首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Earliest cetaceans (whales) originated from the early Eocene of Indo-Pakistan, but the group dispersed through most of the oceans of the planet by the late middle to late Eocene. This late Eocene global distribution indicates that important dispersal events took place during the middle Eocene (Lutetian), a globally undersampled time interval that is well documented in the Togolese phosphate series. We report here the first discovery of a partial cetacean cranium from middle Eocene deposits of Togo (West Africa). A 3D model of the cranium and teeth was reconstructed in order to reveal hidden anatomical features. The dental and cranial characteristics of the Togolese specimen recall those of protocetid taxa described in Africa, Asia, and North America, but also display significant differences. In particular, we show that the new specimen shares a number of morphological features with the Togolese taxon Togocetus. Such a hypothesis is further supported by a cladistic analysis including 45 taxa and 167 morphological characters, which recovers the new specimen close to Togocetus as the first offshoot of protocetids. Phylogenetic analysis including all the protocetids remains of Kpogamé confirms the singular diversity of the Togolese phosphate basin, and enables to examine potential connections with faunas from contemporaneous localities in Africa.  相似文献   

2.
Cetaceans (whales, dolphins, and porpoises) are an order of mammals that originated about 50 million years ago in the Eocene epoch. Even though all modern cetaceans are obligate aquatic mammals, early cetaceans were amphibious, and their ancestors were terrestrial artiodactyls, similar to small deer. The transition from land to water is documented by a series of intermediate fossils, many of which are known from India and Pakistan. We review raoellid artiodactyls, as well as the earliest families of cetaceans: pakicetids, ambulocetids, remingtonocetids, protocetids, and basilosaurids. We focus on the evolution of cetacean organ systems, as these document the transition from land to water in detail.  相似文献   

3.

Background

Whales have captivated the human imagination for millennia. These incredible cetaceans are the only mammals that have adapted to life in the open oceans and have been a source of human food, fuel and tools around the globe. The transition from land to water has led to various aquatic specializations related to hairless skin and ability to regulate their body temperature in cold water.

Results

We present four common minke whale (Balaenoptera acutorostrata) genomes with depth of ×13 ~ ×17 coverage and perform resequencing technology without a reference sequence. Our results indicated the time to the most recent common ancestors of common minke whales to be about 2.3574 (95% HPD, 1.1521 – 3.9212) million years ago. Further, we found that genes associated with epilation and tooth-development showed signatures of positive selection, supporting the morphological uniqueness of whales.

Conclusions

This whole-genome sequencing offers a chance to better understand the evolutionary journey of one of the largest mammals on earth.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1213-1) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

The best European locality for complete Eocene mammal skeletons is Grube Messel, near Darmstadt, Germany. Although the site was surrounded by a para-tropical rain forest in the Eocene, primates are remarkably rare there, and only eight fragmentary specimens were known until now. Messel has now yielded a full primate skeleton. The specimen has an unusual history: it was privately collected and sold in two parts, with only the lesser part previously known. The second part, which has just come to light, shows the skeleton to be the most complete primate known in the fossil record.

Methodology/Principal Findings

We describe the morphology and investigate the paleobiology of the skeleton. The specimen is described as Darwinius masillae n.gen. n.sp. belonging to the Cercamoniinae. Because the skeleton is lightly crushed and bones cannot be handled individually, imaging studies are of particular importance. Skull radiography shows a host of teeth developing within the juvenile face. Investigation of growth and proportion suggest that the individual was a weaned and independent-feeding female that died in her first year of life, and might have attained a body weight of 650–900 g had she lived to adulthood. She was an agile, nail-bearing, generalized arboreal quadruped living above the floor of the Messel rain forest.

Conclusions/Significance

Darwinius masillae represents the most complete fossil primate ever found, including both skeleton, soft body outline and contents of the digestive tract. Study of all these features allows a fairly complete reconstruction of life history, locomotion, and diet. Any future study of Eocene-Oligocene primates should benefit from information preserved in the Darwinius holotype. Of particular importance to phylogenetic studies, the absence of a toilet claw and a toothcomb demonstrates that Darwinius masillae is not simply a fossil lemur, but part of a larger group of primates, Adapoidea, representative of the early haplorhine diversification.  相似文献   

5.

