首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氮肥处理对氮素高效吸收水稻根系性状及氮肥利用率的影响   总被引:12,自引:0,他引:12  
2011—2012年在土培条件下,以氮素吸收效率差异较大的15个常规籼稻为供试材料,研究氮肥运筹对不同氮效率品种根系性状、成熟期吸氮量及氮肥利用率的影响,分析影响氮高效水稻氮素吸收的主要根系性状。结果表明:(1)各氮肥处理下,成熟期吸氮量均表现为氮高效品种氮中效品种氮低效品种。适量增施氮肥及基肥+促花肥处理有利于氮高效品种吸氮量的增加,氮素吸收受品种、氮肥处理的显著影响。(2)在施氮量处理下,氮高效品种单株不定根数、单株根干重、单株不定根总长大或较大,单株根活力在常氮(N2)、高氮(N3)处理下有一定的优势;在施氮时期处理下,氮高效品种单株不定根数、单株不定根总长、单株根干重、单株根系总吸收面积、单株根系活跃吸收面积、抽穗期冠根比多数处理有优势;增施氮肥有利于促进氮高效品种单株不定根总长和单株根活力的提高,适量施氮有利于单株不定根数、单株根干重增加,前期施氮可促进不定根的发生和伸长,后期施氮有利于不定根的充实和根系生理性状的提高。此外,增施氮肥可提高各类品种冠根比;(3)在常氮、高氮处理下,氮高效品种氮肥利用率大于氮中效、氮低效品种。(4)提高单株不定根数、单株不定根总长、单株根活力及抽穗期冠根比有利于各类品种吸氮量的提高,增加根干重对氮高效品种吸氮量的提高也有显著的促进作用。结合相关分析与通径分析结果,抽穗期冠根比及单株不定根数、单株根活力、单株不定根总长、单株根干重是影响氮高效品种吸氮能力的主要根系性状。  相似文献   

2.
This paper discusses interspecific differences and phenotypic responses to nitrogen supply in various root parameters of five perennial grasses from contrasting habitats. The following root parameters were studied: root:shoot ratio, specific root length, specific root area, mean root diameter, frequency of fine roots, and the length and density of root hairs. Significant between-species variation was found in all of these features. Species from fertile sites had higher root:shoot ratios at high nitrogen supply than species from infertile habitats. All species growing at low nitrogen supply showed a significant increase in root:shoot ratio. Specific root length, specific root area, mean root diameter and frequency of fine roots were not affected significantly by nitrogen supply. Species from infertile sites responded to low nitrogen supply by a significant increase in root hair length and root hair density.  相似文献   

3.
细根能敏感地感知土壤环境变化,对植物生长发育具有重要影响.以6年生翅荚木人工林为对象,对其不同径阶的细根主要功能性状与根际土壤养分特征及两者间关系进行分析.结果表明:细根生物量、根长密度与根体积密度均随径阶增加而增加,比根长与比根面积则随径阶增加呈先升高再下降后升高的趋势,根组织密度则与径阶大小不相关.不同径阶翅荚木根际土壤的pH值及含水率、全碳、全磷、铵态氮、硝态氮和总有效氮含量均存在显著差异,大径阶林木的根际土壤全碳、全氮、硝态氮、总有效氮含量相对较高,小径阶林木的根际土壤含水率、土壤全磷、铵态氮含量相对较高.土壤全氮、全碳、硝态氮和总有效氮含量与林木细根的生物量、根长密度、根体积密度呈显著正相关;土壤全磷与林木细根的根组织密度呈显著正相关,与比根长、比根面积呈显著负相关;土壤含水率与林木细根的生物量和根体积密度均呈显著正相关;根际土壤pH和林木细根的比根长、比根面积呈显著正相关,与根组织密度则呈显著负相关.研究结果可为翅荚木优良种质资源选育提供科学依据.  相似文献   

