首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
With an aim to study the mechanism of adaptation to acute hypoxic periods by hypoxia-tolerant catfish, Clarias batrachus, the mass-specific metabolic rate (VO2) along with its hematological parameters, metabolic response and antioxidant enzyme activities were studied. During progressive hypoxia, C. batrachus was found to be an oxyconformer and showed a steady decline in its aquatic oxygen consumption rate. When C. batrachus was exposed for different periods at experimental hypoxia level (0.98?±?0.1 mg/L, DO), hemoglobin and hematocrit concentrations were increased, along with decrease in mean cellular hemoglobin concentration, which reflected a physiological adaptation to enhance oxygen transport capacity. Significant increase in serum glucose and lactate concentration as well as lactate dehydrogenase activity was observed. Antioxidant enzymes were found to operate independently of one another, while total glutathione concentration was unaffected in any of the tissues across treatments. These observations suggested that hypoxia resulted in the development of oxidative stress and C. batrachus was able to respond through increase in the oxygen carrying capacity, metabolic depression and efficient antioxidant defense system to survive periods of acute hypoxia.  相似文献   

3.
4.
5.
Climate warming has been increasing ocean water temperature and decreasing oxygen concentrations, exposing aquatic organisms to environmental stress conditions. The shrimp Litopenaeus vannamei manages to survive these harsh environmental conditions by enhancing their antioxidant defenses, among other strategies. In this study, we report the mitochondrial manganese superoxide dismutase (mMnSOD) nucleotide and deduced amino acid sequences and its gene expression in L. vannamei tissues. The deduced protein has 220 amino acids with a signal peptide of 20 amino acids. Expression of mMnSOD was analyzed in hepatopancreas, gills and muscle, where gills had highest expression in normoxic conditions. In addition, shrimp were subjected to high temperature, hypoxia and reoxygenation to analyze the effect on the expression of mMnSOD and SOD activity in mitochondria. High temperature and hypoxia showed a synergistic effect in the up-regulation on expression of mMnSOD in gills and hepatopancreas. Moreover, induction in SOD activity was found in the mitochondrial fraction from gills of normoxia at high temperature, probably due to an overproduction of reactive oxygen species caused by an elevated metabolic rate due to the stress temperature. These results suggest that the combined stress conditions of hypoxia and high temperature trigger molecularly the antioxidant response in L. vannamei in a higher degree than only one stressor.  相似文献   

6.
The systemic response to decreasing oxygen levels is hypoxic vasodilation. While this mechanism has been known for more than a century, the underlying cellular events have remained incompletely understood. Nitrite signaling is critically involved in vessel relaxation under hypoxia. This can be attributed to the presence of myoglobin in the vessel wall together with other potential nitrite reductases, which generate nitric oxide, one of the most potent vasodilatory signaling molecules. Questions remain relating to the precise concentration of nitrite and the exact dose-response relations between nitrite and myoglobin under hypoxia. It is furthermore unclear whether regulatory mechanisms exist which balance this interaction. Nitrite tissue levels were similar across all species investigated. We then investigated the exact fractional myoglobin desaturation in an ex vivo approach when gassing with 1% oxygen. Within a short time frame myoglobin desaturated to 58±12%. Given that myoglobin significantly contributes to nitrite reduction under hypoxia, dose-response experiments using physiological to pharmacological nitrite concentrations were conducted. Along all concentrations, abrogation of myoglobin in mice impaired vasodilation. As reactive oxygen species may counteract the vasodilatory response, we used superoxide dismutase and its mimic tempol as well as catalase and ebselen to reduce the levels of reactive oxygen species during hypoxic vasodilation. Incubation of tempol in conjunction with catalase alone and catalase/ebselen increased the vasodilatory response to nitrite. Our study shows that modest hypoxia leads to a significant nitrite-dependent vessel relaxation. This requires the presence of vascular myoglobin for both physiological and pharmacological nitrite levels. Reactive oxygen species, in turn, modulate this vasodilation response.  相似文献   

