首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparin is a glycosaminoglycan (GAG) that is extracted primarily from porcine intestinal tissues and is widely used as a clinical anticoagulant. It is biosynthesized as a proteoglycan and stored exclusively in mast cells and is partially degraded to peptidoglycan and GAG on immunologically activated mast cell degranulation. In contrast, the structurally related heparan sulfate, is the polysaccharide portion of a ubiquitous proteoglycan, localized on cell surface and in the extracellular matrix of all animal tissues. Heparin and heparan sulfate are made in the Golgi through a similar biosynthetic pathway. The current study was undertaken in a search for alternative, non-mammalian, sources of anticoagulant heparin. The heparin/heparan sulfate family of GAGs, prepared and purified from turkey intestine, were assayed for anticoagulant activity and structurally characterized. The resulting GAGs displayed a very low anticoagulant activity when compared to those obtained from porcine intestine using an identical procedure. Structural characterization studies clearly demonstrate that heparan sulfate is the major GAG in the turkey intestine. This observation is rationalized based on differences in the mammalian and avian coagulation and immune systems.  相似文献   

2.
Glycosaminoglycans (GAGs) are linear polysaccharides, consisting of repeated disaccharide units, attached to core proteins in all multicellular organisms. Chondroitin sulfate (CS) and dermatan sulfate (DS) constitute a subgroup of sulfated GAGs for which the degree of sulfation varies between species and tissues. One major goal in GAG characterization is to correlate structure to function. A common approach is to exhaustively degrade the GAG chains and thereafter determine the amount of component disaccharide units. In large-scale studies, there is a need for high-throughput screening methods since existing methods are either very time- or samples consuming. Here, we present a new strategy applying MALDI-TOF MS in positive ion mode for semi-qualitative and quantitative analysis of CS/DS derived disaccharide units. Only a few picomoles of sample are required per analysis and 10 samples can be analyzed in 25 min, which makes this approach an attractive alternative to many established assay methods. The total CS/DS concentration in 19 samples derived from Caenorhabditis elegans and mammalian tissues and cells was determined. The obtained results were well in accordance with concentrations determined by a standard liquid chromatography-based method, demonstrating the applicability of the method for samples from various biological matrices containing CS/DS of different sulfation degrees.  相似文献   

3.
Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886–27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17–65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications.  相似文献   

4.
5.
As C-Xyloside has been suggested to be an initiator of glycosaminoglycan (GAG) synthesis, and GAGs such as Dermatan sulfate (DS) are potent enhancers of fibroblast growth factor (FGF)--10 action, we investigated if a C-Xylopyranoside derivative, (C-β-D-xylopyranoside-2-hydroxy-propane, C-Xyloside), could promote DS production by cultured normal human keratinocytes, how this occurs and if C-Xyloside could also stimulate FGF-dependent cell migration and proliferation. C-Xyloside-treated keratinocytes greatly increased secretion of total sulfated GAGs. Majority of the induced GAG was chondroitin sulfate/dermatan sulfate (CS/DS) of which the major secreted GAG was DS. Cells lacking xylosyltransferase enzymatic activity demonstrated that C-Xyloside was able to stimulate GAG synthesis without addition to core proteins. Consistent with the observed increase in DS, keratinocytes treated with C-Xyloside showed enhanced migration in response to FGF-10 and secreted into their culture media GAGs that promoted FGF-10-dependent cellular proliferation. These results indicate that C-Xyloside may enhance epithelial repair by serving as an initiator of DS synthesis.  相似文献   

6.
《Biotechnology advances》2017,35(6):711-725
Glycosaminoglycans (GAGs) in marine animals are different to those of terrestrial organisms, mainly in terms of molecular weight and sulfation. The therapeutic properties of GAGs are related to their ability to interact with proteins, which is very much influenced by sulfation position and patterns. Since currently GAGs cannot be chemically synthesized, they are sourced from natural products, with high intra- but also inter-species variability, in terms of chain length, disaccharide composition and sulfation pattern. Consequently, sulfated GAGs are the most interesting molecules in the marine environment and constitute the focus of the present review. In particular, chondroitin sulfate (CS) appears as the most promising compound. CS-E chains [GlcA-GalNAc(4S,6S)] extracted from squid possess antiviral and anti-metastatic activities and seem to impart signalling properties and improve the mechanical performance of cartilage engineering constructs; Squid CS-E and octopus CS-K [GlcA(3S)-GalNAc(4S)], dermatan sulfate (DS) from sea squirts [-iK units, IdoA(3S)-GalNAc(4S)] and sea urchins [-iE units, IdoA-GalNAc(4S,6S)] and hybrids CS/DS from sharks (-B/iB [GlcA/IdoA(2S)-GalNAc(4S)], -D/iD [GlcA/IdoA(2S)-GalNAc(6S)] and –E/iE units [GlcA/IdoA-GalNAc(4S,6S)]) promote neurite outgrowth and could be valuable materials for nerve regeneration. Also displaying antiviral and anti-metastatic properties, a rare CS with fucosylated branches isolated from sea cucumbers is an anticoagulant and anti-inflammatory agent. In this same line, marine heparin extracted from shrimp and sea squirt has proven anti-inflammatory properties, with the added advantage of decreased risk of bleeding because of its low anticoagulant activity.  相似文献   