4.
Better managing crop : weed competition in cropping systems while reducing both nitrogen and herbicide inputs is a real challenge that requires a better understanding of crop and weed root architecture in relation to soil‐nitrogen availability. An original approach was used which considered the parameters of a simulation model of root architecture as traits to analyse (a) the interspecific diversity of root system architecture, and (b) its response to soil‐nitrogen availability. Two greenhouse experiments were conducted using three crop and nine weed species grown at two contrasted concentrations of soil‐nitrogen availability. Plant traits were measured to characterise both overall plant growth and root architecture, with a focus on primary root emergence, root elongation and branching. The studied root traits varied among species (from a twofold to a fourfold factor, depending on the trait), validating their use as indicators to analyse the interspecific variability of root architecture. The largest interspecies differences were for two traits: ‘maximal apical root diameter’ and ‘interbranch distance’ (distance between two successive laterals on the same root). Conversely, most of the studied root traits varied little with soil‐nitrogen availability (from no variation to a 1.1‐fold factor, depending on the trait) even though soil‐nitrogen availability varied with a 17‐fold factor and impacted the overall shoot and root biomass. So, the root traits used in this article are stable whatever soil‐nitrogen availability. As they reflect processes underlying root system architecture, this low effect of nitrogen suggests that the rules governing root architecture are little affected by plant nitrogen status and soil‐nitrogen availability. We propose that the determinants of differences in root system architecture between soils with contrasted nitrogen availability mainly originate from differences in the amount of carbon allocated to and within the root system. Characterising each plant species by a combination of root traits gave insights regarding the potential species competitive ability for soil resources in agroecosystems.  相似文献   

5.
鼎湖山某些植物群落根系生物量及其氮素动态   总被引:6,自引:0,他引:6       下载免费PDF全文
 本文用挖土柱及埋土柱法测定了鼎湖山生物圈保护区季风常绿阔叶林,黄果厚壳桂、鼎湖钓樟群落的根系生物量和年生长量。用自动离子分析仪分析了根的含氮量并研究了根系的氮素动态。结果表明,根系生物量(t/ha)为35.43,其中活根26.63,死根8.8;根的生长量(kg/ha·a)是3.74。根库贮氮量(kg/ha)为279.23,其中活根库为202.25,死根库为76.98;每年新生根系积累的氮素为57.55kg/ha。每年新生根系生产量及其氮素积累量占整个根库生物量及其氮素贮量的百分率分别为10.6及20.6,根库年生长量及其氮素积累的比率均较高,群落正处在生长发育盛期。  相似文献   

6.
We examined how water and nitrogen addition and water–nitrogen interactions affect root and shoot competition intensity and competition–productivity relationships in a native rough fescue grassland in central Alberta, Canada. Water and nitrogen were added in a factorial design to plots and root exclusion tubes and netting were used to isolate root and shoot competition on two focal species (Artemisia frigida and Chenopodium leptophyllum). Both water and nitrogen were limiting to plant growth, and focal plant survival rates increased with nitrogen but not water addition. Relative allocation to root biomass increased with water addition. Competition was almost entirely belowground, with focal plants larger when released from root but not shoot competition. There were no significant relationships between productivity and root, shoot, or total competition intensity, likely because in this system shoot biomass was too low to cause strong shoot competition and root biomass was above the levels at which root competition saturates. Water addition had few effects on the intensity of root competition suggesting that root competition intensity is invariant along soil moisture gradients. Contrary to general expectation, the strength of root competition increased with nitrogen addition demonstrating that the relationship between root competition intensity and nitrogen is more complex than a simple monotonic decline as nitrogen increases. Finally, there were few interactions between nitrogen and water affecting competition. Together these results indicate that the mechanisms of competition for water and nitrogen likely differ.  相似文献   