7.
SENP1 (SUMO-specific protease 1) has been shown to be essential for the stability and activity of hypoxia-inducible factor 1 (HIF-1α) under hypoxia conditions. However, it is unknown how SENP1 activation and hypoxia signaling are coordinated in the cellular response to hypoxia. Here, we report the essential role of SENP1 in endothelial cells as a positive regulator of hypoxia-driven VEGF production and angiogenesis. SENP1 expression is increased in endothelial cells following exposure to hypoxia. Silencing of HIF-1α blocks SENP1 expression in cell response to hypoxia. Mutation of the hypoxia response element (HRE) on the Senp1 promoter abolishes its transactivation in response to hypoxia. Moreover, silencing of SENP1 expression decreases VEGF production and abrogates the angiogenic functions of endothelial cell. We also find that the elongated endothelial cells in embryonic brain section and vascular endothelial cells in embryonic renal glomeruli in Senp1−/− mice are markedly reduced than those in wild-type. Thus, these results show that hypoxia implies a positive feedback loop mediated by SENP1. This feedback loop is important in VEGF production, which is essential for angiogenesis in endothelial cells.  相似文献   

8.
We evaluated the effects of high-altitude hypoxic stress in the murine model. For this purpose, 36 CR-mice in group A were maintained at the altitude of 3,820?m for hypoxia-induced factor (HIF)-1?? expression analysis by immunohistochemistry. The 36 Wistar rats in group B were maintained in low-pressure (400?C420?kPa) oxygen chamber, and the effects of hypoxia on myocardial mitochondria were studied. In the 36 CR-mice of group C, plasma vascular endothelial growth factor (VEGF) levels were determined using strept?Cavidin?Cbiotin complex/diaminobenzidine method after exposure to different altitudes/O2-concentrations. The data show that in experimental group A1, endothelin (ET)-1?? concentrations gradually increased whereas HIF-1?? expression in myocardial cells was higher (P?<?0.01) than in control group A2. In rats of group B, the myocardial mitochondria numbers were reduced during the initial phase of acute stress response to hypoxia and cellular injury but, later, mitochondrial numbers were restored to normal values. In mice of experimental group C1, plasma VEGF concentrations increased under hypoxia, which were significantly higher (P?<?0.01) than those of control group C2. We, therefore, concluded that high-altitude hypoxia: (i) induced HIF-1?? expression; (ii) prompted adaptation/acclimatization after initial stress and cellular injury; and (iii) enhanced VEGF expression in murine.  相似文献   

9.
10.
Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone.Key words: electrical signals, hypoxia signaling, Persea americana, root hypoxia, stomatal conductance  相似文献   

11.
Hypoxia is a hallmark of solid tumors including glioblastoma (GBM). Its synergism with Notch signaling promotes progression in different cancers. However, Notch signaling exhibits pleiotropic roles and the existing literature lacks a comprehensive understanding of its perturbations under hypoxia in GBM with respect to all components of the pathway. We identified the key molecular cluster(s) characteristic of the Notch pathway response in hypoxic GBM tumors and gliomaspheres. Expression of Notch and hypoxia genes was evaluated in primary human GBM tissues by q-PCR. Clustering and statistical analyses were applied to identify the combination of hypoxia markers correlated with upregulated Notch pathway components. We found well-segregated tumor—clusters representing high and low HIF-1α/PGK1-expressors which accounted for differential expression of Notch signaling genes. In combination, a five-hypoxia marker set (HIF-1α/PGK1/VEGF/CA9/OPN) was determined as the best predictor for induction of Notch1/Dll1/Hes1/Hes6/Hey1/Hey2. Similar Notch-axis genes were activated in gliomaspheres, but not monolayer cultures, under moderate/severe hypoxia (2%/0.2% O2). Preliminary evidence suggested inverse correlation between patient survival and increased expression of constituents of the hypoxia-Notch gene signature. Together, our findings delineated the Notch-axis maximally associated with hypoxia in resected GBM, which might be prognostically relevant. Its upregulation in hypoxia-exposed gliomaspheres signify them as a better in-vitro model for studying hypoxia-Notch interactions than monolayer cultures.  相似文献   

12.
13.
14.
Hypoxia represents a major physiological challenge for prawn culture, and the hepatopancreas plays an important role in these processes. Here, we applied high-throughput sequencing technology to detect the gene expression profile of the hepatopancreas in Macrobrachium nipponense in response to hypoxia for 3 h and hypoxia for 24 h. Gene expression profiling identified 1925 genes that were significantly up- or down-regulated by dissolved oxygen availability. Functional categorization of the differentially expressed genes revealed that oxygen transport, electron transport chain, reactive oxygen species generation/scavenging, and immune response were the differentially regulated processes occurring during environmental hypoxia. Finally, quantitative real-time polymerase chain reaction using six genes independently verified the tag-mapped results. Immunohistochemistry analysis revealed, for the first time, hemocyanin protein expression as significant hypoxia-specific signature in prawns, which opens the way for in depth molecular studies of hypoxia exposure. The analysis of changes in hepatic gene expression in oriental river prawn provides a preliminary basis for a better understanding of the molecular response to hypoxia exposures.  相似文献   