Background

Morphological innovations that significantly enhance performance capacity may enable exploitation of new resources and invasion of new ecological niches. The invasion of land from the aquatic realm requires dramatic structural and physiological modifications to permit survival in a gravity-dominated, aerial environment. Most fishes are obligatorily aquatic, with amphibious fishes typically making slow-moving and short forays on to land.

Methodology/Principal Findings

Here I describe the behaviors and movements of a little known marine fish that moves extraordinarily rapidly on land. I found that the Pacific leaping blenny, Alticus arnoldorum, employs a tail-twisting movement on land, previously unreported in fishes. Focal point behavioral observations of Alticus show that they have largely abandoned the marine realm, feed and reproduce on land, and even defend terrestrial territories. Comparisons of these blennies'' terrestrial kinematic and kinetic (i.e., force) measurements with those of less terrestrial sister genera show A. arnoldorum move with greater stability and locomotor control, and can move away more rapidly from impending threats.

Conclusions/Significance

My results demonstrate that axial tail twisting serves as a key innovation enabling invasion of a novel marine niche. This paper highlights the potential of using this system to address general evolutionary questions about water-land transitions and niche invasions.  相似文献   

6.
7.

Background

The oldest and largest member of giant salamanders (Cryptobranchidae) Aviturus exsecratus appears in the latest Paleocene (near the Paleocene–Eocene Thermal Maximum) of Mongolia. Based on femoral and vertebral morphology and metrics, a terrestrial adaptation has been supposed for this species.

Methodology/Principal Findings

A detailed morphological reinvestigation of published as well as unpublished material reveals that this salamander shows a vomerine dentition that is posteriorly shifted and arranged in a zigzag pattern, a strongly developed olfactory region within the cranial cavity, and the highest bone ossification and relatively longest femur among all fossil and recent cryptobranchids.

Conclusions/Significance

The presence of these characteristics indicates a peramorphic developmental pattern for Aviturus exsecratus. Our results from Av. exsecratus indicate for the first time pronounced peramorphosis within a crown-group lissamphibian. Av. exsecratus represents a new developmental trajectory within both fossil and recent lissamphibian clades characterized by extended ontogeny and large body size, resembling the pattern known from late Paleozoic eryopines. Moreover, Av. exsecratus is not only a cryptobranchid with distinctive peramorphic characters, but also the first giant salamander with partially terrestrial (amphibious) lifestyle. The morphology of the vomers and dentaries suggests the ability of both underwater and terrestrial feeding.  相似文献   

8.

Background

Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in Canada’s High Arctic was a critical paleontological contribution of the last century because it indicated that this region of the Arctic had been mild, temperate, and ice-free during the early – middle Eocene (∼53–50 Ma), despite being well above the Arctic Circle. To date, these discoveries have been restricted to Canada’s easternmost Arctic – Ellesmere and Axel Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada’s westernmost Arctic Island – Banks Island, Northwest Territories – they have been interpreted as predominantly marine. We document the first Eocene bony fish and crocodyliform fossils from Banks Island.

Principal Findings

We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a crocodyliform, from lower – middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National Park (∼76°N. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the Early Eocene Climatic Optimum (EECO).

Conclusions/Significance

These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and crocodyliforms west by approximately 40° of longitude or ∼1100 km. The low diversity bony fish fauna, at least at the family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform, gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the Canadian Arctic during early – middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the phylogenetic hypothesis of a Paleogene divergence time between the two extant alligatorid lineages Alligator mississippiensis and A. sinensis, and high-latitude dispersal across Beringia.  相似文献   

9.

Background

Adult cardiorespiratory fitness and muscle strength are related to all-cause and cardiovascular mortality. Both are possibly related to birth weight, but it is unclear what the importance is of genetic, maternal and placental factors in these associations.

Design

Peak oxygen uptake and measures of strength, flexibility and balance were obtained yearly during adolescence (10–18 years) in 114 twin pairs in the Leuven Longitudinal Twin Study. Their birth weights had been collected prospectively within the East Flanders Prospective Twin Survey.