7.
以来自山西的菘蓝(Isatis indigotica Fort.)为实验对象,采用盆栽法研究铵态氮(NH4+-N)、硝态氮(NO3--N)和酰胺态氮〔CO(NH2)2〕的不同配比对夏播菘蓝生长,叶和根中的可溶性蛋白质及总氮含量,根中多糖含量,叶中叶绿素相对含量,以及叶中靛玉红和靛蓝、根中(R,S)-告依春的含量和积累量的影响.结果表明:各施氮处理组的单株叶干质量均高于对照(不施用氮素)组,但单株根干质量或高于或低于对照组,其中,T4〔n(铵态氮):n(硝态氮):n(酰胺态氮)=25:75:0〕处理组的单株叶和根干质量均最大,且总体上显著高于对照组及其他施氮处理组(P<005);而施氮处理组的根冠比均显著低于对照组.各施氮处理组叶中的可溶性蛋白质含量与对照均无显著差异,但各施氮处理组根中的可溶性蛋白质含量、叶和根中的总氮含量以及叶中的叶绿素相对含量总体上显著高于对照组,而根中的多糖含量或高于或低于对照组,其中,T6〔n(铵态氮):n(硝态氮):n(酰胺态氮)=0:75:25〕处理组根中的多糖含量和叶中的叶绿素相对含量均最高,T3〔n(铵态氮):n(硝态氮):n(酰胺态氮)=50:50:0〕处理组叶和根中的可溶性蛋白质含量均较高.各施氮处理组叶中靛玉红含量总体上显著高于对照组,多数施氮处理组叶中靛蓝含量则显著低于对照组,但各施氮处理组的单株叶中靛蓝和靛玉红积累量总体上高于对照组;其中,T2〔n(铵态氮):n(硝态氮):n(酰胺态氮)=75:25:0〕处理组叶中靛玉红含量及其单株积累量均最高,T6处理组叶中靛蓝含量最高,而单株叶中靛蓝积累量则以T3处理组最高.各施氮处理组根中(R,S)-告依春含量总体上显著低于对照组,其中,以T1〔n(铵态氮):n(硝态氮):n(酰胺态氮)=100:0:0〕处理组根中(R,S)-告依春含量最高,T4处理组单株根中(R,S)-告依春积累量最高.综合分析结果表明:按不同配比施用不同形态氮素,夏播菘蓝的生长及活性成分含量有明显差异,因此,若以收获叶为目的,结合叶中靛玉红含量,建议施用铵态氮和硝态氮物质的量比为75:25的复合氮肥;若以收获根为目的,结合根中(R,S)-告依春含量,建议施用铵态氮和硝态氮物质的量比为25:75的复合氮肥.  相似文献   

8.
模拟氮沉降对杉木幼苗细根的生理生态影响   总被引:3,自引:0,他引:3  
细根对氮沉降的生理生态响应将显著影响森林生态系统的生产力和碳吸存。为了揭示氮沉降对杉木细根的生理生态影响,对一年生杉木(Cunninghamia lanceolata)幼苗进行了模拟氮沉降试验,并测定施氮1年后杉木幼苗细根生物量、细根形态学特征(比根长、比表面积)、元素化学计量学指标(C、N、P、C/N、C/P、N/P)、细根代谢特征(细根比呼吸速率、非结构性碳水化合物)。结果表明:(1)杉木细根生物量随氮添加水平的升高而显著降低,尤其是0—1 mm细根生物量;细根比根长和比表面积随氮添加水平升高而显著增大。(2)氮添加后杉木细根C含量、C/N、C/P显著降低,高氮添加导致1—2 mm细根N含量和N/P显著升高,而低氮添加导致1—2 mm细根P含量显著升高、N/P显著降低,而0—1 mm细根的N、P含量则保持相对稳定。(3)氮添加后杉木细根比呼吸速率无显著变化,细根可溶性糖含量随氮添加增加而显著增加,而淀粉含量和NSC显著降低。综合以上结果表明:氮添加后用于细根形态构建的碳分配减少,这可能会减少土壤中有机碳的保留,0—1 mm细根的形态更易发生变化,但是其内部N、P养分含量相对更稳定以维持生理活动,细根NSC对氮添加的响应表明施氮可能导致细根受光合产物的限制。  相似文献   

9.
以种子来源于江西遂川的1年生刨花楠扦插苗为材料,设置田间持水量的80%、40% 2个水分水平,以及不添加(0 kg N·hm-2)、低氮(50 kg N·hm-2)、高氮(100 kg N·hm-2) 3个氮添加水平共6种处理的氮-水交互受控试验,测定不同处理刨花楠幼苗3个根序细根比根长、比表面积、平均直径和根组织密度,分析短期氮添加、干旱胁迫及两者交互作用对刨花楠幼苗细根的影响.结果表明: 刨花楠幼苗细根平均直径、比根长在不同根序间差异显著.随根序的增加,刨花楠幼苗细根平均直径增加,其中3级根最大,为0.97 mm;而比根长降低,3级根最小,为238.99 cm·g-1.氮添加对刨花楠细根的比表面积、平均直径、比根长和根组织密度无显著影响,而水分对刨花楠细根平均直径、比根长、根组织密度影响显著.干旱胁迫明显促进幼苗3级细根直径的增加,降低了1、2级细根根组织密度.干旱环境下幼苗3级根的比根长明显低于正常供水环境下幼苗.氮水交互作用对刨花楠细根形态影响不显著.  相似文献   