7.
Shaya D  Hahn BS  Park NY  Sim JS  Kim YS  Cygler M 《Biochemistry》2008,47(25):6650-6661
Chondroitin sulfate ABC lyase (ChonABC) is an enzyme with broad specificity that depolymerizes via beta-elimination chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans (GAGs). ChonABC eliminates the glycosidic bond of its GAG substrates on the nonreducing end of their uronic acid component. This lyase possesses the unusual ability to act on both epimers of uronic acid, either glucuronic acid present in CS or iduronic acid in DS. Recently, we cloned, purified, and determined the three-dimensional structure of a broad specificity chondroitin sulfate ABC lyase from Bacteroides thetaiotaomicron (BactnABC) and identified two sets of catalytic residues. Here, we report the detailed biochemical characterization of BactnABC together with extensive site-directed mutagenesis resulting in characterization of the previously identified active site residues. BactnABC's catalysis is stimulated by Ca(2+) and Mg(2+) cations, particularly against DS. It displays extremely low activity toward hyaluronic acid and no activity toward heparin/heparan sulfate. Degradation of CS and DS by BactnABC yields only disaccharide products, pointing to an exolytic mode of action. The kinetic evaluations of the active-site mutants indicate that CS and DS substrates bind in the same active site, which is accompanied by a conformational change bringing the two sets of active site residues together. Conservative replacements of key residues suggest that His345 plays the role of a general base, initiating the degradation by abstracting the C5 bound proton from DS substrates, whereas either Tyr461 or His454 perform the equivalent role for CS substrates. Tyr461 is proposed, as well, to serve as general acid, completing the degradation of both CS and DS by protonating the leaving group.  相似文献   

8.
The interactions between glycosaminoglycans (GAGs), important components of the extracellular matrix, and proteins such as growth factors and chemokines play critical roles in cellular regulation processes. Therefore, the design of GAG derivatives for the development of innovative materials with bio-like properties in terms of their interaction with regulatory proteins is of great interest for tissue engineering and regenerative medicine. Previous work on the chemokine interleukin-8 (IL-8) has focused on its interaction with heparin and heparan sulfate, which regulate chemokine function. However, the extracellular matrix contains other GAGs, such as hyaluronic acid (HA), dermatan sulfate (DS) and chondroitin sulfate (CS), which have so far not been characterized in terms of their distinct molecular recognition properties towards IL-8 in relation to their length and sulfation patterns. NMR and molecular modeling have been in great part the methods of choice to study the structural and recognition properties of GAGs and their protein complexes. However, separately these methods have challenges to cope with the high degree of similarity and flexibility that GAGs exhibit. In this work, we combine fluorescence spectroscopy, NMR experiments, docking and molecular dynamics simulations to study the configurational and recognition properties of IL-8 towards a series of HA and CS derivatives and DS. We analyze the effects of GAG length and sulfation patterns in binding strength and specificity, and the influence of GAG binding on IL-8 dimer formation. Our results highlight the importance of combining experimental and theoretical approaches to obtain a better understanding of the molecular recognition properties of GAG-protein systems.  相似文献   

9.
Binding of calcium to glycosaminoglycans: an equilibrium dialysis study   总被引:2,自引:0,他引:2  
Binding of calcium to the glycosaminoglycans (GAGs) heparin, chondroitin sulfate (CS), keratan sulfate (KS), and hyaluronic acid (HA) has been studied by equilibrium dialysis using exclusion of sulfate to correct for Gibbs-Donnan effects. Calcium binding occurs to all of these GAG species, suggesting that both sulfate and carboxylate groups are involved in cation binding. For all GAGs, the binding stoichiometry is consistent with a calcium-binding "site" consisting of two anionic groups. The order of calcium binding affinities is heparin greater than CS greater than KS greater than HA, and is critically dependent upon charge density; heparin binds calcium with 10-fold higher affinity than CS. The mode of calcium binding to GAGs is consistent with a recently proposed mechanism of growth plate calcification which states that cartilage proteoglycan functions as a reservoir of calcium for calcification of epiphyseal cartilage.  相似文献   