Results

We identified linear associations between birth weight and adolescent vertical jump (b = 1.96 cm per kg birth weight, P = 0.02), arm pull (b = 1.85 kg per kg birth weight P = 0.03) and flamingo balance (b = −1.82 attempts to stand one minute per kg birth weight, P = 0.03). Maximum oxygen uptake appeared to have a U-shaped association with birth weight (the smallest and largest children had the lowest uptake, P = 0.01), but this association was no longer significant after adjustment for parental BMI. Using the individual twin’s deviation from his own twin pair’s average birth weight, we found positive associations between birth weight and adolescent vertical jump (b = 3.49, P = 0.0007) and arm pull (b = 3.44, P = 0.02). Δ scores were calculated within the twin pairs as first born twin minus second born twin. Δ birth weight was associated with Δ vertical jump within MZ twin pairs only (b = 2.63, P = 0.009), which indicates importance of placental factors.

Conclusions

We found evidence for an association between adolescent physical performance (strength, balance and possibly peak oxygen uptake) and birth weight. The associations with vertical jump and arm pull were likely based on individual, more specifically placental (in the case of vertical jump) factors. Our results should be viewed as hypothesis-generating and need confirmation, but potentially support preventive strategies to optimize birth weight, for example via placental function, to target later fitness and health.  相似文献   

10.

Background

Birth weight and prematurity are important obstetric outcomes linked to lifelong health. We studied a large birth cohort to look for evidence of epigenetic involvement in birth outcomes.

Methods

We investigated the association between birth weight, length, placental weight and duration of gestation and four candidate variants in 1,236 mothers and 1,073 newborns; DNMT1 (rs2162560), DNMT3A (rs734693), DNMT3B (rs2424913) and DNMT3L (rs7354779). We measured methylation of LINE1 and the imprinted genes, PEG3, SNRPN, and IGF2, in cord blood.

Results

The minor DNMT3L allele in the baby was associated with higher birth weight (+54 95% CI 10,99 g; p = 0.016), birth length (+0.23 95% CI 0.04,0.42 cm; p = 0.017), placental weight, (+18 95% CI 3,33 g; p = 0.017), and reduced risk of being in the lowest birth weight decile (p = 0.018) or requiring neonatal care (p = 0.039). The DNMT3B minor allele in the mother was associated with an increased risk of prematurity (p = 0.001). Placental size was related to PEG3 (p<0.001) and IGF2 (p<0.001) methylation. Birth weight was related to LINE1 and IGF2 methylation but only at p = 0.052. The risk of requiring neonatal treatment was related to LINE1 (p = 0.010) and SNRPN (p = 0.001) methylation. PEG3 methylation was influenced by baby DNMT3A genotype (p = 0.012) and LINE1 by baby 3B genotype (p = 0.044). Maternal DNMT3L genotype was related to IGF2 methylation in the cord blood but this effect was only seen in carriers of the minor frequency allele (p = 0.050).

Conclusions

The results here suggest that epigenetic processes are linked birth outcome and health in early life. Our emerging understanding of the role of epigenetics in health and biological function across the lifecourse suggests that these early epigenetic events could have longer term implications.  相似文献   

11.

Background

Preterm birth, defined as birth occurring before 37 weeks gestation, is one of the most significant contributors to neonatal mortality and morbidity, with long-term adverse consequences for health, and cognitive outcome.

Objective

The aim of the present study was to identify risk factors of preterm birth (≤36+6 weeks gestation) among singleton births and to quantify the contribution of risk factors to socioeconomic disparities in preterm birth.

Methods

A retrospective population–based case-control study using data derived from the Finnish Medical Birth Register. A total population of singleton births in Finland from 1987−2010 (n = 1,390,742) was reviewed.

Results

Among all singleton births (n = 1,390,742), 4.6% (n = 63,340) were preterm (<37 weeks), of which 0.3% (n = 4,452) were classed as extremely preterm, 0.4% (n = 6,213) very preterm and 3.8% (n = 54,177) moderately preterm. Smoking alone explained up to 33% of the variation in extremely, very and moderately preterm birth incidence between high and the low socioeconomic status (SES) groups. Reproductive risk factors (placental abruption, placenta previa, major congenital anomaly, amniocentesis, chorionic villus biopsy, anemia, stillbirth, small for gestational age (SGA) and fetal sex) altogether explained 7.7−25.0% of the variation in preterm birth between SES groups.

Conclusions

Smoking explained about one third of the variation in preterm birth groups between SES groups whereas the contribution of reproductive risk factors including placental abruption, placenta previa, major congenital anomaly, amniocentesis, chorionic villus biopsy, anemia, stillbirth, SGA and fetal sex was up to one fourth.  相似文献   

12.