10.
氮素营养对小麦根冠协调生长的调控   总被引:25,自引:3,他引:22  
在植物生长箱通过溶液培养方式,对不同氮素条件下不同抗旱性的小麦品种西农1043和小偃6号的幼苗根苗生长特性进行了研究,结果表明在不同氮素浓度下,氮肥用量的提高对地上部干重和叶片气体交换参数表现为增效效应,当用量增至一定程度时,地上部干重和叶片气体交换参数均呈下降趋势,只是各自的适宜用量存在差异。培养介质氮素浓度低时,有利于小麦根系干重累积,培养介质氮素浓度高时,不利于根系干重累积。西农1043和小偃6号根长分布基本相似,水分利用效率随着根冠比的增大而降低。小麦根冠比的增加并不利于叶片水分利用效率的提高,而叶片光合作用最优的根冠比为0.5左右。  相似文献   

11.
安慧  上官周平 《生态学报》2009,29(11):6017-6024
采用植物生长箱溶液培养方式,对白三叶幼苗进行了不同光强(2个水平)和氮浓度(5个水平)处理,探讨其生长、生物量和光合生理特征对生境变化的响应.结果表明:两种光强下白三叶幼苗茎和叶生物量随氮素浓度呈先升高后降低,而根系生物量和根冠比则随氮素浓度增高而降低.光照强度降低使白三叶幼苗根、茎、叶和整株生物量分别降低67.8%、29.9%、42.5%和45.2%;低光处理使幼苗的根冠比显著下降,而比叶面积(SLA)明显提高.幼苗根系体积随氮素浓度增高而降低,高生长光强根系体积显著高于低生长光强下的白三叶.幼苗根系表面积、根系长度和根系直径随氮素浓度增加呈先增加后降低趋势,两种不同生长光强下幼苗根系长度和根系直径差异显著,而根系表面积差异不明显.白三叶叶片光合速率(Pn)随氮素浓度增加呈先增加后降低趋势,高生长光强白三叶Pn显著高于低生长光强下的白三叶.两种生长光强间叶片气孔导度(Gs),胞间CO2浓度(Ci)和蒸腾速率(Tr)无显著差异,但氮素浓度对叶片Gs、Ci和Tr均有显著影响.光、氮及其交互作用对白三叶幼苗生长发育产生了显著影响,光照不足和氮缺乏都将导致白三叶幼苗生长减弱,但幼苗对这些不利环境具有较强的调节和适应能力.  相似文献   

12.
Understanding the effects of global change in terrestrial communities requires an understanding of how limiting resources interact with plant traits to affect productivity. Here, we focus on nitrogen and ask whether plant community nitrogen uptake rate is determined (a) by nitrogen availability alone or (b) by the product of nitrogen availability and fine‐root mass. Surprisingly, this is not empirically resolved. We performed controlled microcosm experiments and reanalyzed published pot experiments and field data to determine the relationship between community‐level nitrogen uptake rate, nitrogen availability, and fine‐root mass for 46 unique combinations of species, nitrogen levels, and growing conditions. We found that plant community nitrogen uptake rate was unaffected by fine‐root mass in 63% of cases and saturated with fine‐root mass in 29% of cases (92% in total). In contrast, plant community nitrogen uptake rate was clearly affected by nitrogen availability. The results support the idea that although plants may over‐proliferate fine roots for individual‐level competition, it comes without an increase in community‐level nitrogen uptake. The results have implications for the mechanisms included in coupled carbon‐nitrogen terrestrial biosphere models (CN‐TBMs) and are consistent with CN‐TBMs that operate above the individual scale and omit fine‐root mass in equations of nitrogen uptake rate but inconsistent with the majority of CN‐TBMs, which operate above the individual scale and include fine‐root mass in equations of nitrogen uptake rate. For the much smaller number of CN‐TBMs that explicitly model individual‐based belowground competition for nitrogen, the results suggest that the relative (not absolute) fine‐root mass of competing individuals should be included in the equations that determine individual‐level nitrogen uptake rates. By providing empirical data to support the assumptions used in CN‐TBMs, we put their global climate change predictions on firmer ground.  相似文献   

