facilitate biotechnological development of these valuable resources. The bryostatin-producing bryozoan B. neritina and its specific symbiont "Candidatus Endobugula sertula" constitute one promising model system. Another fertile subject for investigation is the listhistid sponges that contain numerous bioactive metabolites, some of which originate from bacterial symbionts.  相似文献   

8.
Many plant-sap-feeding insects have maintained a single, obligate, nutritional symbiont over the long history of their lineage. This senior symbiont may be joined by one or more junior symbionts that compensate for gaps in function incurred through genome-degradative forces. Adelgids are sap-sucking insects that feed solely on conifer trees and follow complex life cycles in which the diet fluctuates in nutrient levels. Adelgids are unusual in that both senior and junior symbionts appear to have been replaced repeatedly over their evolutionary history. Genomes can provide clues to understanding symbiont replacements, but only the dual symbionts of hemlock adelgids have been examined thus far. Here, we sequence and compare genomes of four additional dual-symbiont pairs in adelgids. We show that these symbionts are nutritional partners originating from diverse bacterial lineages and exhibiting wide variation in general genome characteristics. Although dual symbionts cooperate to produce nutrients, the balance of contributions varies widely across pairs, and total genome contents reflect a range of ages and degrees of degradation. Most symbionts appear to be in transitional states of genome reduction. Our findings support a hypothesis of periodic symbiont turnover driven by fluctuating selection for nutritional provisioning related to gains and losses of complex life cycles in their hosts.Subject terms: Microbial ecology, Evolution, Genomics  相似文献   

9.
The consumption of nutrients by rodents is markedly influenced by the number of containers of each nutrient provided. Most rats given a choice from separate sources of protein, carbohydrate, and fat thrived if given one cup of each but half failed to thrive if given one cup of each and three extra cups of carbohydrate or fat. Rats given five bottles of sucrose solution and one bottle of water became fatter than rats given five bottles of water and one of sucrose. These studies in rats may point to a model for human obesity, in which the availability of food can override physiological controls of ingestion.  相似文献   

10.
Carbon use efficiency (CUE) is a fundamental parameter for ecological models based on the physiology of microorganisms. CUE determines energy and material flows to higher trophic levels, conversion of plant‐produced carbon into microbial products and rates of ecosystem carbon storage. Thermodynamic calculations support a maximum CUE value of ~ 0.60 (CUE max). Kinetic and stoichiometric constraints on microbial growth suggest that CUE in multi‐resource limited natural systems should approach ~ 0.3 (CUE max/2). However, the mean CUE values reported for aquatic and terrestrial ecosystems differ by twofold (~ 0.26 vs. ~ 0.55) because the methods used to estimate CUE in aquatic and terrestrial systems generally differ and soil estimates are less likely to capture the full maintenance costs of community metabolism given the difficulty of measurements in water‐limited environments. Moreover, many simulation models lack adequate representation of energy spilling pathways and stoichiometric constraints on metabolism, which can also lead to overestimates of CUE. We recommend that broad‐scale models use a CUE value of 0.30, unless there is evidence for lower values as a result of pervasive nutrient limitations. Ecosystem models operating at finer scales should consider resource composition, stoichiometric constraints and biomass composition, as well as environmental drivers, to predict the CUE of microbial communities.  相似文献   

11.
Mycorrhizal symbiosis involves reciprocal transfer of carbon and nutrients between shoots on the one hand and roots colonized by symbiotic fungi on the other. Mycorrhizas may improve the mineral nutrient acquisition rates, but simultaneously increase the belowground demand for carbon. Mycorrhizal plants will have a selective advantage over non-mycorrhizal ones if they are more cost-efficient in terms of carbon cost per unit of acquired mineral nutrient. However, we demonstrate here in a simple model system that this is not a necessary condition. Mycorrhizas may evolve even when they are less cost-efficient, provided that photosynthesis and/or growth are strongly nutrient-limited. This result implies a unique hypothesis for the evolution of mycorrhizal associations which may be inherently cost-inefficient as compared to plant roots. Such symbioses may have evolved when the superior nutrient acquisition rate of fungi combines with the relatively high photosynthetic nutrient use efficiency of the host plant. Consequently, provided that mycorrhizas are really cost-inefficient, the selective advantage of mycorrhizal plants will disappear when an increase in the nutrient acquisition rate is not associated with a sufficiently high nutrient use efficiency of photosynthesis, as at high soil nutrient levels or due to a loss of leaf area, shading or low temperatures.  相似文献   