Background

A low birth weight has been extensively related to poor adult health outcomes. Birth weight can be seen as a proxy for environmental conditions during prenatal development. Identical twin pairs discordant for birth weight provide an extraordinary model for investigating the association between birth weight and adult life health while controlling for not only genetics but also postnatal rearing environment. We performed an epigenome-wide profiling on blood samples from 150 pairs of adult monozygotic twins discordant for birth weight to look for molecular evidence of epigenetic signatures in association with birth weight discordance.

Results

Our association analysis revealed no CpG site with genome-wide statistical significance (FDR < 0.05) for either qualitative (larger or smaller) or quantitative discordance in birth weight. Even with selected samples of extremely birth weight discordant twin pairs, no significant site was found except for 3 CpGs that displayed age-dependent intra-pair differential methylation with FDRs 0.014 (cg26856578, p = 3.42e-08), 0.0256 (cg15122603, p = 1.25e-07) and 0.0258 (cg16636641, p = 2.05e-07). Among the three sites, intra-pair differential methylation increased with age for cg26856578 but decreased with age for cg15122603 and cg16636641. There was no genome-wide statistical significance for sex-dependent effects on intra-pair differential methylation in either the whole samples or the extremely discordant twins.

Conclusions

Genome-wide DNA methylation profiling did not reveal epigenetic signatures of birth weight discordance although some sites displayed age-dependent intra-pair differential methylation in the extremely discordant twin pairs.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1062) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Perinatal morbidity rates are relatively high in the Netherlands, and significant inequalities in perinatal morbidity and mortality can be found across neighborhoods. In socioeconomically deprived areas, ‘Western’ women are particularly at risk for adverse birth outcomes. Almost all studies to date have explained the disparities in terms of individual determinants of birth outcomes. This study examines the influence of neighborhood contextual characteristics on birth weight (adjusted for gestational age) and preterm birth. We focused on the influence of neighborhood social capital – measured as informal socializing and social connections between neighbors – as well as ethnic (minority) density.

Methods

Data on birth weight and prematurity were obtained from the Perinatal Registration Netherlands 2000–2008 dataset, containing 97% of all pregnancies. Neighborhood-level measurements were obtained from three different sources, comprising both survey and registration data. We included 3.422 neighborhoods and 1.527.565 pregnancies for the birth weight analysis and 1.549.285 pregnancies for the premature birth analysis. Linear and logistic multilevel regression was performed to assess the associations of individual and neighborhood level variables with birth weight and preterm birth.

Results

We found modest but significant neighborhood effects on birth weight and preterm births. The effect of ethnic (minority) density was stronger than that of neighborhood social capital. Moreover, ethnic (minority) density was associated with higher birth weight for infants of non-Western ethnic minority women compared to Western women (15 grams; 95% CI: 12,4/17,5) as well as reduced risk for prematurity (OR 0.97; CI 0,95/0,99).

Conclusions

Our results indicate that neighborhood contexts are associated with birth weight and preterm birth in the Netherlands. Moreover, ethnic (minority) density seems to be a protective factor for non-Western ethnic minority women, but not for Western women. This helps explain the increased risk of Western women in deprived neighborhoods for adverse birth outcomes found in previous studies.  相似文献   

14.

Background

The origin of hadrosaurid dinosaurs is far from clear, mainly due to the paucity of their early Late Cretaceous close relatives. Compared to numerous Early Cretaceous basal hadrosauroids, which are mainly from Eastern Asia, only six early Late Cretaceous (pre-Campanian) basal hadrosauroids have been found: three from Asia and three from North America.

Methodology/Principal Findings

Here we describe a new hadrosauroid dinosaur, Yunganglong datongensis gen. et sp. nov., from the early Late Cretaceous Zhumapu Formation of Shanxi Province in northern China. The new taxon is represented by an associated but disarticulated partial adult skeleton including the caudodorsal part of the skull. Cladistic analysis and comparative studies show that Yunganglong represents one of the most basal Late Cretaceous hadrosauroids and is diagnosed by a unique combination of features in its skull and femur.

Conclusions/Significance

The discovery of Yunganglong adds another record of basal Hadrosauroidea in the early Late Cretaceous, and helps to elucidate the origin and evolution of Hadrosauridae.  相似文献   

15.

Background

Humans have reduced the abundance of many large marine vertebrates, including whales, large fish, and sharks, to only a small percentage of their pre-exploitation levels. Industrial fishing and whaling also tended to preferentially harvest the largest species and largest individuals within a population. We consider the consequences of removing these animals on the ocean''s ability to store carbon.