13.
In plants, the plasticity of root architecture in response to nitrogen availability largely determines nitrogen acquisition efficiency. One poorly understood root growth response to low nitrogen availability is an observed increase in the number and length of lateral roots (LRs). Here, we show that low nitrogen‐induced Arabidopsis LR growth depends on the function of the auxin biosynthesis gene TAR2 (tryptophan aminotransferase related 2). TAR2 was expressed in the pericycle and the vasculature of the mature root zone near the root tip, and was induced under low nitrogen conditions. In wild type plants, low nitrogen stimulated auxin accumulation in the non‐emerged LR primordia with more than three cell layers and LR emergence. Conversely, these low nitrogen‐mediated auxin accumulation and root growth responses were impaired in the tar2‐c null mutant. Overexpression of TAR2 increased LR numbers under both high and low nitrogen conditions. Our results suggested that TAR2 is required for reprogramming root architecture in response to low nitrogen conditions. This finding suggests a new strategy for improving nitrogen use efficiency through the engineering of TAR2 expression in roots.  相似文献   

14.
The abundance of bacteria in the rhizoplane of barley varieties was investigated at different soil nitrogen levels. Increased amendments of nitrogen resulted in higher bacterial numbers in the rhizoplane of barley seedlings of different varieties. A negative correlation was found between nitrogen level in the soil and the growth rate of the seedling roots. The effect of nitrogen on the bacterial abundances could be indirect through changed root growth and thereby changed exudation. The exudation of soluble organic carbon componds from barley seedling roots were measured in hydroponic culture. The effect of natural variation in root growth rate and of different concentrations of nitrogen in the nutrient solution was investigated. The amount of exudates consituted 2–66% of the dry weight increase in root biomass, depending on the root growth. Slower growing roots released considerably more organic carbon per unit root weight than faster growing roots. The variation in root exudation appeared to be mainly explained by differences in root growth, rather than of the nitrogen concentration in the nutrient solution. A significantly higher exudation rate was found during day time compared to night.  相似文献   

15.
氮沉降会影响细根的形态功能性状,进而影响细根对养分的吸收,导致陆地生态系统养分循环发生变化.为了解氮沉降对细根形态功能性状的影响,利用根袋法进行原位试验,研究中亚热带常绿阔叶林外生菌根树种罗浮栲和米槠细根形态对短期氮添加的可塑性响应.结果表明: 低序级根(1~3序级)的比根长和比表面积对氮添加的可塑性响应高于高序级根(4序级),细根组织密度对氮添加的可塑性响应从1序级到4序级逐渐加强,而各序级细根直径对氮添加则无显著的可塑性响应;低序级细根比根长、比表面积的可塑性响应与高序级细根组织密度的可塑性响应之间存在一定的协同变化.罗浮栲和米槠细根的比根长、比表面积、组织密度对氮添加表现出相反方向的可塑性响应,表明施氮后不同外生菌根树种采取了不同的养分觅食策略:施氮后罗浮栲在养分获取上采取的是增加比根长、比表面积和根长增殖速率的资源快速获取策略,而米槠则采取了增大细根组织密度的相对保守的资源获取策略.  相似文献   

16.
介质供氮水平对10种禾草幼苗生长及氮效率的影响   总被引:1,自引:1,他引:0  
以10种常用禾草幼苗为材料,通过霍格兰溶液培养法观测了不同供氮水平下禾草的生长及氮效率特性,比较不同禾草的耐介质低氮特征差异.结果表明:介质低氮环境对草地雀麦的株高、根长、根体积、叶面积、地上和地下生物量,以及无芒雀麦的株高、根体积和根长的影响较小;不同介质供氮水平下,草地雀麦能维持相对较高的叶绿素含量,无芒雀麦与苇状羊茅具有较强的氮素吸收和同化能力,从而使草地雀麦、无芒雀麦与苇状羊茅表现出相对较强的耐介质低氮特性.可见,不同禾草草种幼苗对介质供氮水平变化反应存在明显差异,据此可筛选耐介质低氮的禾草草种资源.  相似文献   