10.
Heparin is a commonly implemented anticoagulant used to treat critically ill patients. Recently, a number of commercial lots of heparin products were found to be contaminated with an oversulfated chondroitin sulfate (OSCS) derivative that could elicit a hypotensive response in pigs following a single high-dose infusion. Using both contaminated heparin products and the synthetically produced derivative, we showed that the OSCS produces dose-dependent hypotension in pigs. The no observed effect level (NOEL) for this contaminant appears to be approximately 1 mg/kg, corresponding to a contamination level of approximately 3%. We also demonstrated that OSCS can be identified in heparin products using a simple, inexpensive, commercially available heparin enzyme immunoassay (EIA) kit that has a limit of detection of approximately 0.1%, well below the NOEL. This kit may provide a useful method to test heparin products for contamination with oversulfated GAG derivatives.  相似文献   

11.
Proteoglycans (PGs) from cornea and their relevant glycosaminoglycan (GAG) chains, dermatan sulphate (DS) and keratin sulphate (KS), were examined by electron microscopy following rotary shadowing, and compared with hyaluronan (HA), chondroitin sulphate (CS), alginate, heparin, heparan sulphate (HS) and methyl cellulose. Corneal DS PG had the tadpole shape previously seen in scleral DS FG, and the images from corneal KS PG could be interpreted similarly, although the GAG (KS) chains were very much fainter than those of DS PG GAG. Isolated GAG (KS, DS, CS, HA, etc.) examined in the same way showed images that decreased very significantly in clarity and contrast, in the sequence HA greater than DS greater than CS greater than KS. The presence of secondary and tertiary structures in the GAGs may be at least partly responsible for these variations. HA appeared to be double stranded, and DS frequently self-aggregated, KS and HS showed tendencies to coil into globular shapes. It is concluded that it is unsafe to assume the absence of GAGs, based on these techniques, and quantitative measurements of length may be subject to error. The results on corneal DS PG confirm and extend the hypothesis that PGs specifically associated with collagen fibrils are tadpole shaped.  相似文献   

12.
Summary The glycosaminoglycan (GAG) content of rabbit skin, oral mucosa, and cultured [3H]-glucosamine-labeled dermal and submucosal fibroblasts was compared. Skin contained predominantly dermatan sulfate (DS) and a small amount of hyaluronic acid (HA), whereas mucosa contained primarily keratan sulfate (KS) and smaller quantities of HA and DS. Culture medium from dermal and submucosal fibroblasts contained GAGs co-electrophoresing with DS, HA, and chondroitin sulfate (CS), although the relative proportions of these GAG differed. CS isolated from dermal and mucosal fibroblast culture medium co-electrophoresed with chondroitin 4-sulfate (C4-S) on cellulose acetate, whereas dermal medium CS was resistant to digestion by chondroitinase ABC, and mucosal medium CS was chondroitinase ABC-susceptible. The pericellular matrix of dermal fibroblasts contained primarily DS and C4-S/C6-S, as confirmed by chondroitinase ABC digestion; the corresponding fraction of mucosal fibroblasts contained HS and a GAG co-electrophoresing with a C6-S standard, yet resistant to digestion by chondroitinase ABC. Thus the GAG content of dermal and mucosal fibroblasts differed both qualitatively in terms of the type of GAG secreted into the culture medium and pericellular matrix, and quantitatively, in terms of the relative proportions of these GAGs in both fractions. These differences support the concept of distinctive fibroblastic subpopulations in skin and mucosal tissue, inasmuch as the cells were subjected to identical culturing conditions. This work was supported by research grant 15878 (C.N.B.) from the Shriners Hospitals for Crippled Children and DE 07803 (C.N.B.) from the National Institute of Dental Research, National Institutes of Health, Bethesda, MD.  相似文献   