Methodology/Principal Findings

Because body size is critical to our arguments, our analysis focuses on populations of baleen whales. Using reconstructions of pre-whaling and modern abundances, we consider the impact of whaling on the amount of carbon stored in living whales and on the amount of carbon exported to the deep sea by sinking whale carcasses. Populations of large baleen whales now store 9.1×106 tons less carbon than before whaling. Some of the lost storage has been offset by increases in smaller competitors; however, due to the relative metabolic efficiency of larger organisms, a shift toward smaller animals could decrease the total community biomass by 30% or more. Because of their large size and few predators, whales and other large marine vertebrates can efficiently export carbon from the surface waters to the deep sea. We estimate that rebuilding whale populations would remove 1.6×105 tons of carbon each year through sinking whale carcasses.

Conclusions/Significance

Even though fish and whales are only a small portion of the ocean''s overall biomass, fishing and whaling have altered the ocean''s ability to store and sequester carbon. Although these changes are small relative to the total ocean carbon sink, rebuilding populations of fish and whales would be comparable to other carbon management schemes, including ocean iron fertilization.  相似文献   

16.

Background

IUGR increases the risk of type 2 diabetes mellitus (T2DM) in later life, due to reduced insulin sensitivity and impaired adaptation of insulin secretion. In IUGR rats, development of T2DM can be prevented by neonatal administration of the GLP-1 analogue exendin-4. We therefore investigated effects of neonatal exendin-4 administration on insulin action and β-cell mass and function in the IUGR neonate in the sheep, a species with a more developed pancreas at birth.

Methods

Twin IUGR lambs were injected s.c. daily with vehicle (IUGR+Veh, n = 8) or exendin-4 (1 nmol.kg-1, IUGR+Ex-4, n = 8), and singleton control lambs were injected with vehicle (CON, n = 7), from d 1 to 16 of age. Glucose-stimulated insulin secretion and insulin sensitivity were measured in vivo during treatment (d 12–14). Body composition, β-cell mass and in vitro insulin secretion of isolated pancreatic islets were measured at d 16.

Principal Findings

IUGR+Veh did not alter in vivo insulin secretion or insulin sensitivity or β-cell mass, but increased glucose-stimulated insulin secretion in vitro. Exendin-4 treatment of the IUGR lamb impaired glucose tolerance in vivo, reflecting reduced insulin sensitivity, and normalised glucose-stimulated insulin secretion in vitro. Exendin-4 also reduced neonatal growth and visceral fat accumulation in IUGR lambs, known risk factors for later T2DM.

Conclusions

Neonatal exendin-4 induces changes in IUGR lambs that might improve later insulin action. Whether these effects of exendin-4 lead to improved insulin action in adult life after IUGR in the sheep, as in the PR rat, requires further investigation.  相似文献   

17.

Background

Molecular clock estimates of crown strepsirhine origins generally advocate an ancient antiquity for Malagasy lemuriforms and Afro-Asian lorisiforms, near the onset of the Tertiary but most often extending back to the Late Cretaceous. Despite their inferred early origin, the subsequent evolutionary histories of both groups (except for the Malagasy aye-aye lineage) exhibit a vacuum of lineage diversification during most part of the Eocene, followed by a relative acceleration in diversification from the late Middle Eocene. This early evolutionary stasis was tentatively explained by the possibility of unrecorded lineage extinctions during the early Tertiary. However, this prevailing molecular view regarding the ancient origin and early diversification of crown strepsirhines must be viewed with skepticism due to the new but still scarce paleontological evidence gathered in recent years.

Methodological/Principal Findings

Here, we describe new fossils attributable to Djebelemur martinezi, a≈50 Ma primate from Tunisia (Djebel Chambi). This taxon was originally interpreted as a cercamoniine adapiform based on limited information from its lower dentition. The new fossils provide anatomical evidence demonstrating that Djebelemur was not an adapiform but clearly a distant relative of lemurs, lorises and galagos. Cranial, dental and postcranial remains indicate that this diminutive primate was likely nocturnal, predatory (primarily insectivorous), and engaged in a form of generalized arboreal quadrupedalism with frequent horizontal leaping. Djebelemur did not have an anterior lower dentition as specialized as that characterizing most crown strepsirhines (i.e., tooth-comb), but it clearly exhibited a transformed antemolar pattern representing an early stage of a crown strepsirhine-like adaptation (“pre-tooth-comb”).