17.
A simulation model is presented which describes uptake of a growth limiting nutrient from soil by a growing root system. The root surface is supposed to behave like a zero-sink. Uptake of the nutrient is therefore determined by the rate of nutrient supply to the root surface by mass flow and diffusion. Inter-root competition and time dependent root density are accounted for by assigning to each root a finite cylindrical soil volume that delivers nutrients. The radius of these cylinders declines with increasing root density. Experiments with rape plants grown on quartz sand were used to evaluate the model. Simulated nitrogen uptake agreed well with observed uptake under nitrogen limiting conditions. In case no nitrogen limitation occurred nitrogen uptake was overestimated by the model, probably because the roots did not behave like a zero-sink any more.  相似文献   

18.
Inorganic soil nitrogen is often heterogeneously distributed, both spatially and in form (ammonium versus nitrate). Here we present information on the architecture of black birch (Betula lenta L.) root systems exposed to homogeneous and heterogeneous nitrogen environments. The major effects on root architecture were at the whole root system level in response to heterogeneity of nitrogen form rather than the effect of local of local nitrate or ammonium supply on local root growth. In the heterogeneous treatment, plant root systems had greater link lengths and more simple branching patterns. Root architectural responses to heterogeneous nitrogen, independent of localized responses to patches, suggest that in a seedling of B. lenta whole plant integration of its environment may override local control of root growth.  相似文献   

19.

Objectives

This paper aims to compare the property difference of spatial and temporal distribution of different nitrogen use efficiency maize genotypes and discuss the physiological mechanism of nitrogen efficiency of maize.

Method

In this study, phenotype of root crowns of maize in seedling stage (V5), bell stage (V12) and silking stage (R1) was conducted to discover phenes and phene modules related to N acquisition. An image was captured for the whole roots. Custom software was used to measure root phenes including root area, root projected structure length, maximum width of roots, and root angle. The study was conducted to examine the differences in spatial and temporal distribution of maize root at two nitrogen levels (0 and 240?kg hm-2), high efficiency genotype ZHENGDAN958 (ZD958) and low efficiency genotype DANYU13 (DY13) are used in field production. Under the low nitrogen stress conditions, the root area of ZD958 significantly increased after bell stage and exceeds the CK by 20.2% at silking stage. With LN, the root projected structure length of ZD958 was longer than that of CK by 49.4% at silking stage. The low efficiency genotype DY13 had no obvious change at two nitrogen levels. The number of the grain yield and root system biomass of high efficiency genotype ZD958 was remarkably larger than that of low efficiency genotype DY13.

Conclusion

During the whole growth stage, the root dry weight, root area and the root width med of high efficiency genotype ZD958 were larger than that of high efficiency genotype DY13. Besides, under the low nitrogen stress conditions, the width of ZD958 deep soil root tended to become longer which is good for the nitrogen absorption from the deep soil. High efficiency genotype can construct a root system which is in a well-developed and reasonable spatial distribution before blooming, so as to ensure plant nitrogen absorption and biomass generation as well. The root index of the nitrogen responsivity of high efficiency genotype ZD958 was higher than that of low efficiency genotype DY13 before blooming.  相似文献   

20.
藏北高寒草甸根系生物量与碳氮分布格局及关联特征   总被引:1,自引:0,他引:1  
张豪睿  付刚 《生态学报》2021,41(9):3625-3633
根系生物量的分布格局及其与土壤环境因子的关系对草地保护与退化草地恢复研究有重要意义。以藏北当雄县的高寒草甸为研究对象,在三个海拔上(4300、4500、4700 m)对2011年0-50 cm的群落根系生物量、根碳氮含量、土壤碳含量(SOC、DOC、MBC)、氮含量(DTN、MBN、TN)、碳氮比(MBC/MBN、SOC/TN)、pH、电导率进行了测定,以期探讨藏北高寒草甸根系生物量与碳氮的分布格局及其关联特征。结果表明:(1)土壤中所测量的各种形式的碳氮含量均随着土壤深度的增大呈下降趋势,0-50 cm的DOC和SOC都随海拔的升高呈上升趋势。(2)随土壤深度的增加,根系生物量呈指数下降。随海拔的增加,根系生物量越集中分布于上层土壤,下层土壤根系生物量分布越少且变化趋于平缓。(3)根系生物量与所测的碳氮指标、电导率呈正相关关系,与pH呈负相关关系。根系氮库是影响根系生物量分布格局的主要因素,而pH值、电导率及土壤碳氮指标是影响根系生物量分布格局的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号