13.
In anchorage-dependent (AD) cultures of the outer cell population (OCP) from neonatal rat calvaria, transforming growth factor-1 (TGF-) specifically upregulated the synthesis of chondroitin sulfate (CS) proteoglycan (PG) and uncoupled the inhibitory effect of increasing cell density on CS PG synthesis (reference #30). Utilizing the same cell population, we have further examined the possibility that glycosaminoglycans (GAG) known to be synthesized and secreted by bone cells might exert feedback effects on GAG synthesis and/or its stimulation by TGF-. Although addition of TGF- alone stimulated net synthesis of HA and CS in both AD and anchorage-independent (AI) cultures, significant alterations of basal and TGF--stimulated GAG synthesis by exogenous GAGs were observed only in AI cultures. In AI cultures exogenously added hyaluronic acid (HA) markedly enhanced the basal synthesis of HA and CS while heparin (H) suppressed the basal synthesis of HA, CS as well as dermatan sulfate (DS). Also, the addition of HA markedly potentiated the stimulation by TGF- of HA and CS synthesis as did heparan sulfate (HS) for CS and DS synthesis. H suppressed the stimulation of the synthesis of HA, CS and DS by TGF-. Overall, our results indicate specific effects of individual GAGs on basal and TGF--stimulated GAG synthesis in OCP cultures. We suggest that some of the GAGs in the OCP microenvironment (which with the exception of HA are covalently linked to protein cores of secreted PGs), acting in concert with TGF-, may serve as an amplification system for upregulating GAG synthesis in the rapidly growing neonatal calvarium.  相似文献   

14.
Heparin sodium and heparin calcium, which are widely used as anti-coagulants, are known to potentially contain the natural impurity dermatan sulfate (DS). Recently serious adverse events occurred in patients receiving heparin sodium in the US, and a contaminant oversulfated chondroitin sulfate (OSCS) was found to be a cause of the events. To ensure the quality and safety of pharmaceutical heparins, there is need of a physicochemical identification test that can discriminate heparin from the heparin-related substances as well as a sensitive purity test for OSCS. Recently, HPLC with a strong-anion exchange column was proposed as the methods for identifying heparin and determination of OSCS in heparin sodium. Although this method is convenient and easy to perform, the only column suitable for this purpose is the Dionex IonPac AS11-HC column. In this study, we developed alternative identification test and test for OSCS in both heparin sodium and heparin calcium using a weak anion-exchange column. The identification test allowed for separation of heparin from the impurity DS and contaminant OSCS in a shorter time. The purity test provided enough sensitivity, specificity, linearity, recovery and repeatability for OSCS. We believe that our methods will be useful for quality control of pharmaceutical heparins.  相似文献   

15.
Glycosaminoglycans of Rat Cerebellum: II. A Developmental Study   总被引:2,自引:2,他引:0  
Total and individual glycosaminoglycans (GAGs) were determined in rat cerebellum in tissue explants at various postnatal ages. The major constituents of GAGs were chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). Dermatan sulfate (DS) and keratan sulfate (KS) could not be detected and therefore each amounts to less than 5% of all GAGs at all ages studied. HA was the prominent GAG during postnatal development and only a minor constituent at adult ages, whereas CS was the predominant GAG in adulthood. HS remained relatively constant throughout development. The incorporation of [3H]glucosamine into individual GAGs was highest for HS at postnatal day 6, whereas HA showed intermediate and CS the lowest levels of incorporation during the first postnatal week. All major GAGs showed the lowest incorporation values at adult ages.  相似文献   

16.
Recent in vitro evidence shows that glycosaminoglycans (GAGs) and proteoglycans (PGs) in bone matrix may functionally be involved in the tissue-level toughness of bone. In this study, we showed the effect of biglycan (Bgn), a small leucine-rich proteoglycan enriched in extracellular matrix of bone and the associated GAG subtype, chondroitin sulfate (CS), on the toughness of bone in vivo, using wild-type (WT) and Bgn deficient mice. The amount of total GAGs and CS in the mineralized compartment of Bgn KO mouse bone matrix decreased significantly, associated with the reduction of the toughness of bone, in comparison with those of WT mice. However, such differences between WT and Bgn KO mice diminished once the bound water was removed from bone matrix. In addition, CS was identified as the major subtype in bone matrix. We then supplemented CS to both WT and Bgn KO mice to test whether supplemental GAGs could improve the tissue-level toughness of bone. After intradermal administration of CS, the toughness of WT bone was greatly improved, with the GAGs and bound water amount in the bone matrix increased, while such improvement was not observed in Bgn KO mice or with supplementation of dermatan sulfate (DS). Moreover, CS supplemented WT mice exhibited higher bone mineral density and reduced osteoclastogenesis. Interestingly, Bgn KO bone did not show such differences irrespective of the intradermal administration of CS. In summary, the results of this study suggest that Bgn and CS in bone matrix play a pivotal role in imparting the toughness to bone most likely via retaining bound water in bone matrix. Moreover, supplementation of CS improves the toughness of bone in mouse models.  相似文献   