Conclusions/Significance

These new fossil data suggest that the differentiation of the tooth-comb must postdate the djebelemurid divergence, a view which hence constrains the timing of crown strepsirhine origins to the Middle Eocene, and then precludes the existence of unrecorded lineage extinctions of tooth-combed primates during the earliest Tertiary.  相似文献   

18.
19.

Context

Pubertal timing is under strong genetic control and its early onset associates with several adverse health outcomes in adulthood, including obesity, type 2 diabetes and cardiovascular disease. Recent data indicate strong association between pubertal timing and genetic variants near LIN28B, but it is currently unknown whether the gene contributes to the association between puberty and adult disease.

Objective

To elucidate the putative genetic link between early puberty and adult disease risk, we examined the association of two genetic variants near LIN28B with adult body size and metabolic profiles in randomly ascertained adult Finnish males and females.

Methods

Two single nucleotide polymorphisms (SNPs), rs7759938, the lead SNP previously associated with pubertal timing and height, and rs314279, previously also associated with menarcheal age but only partially correlated with rs7759938 (r2 = 0.30), were genotyped in 26,636 study subjects participating in the Finnish population survey FINRISK. Marker associations with adult height, weight, body mass index (BMI), hip and waist circumference, blood glucose, serum insulin and lipid/lipoprotein levels were determined by linear regression analyses.

Results

Both rs7759938 and rs314279 associated with adult height in both sexes (p = 2×10−6 and p = 0.001). Furthermore, rs314279 associated with increased weight in females (p = 0.001). Conditioned analyses including both SNPs in the regression model verified that rs314279 independently associates with adult female weight, BMI and hip circumference (p<0.005). Neither SNP associated with glucose, lipid, or lipoprotein levels.

Conclusion

Genetic variants near the puberty-associated gene LIN28B associate with adult weight and body shape in females, suggesting that the gene may tag molecular pathways influencing adult adiposity-related traits.  相似文献   

20.

Background

Premature birth is the major cause of perinatal mortality and morbidity in both high- and low-income countries. The causes of preterm labour are multiple but infection is important. We have previously described an unusually high incidence of preterm birth (20%) in an ultrasound-dated, rural, pregnant population in Southern Malawi with high burdens of infective morbidity. We have now studied the impact of routine prophylaxis with azithromycin as directly observed, single-dose therapy at two gestational windows to try to decrease the incidence of preterm birth.

Methods and Findings

We randomized 2,297 pregnant women attending three rural and one peri-urban health centres in Southern Malawi to a placebo-controlled trial of oral azithromycin (1 g) given at 16–24 and 28–32 wk gestation. Gestational age was determined by ultrasound before 24 wk. Women and their infants were followed up until 6 wk post delivery. The primary outcome was incidence of preterm delivery, defined as <37 wk. Secondary outcomes were mean gestational age at delivery, perinatal mortality, birthweight, maternal malaria, and anaemia. Analysis was by intention to treat. There were no significant differences in outcome between the azithromycin group (n = 1,096) and the placebo group (n = 1,087) in respect of preterm birth (16.8% versus 17.4%), odds ratio (OR) 0.96, 95% confidence interval (0.76–1.21); mean gestational age at delivery (38.5 versus 38.4 weeks), mean difference 0.16 (−0.08 to 0.40); mean birthweight (3.03 versus 2.99 kg), mean difference 0.04 (−0.005 to 0.08); perinatal deaths (4.3% versus 5.0%), OR 0.85 (0.53–1.38); or maternal malarial parasitaemia (11.5% versus 10.1%), OR 1.11 (0.84–1.49) and anaemia (44.1% versus 41.3%) at 28–32 weeks, OR 1.07 (0.88–1.30). Meta-analysis of the primary outcome results with seven other studies of routine antibiotic prophylaxis in pregnancy (>6,200 pregnancies) shows no effect on preterm birth (relative risk 1.02, 95% confidence interval 0.86–1.22).

Conclusions

This study provides no support for the use of antibiotics as routine prophylaxis to prevent preterm birth in high risk populations; prevention of preterm birth requires alternative strategies.

Trial registration

Current Controlled Trials ISRCTN84023116 Please see later in the article for the Editors'' Summary  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号