12.
We examined the relationship between meristem allocation and plant size for four annual plant species: Arabidopsis thaliana, Arenaria serphyllifolia, Brassica rapa, and Chaenorrhinum minus. Gradients of light and nutrient availability were used to obtain a range of plant sizes for each of these species. Relative allocation to reproductive, inactive, and growth meristems were used to measure reproductive effort, apical dominance, and branching intensity, respectively. We measured allocation to each of these three meristem fates at weekly intervals throughout development and at final developmental stage. At all developmental stages reproductive effort and branching intensity tended to increase with increasing plant size (i.e., due to increasing resource availability) and apical dominance tended to decrease with increasing plant size. We interpret these responses as a strategy for plants to maximize fitness across a range of environments. In addition, significant differences in meristem response among species may be important in defining the range of habitats in which a species can exist and may help explain patterns of species competition and coexistence in habitats with variable resource availability.  相似文献   

13.
14.
15.
Hale CM  Frelich LE  Reich PB  Pastor J 《Oecologia》2008,155(3):509-518
A greenhouse mesocosm experiment, representing earthworm-free North American Acer-dominated forest floor and soil conditions, was used to examine the individual and combined effects of initial invasion by three European earthworm species (Dendrobaena octaedra, Lumbricus rubellus and Lumbricus terrestris) on the forest floor and upper soil horizons, N and P availability, and the mortality and biomass of four native understory plant species (Acer saccharum, Aquilegia canadensis, Aralia racemosa, and Carex pensylvanica). All the three earthworm species combined caused larger impacts on most variables measured than any single earthworm species. These included loss of O horizon mass, decreased thickness of the O horizon and increased thickness of the A horizon, and higher availability of N and P. The latter finding differs from field reports where nutrients were less available after invasion, and probably represents an initial transient increase in nutrient supply as earthworms consume and incorporate the O horizon into the A horizon. Earthworms also increased mortality of plants and decreased total mesocosm plant biomass, but here the impact of all the three earthworm species was no greater than that of L. terrestris and/or L. rubellus alone. This study corroborates field studies that European earthworm invasions alter North American forest ecosystem processes by initiating a cascade of impacts on plant community composition and soil properties.  相似文献   

16.
Normal cellular function is dependent on a number of highly regulated homeostatic mechanisms, which act in concert to maintain conditions suitable for life. During periods of nutritional deficit, cells initiate a number of recycling programs which break down complex intracellular structures, thus allowing them to utilize the energy stored within. These recycling systems, broadly named “autophagy”, enable the cell to maintain the flow of nutritional substrates until they can be replenished from external sources. Recent research has shown that a number of regulatory components of the autophagy program are controlled by lysine acetylation. Lysine acetylation is a reversible post-translational modification that can alter the activity of enzymes in a number of cellular compartments. Strikingly, the main substrate for this modification is a product of cellular energy metabolism: acetyl-CoA. This suggests a direct and intricate link between fuel metabolites and the systems which regulate nutritional homeostasis. In this review, we examine how acetylation regulates the systems that control cellular autophagy, and how global protein acetylation status may act as a trigger for recycling of cellular components in a nutrient-dependent fashion. In particular, we focus on how acetylation may control the degradation and turnover of mitochondria, the major source of fuel-derived acetyl-CoA.  相似文献   