15.
16.
Oxygen deprivation is accompanied by the coordinated expression of numerous hypoxia-responsive genes, many of which are controlled by hypoxia-inducible factor-1 (HIF-1). However, the cellular response to hypoxia is not likely to be mediated by HIF-1 alone, and little is known about HIF-1-independent hypoxia responses. To better establish the molecular mechanisms of HIF-1-independent hypoxia responses, we sought to characterize the molecular basis of the hypoxia response of the hsp-16.1 gene in the nematode Caenorhabditis elegans; this gene has been shown to be induced by hypoxia independently of hif-1. Using affinity purification followed by LC-MS/MS, we identified HMG-1.2 as a protein that binds to a specific promoter region under hypoxic conditions. By systematic prediction followed by validation of these interactions through RNAi, we identified the chromatin modifiers isw-1 and hda-1, histone H4, and NURF-1 chromatin-remodeling factors as new components of the hif-1-independent hypoxia response. These data suggest that the modulation of nucleosome positioning at the hsp-16.1 promoter may be important for the hypoxia response. In addition, we found that calcineurin acts independently of hif-1 to modulate the cellular response to hypoxia and that calcium ions are necessary for the induction of hsp-16.1 under hypoxic conditions.  相似文献   

17.
Tumor hypoxia is one of the most important parameters that determines treatment sensitivity and is mainly due to insufficient tumor angiogenesis. However, the local oxygen concentration in a tumor can also be shifted in response to different treatment modalities such as cytotoxic agents or ionizing radiation. Thus, combined treatment modalities including microtubule stabilizing agents could create an additional challenge for an effective treatment response due to treatment-induced shifts in tumor oxygenation. Tumor hypoxia was probed over a prolonged observation period in response to treatment with different cytotoxic agents, using a non-invasive bioluminescent ODD-Luc reporter system, in which part of the oxygen-dependent degradation (ODD) domain of HIF-1α is fused to luciferase. As demonstrated in vitro, this system not only detects hypoxia at an ambient oxygen concentration of 1% O2, but also discriminates low oxygen concentrations in the range from 0.2 to 1% O2. Treatment of A549 lung adenocarcinoma-derived tumor xenografts with the microtubule stabilizing agent patupilone resulted in a prolonged increase in tumor hypoxia, which could be used as marker for its antitumoral treatment response, while irradiation did not induce detectable changes in tumor hypoxia. Furthermore, despite patupilone-induced hypoxia, the potency of ionizing radiation (IR) was not reduced as part of a concomitant or adjuvant combined treatment modality.  相似文献   

18.
19.
Hypoxia induces adipogenic differentitation of myoblastic cell lines   总被引:1,自引:0,他引:1  
Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) β, α and peroxisome proliferator activating receptor (PPAR) γ were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.  相似文献   

20.
NEK8 (never in mitosis gene A (NIMA)-related kinase 8) is involved in cytoskeleton, cilia, and DNA damage response/repair. Abnormal expression and/or dysfunction of NEK8 are related to cancer development and progression. However, the mechanisms that regulate NEK8 are not well declared. We demonstrated here that pVHL may be involved in regulating NEK8. We found that CAK-I cells with wild-type vhl expressed a lower level of NEK8 than the cells loss of vhl, such as 786-O, 769-P, and A-498 cells. Moreover, pVHL overexpression down-regulated the NEK8 protein in 786-O cells, whereas pVHL knockdown up-regulated NEK8 in CAK-I cells. In addition, we found that the positive hypoxia response elements (HREs) are located in the promoter of the nek8 sequence and hypoxia could induce nek8 expression in different cell types. Consistent with this, down-regulation of hypoxia-inducible factors α (HIF-1α or HIF-2α) by isoform-specific siRNA reduced the ability of hypoxia inducing nek8 expression. In vivo, NEK8 and HIF-1α expression were increased in kidneys of rats subjected to an experimental hypoxia model of ischemia and reperfusion. Furthermore, NEK8 siRNA transfection significantly blocked pVHL-knockdown-induced cilia disassembling, through impairing the pVHL-knockdown-up-regulated NEK8 expression. These results support that nek8 may be a novel hypoxia-inducible gene. In conclusion, our findings show that nek8 may be a new HIF target gene and pVHL can down-regulate NEK8 via HIFs to maintain the primary cilia structure in human renal cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号