17.
The amount and the types of glycosaminoglycans (GAGs) present in human pancreatic carcinoma were examined and compared with those in normal pancreas. Human pancreatic carcinoma contained increased levels (4-fold) of total GAGs. Particularly, this carcinoma is characterized by a 12-fold increase of hyaluronan (HA) and a 22-fold increase in chondroitin sulfate (CS) content. CS in pancreatic carcinoma exhibited an altered disaccharide composition which is associated with marked increase of non-sulfated and 6-sulfated disaccharides. Dermatan sulfate (DS) was also increased (1.5-fold) in carcinoma, whereas heparan sulfate (HS), the major GAG of normal pancreas, becomes the minor GAG in pancreatic carcinoma without significant changes in the content and in molecular size. In all cases, the galactosaminoglycans (GalGAGs, i.e. CS and DS) derived from pancreatic carcinomas were of lower molecular size compared to those from normal pancreas. The results in this study indicate, for the first time, that human pancreatic carcinoma is characterized by highly increased amounts of HA and of a structurally altered CS.  相似文献   

18.
Sulfated polysaccharides, like the glycosaminoglycan (GAG) heparin, are known to exhibit anticoagulant properties when certain structural features are present. The structural requirement for this action is well-established for heparin, in which a pentasaccharide motif plays a key role for keeping the high-affinity interaction to antithrombin. Over the last years of this glycomic era, several novel anticoagulant sulfated glycans have been described. Those from marine sources have been awakening special attention mainly because of their impressive anticoagulant effects together with structural uniqueness. The commonest of these glycans are the sulfated fucans (SFs), the sulfated galactans (SGs), and the marine invertebrate GAGs like the fucosylated chondroitin sulfate and ascidian dermatan sulfate. Since these marine sulfated glycans do not bear within their polymeric chains the specific pentasaccharide motif of heparin, other structural features must be necessary to trigger the anticoagulant effect. The objective of this report is to present the anticoagulant motifs of the marine SFs, SGs and GAGs.  相似文献   

19.
In the central nervous system, chondroitin/dermatan sulfate (CS/DS) glycosaminoglycans (GAGs) modulate neurotrophic effects and glial cell maturation during brain development. Previous reports revealed that GAG composition could be responsible for CS/DS activities in brain. In this work, for the structural characterization of DS- and CS-rich domains in hybrid GAG chains extracted from neural tissue, we have developed an advanced approach based on high-resolution mass spectrometry (MS) using nanoelectrospray ionization Orbitrap in the negative ion mode. Our high-resolution MS and multistage MS approach was developed and applied to hexasaccharides obtained from 4- and 14-week-old mouse brains by GAG digestion with chondroitin B and in parallel with AC I lyase. The expression of DS- and CS-rich domains in the two tissues was assessed comparatively. The analyses indicated an age-related structural variability of the CS/DS motifs. The older brain was found to contain more structures and a higher sulfation of DS-rich regions, whereas the younger brain was found to be characterized by a higher sulfation of CS-rich regions. By multistage MS using collision-induced dissociation, we also demonstrated the incidence in mouse brain of an atypical [4,5-Δ-GlcAGalNAc(IdoAGalNAc)2], presenting a bisulfated CS disaccharide formed by 3-O-sulfate-4,5-Δ-GlcA and 6-O-sulfate-GalNAc moieties.  相似文献   

20.
We have investigated the changes in glycosaminoglycan (GAG) composition between cultured fibroblasts derived from 8- and 16-day chick embryos. GAG composition has been studied after [3H]glucosamine and [35S]sulfate labeling. Both the 8- and 16-day embryo fibroblasts were found to contain hyaluronic acid (HA), dermatan sulfate (DS), heparan sulfate (HS) and chondroitin sulfates (CS), the latter being the major component in 8- and 16-day cells. These four GAGs were quantified after their separation using cellulose acetate electrophoresis. The amounts of HA and CS were respectively shown to increase 2-fold and 4-fold between the 8th and 16th day of development, whereas the amounts of HS and DS resp. diminished 2.5-fold and 1.2-fold. These results show that the relative proportions of the different GAGs alter during embryo development. The fibroblasts from 8-day-old embryos detached more rapidly from the culture dishes than the cells from 16-day-old embryos when treated with trypsin. However, this difference was not directly related to the different GAG content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号