17.
The context‐dependent defence (CDD) hypothesis predicts that defence levels of plant species against herbivory are not fixed but vary with environmental conditions, in a way that is specific for plant species that share evolutionary adaptations to resource conditions exemplified by similar maximum relative growth rates. More specifically, we expected plants from resource‐poor environments to display high defence levels but not when grown under resource‐rich conditions, whereas the reverse – plants from resource‐rich conditions displaying low defence levels but not when grown under resource‐poor conditions – is not necessarily the case. In this study, we used multiple‐choice bioassays in which leaf discs were fed to larvae of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) as an efficient and effective way of indicating plant defence levels. This generalist herbivore was capable of detecting both inter‐ and intraspecific differences in defence among plant species. The CDD was tested by exploring the effects of various experimental resource conditions (light, nutrients) upon the herbivore preferences and by comparing these preferences with the maximum relative growth rate of plant species. The experimental results provide general support for the CDD hypothesis with respect to nutrient‐level variation but the effects were not related to the origin of the plant species tested. Variation in light conditions did not result in consistent effects upon herbivore preferences. The CDD therefore can be formulated more precisely as: defence levels of plant species vary under different environmental conditions but in a way that is specific for plant species that share evolutionary adaptations to similar nutrient conditions. This more precise CDD hypothesis is a useful addition to existing optimal‐defence theory because of its focus on the possible plastic effects of resource conditions upon plant defence levels. This is relevant when designing experimental plant–herbivore studies.  相似文献   

18.
In nature, plants often associate with multiple symbionts concurrently, yet the effects of tripartite symbioses are not well understood. We expected synergistic growth responses from plants associating with functionally distinct symbionts. In contrast, symbionts providing similar benefits to a host may reduce host plant growth. We reviewed studies investigating the effect of multiple interactions on host plant performance. Additionally, we conducted a meta-analysis on the studies that performed controlled manipulations of the presence of two microbial symbionts. Using response ratios, we investigated the effects on plants of pairs of symbionts (mycorrhizal fungi, fungal endophytes, and nitrogen-fixers). The results did not support the view that arbuscular mycorrhizal (AM) fungi and rhizobia should interact synergistically. In contrast, we found the joint effects of fungal endophytes and arbuscular mycorrhizal fungi to be greater than expected given their independent effects. This increase in plant performance only held for antagonistic endophytes, whose negative effects were alleviated when in association with AM fungi, while the impact of beneficial endophytes was not altered by infection with AM fungi. Generalizations from the meta-analysis were limited by the substantial variation within types of interactions and the data available, highlighting the need for more research on a range of plant systems.  相似文献   

19.
植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略   总被引:10,自引:3,他引:10  
提高养分利用效率(NUE)是植物适应贫瘠生境的一种重要的竞争策略。养分利用效率的概念从提出到现在,曾用多个参数描述,其间经历了一个不断完善的发展过程。通过综述近年来相关的研究结果,可以初步得出以下结论:⑴不同种,不同生活型植物,乃至同株植物不同器官的NUE存在不同程度的差异。⑵NUE受多种因素影响。其中,养分有效性的影响研究较多,但争议较大,综合考虑,它对NUE的影响不甚显著;叶片脱落持续时间的影  相似文献   

20.
The extracellular enzymatic reduction of iron by microorganisms has not been appropriately considered. In this study the reduction and release of iron from ferrioxamine were examined using extracellular microbial iron reductases and compared to iron mobilization by chemical reductants, and to chelation by EDTA and desferrioxamine. A flavin semiquinone was formed during the enzymatic reduction of ferrioxamine, which was consistent with the 1 e(-) reduction of iron by an enzyme. The rates for the enzymatic reactions were substantially faster than both the 2 e(-) chemical reductions and the chelation reactions. The rapid rates of the enzymatic reduction reactions demonstrated that these enzymes are capable of accomplishing the extracellular mobilization of iron required by microorganisms. The data suggest that mechanistically there are two phases for the mobilization and transport of iron by those microorganisms that produce both extracellular iron reductases and siderophores, with reduction being the principle pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号