首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation of L125R in trasmembrane helix III of rhodopsin, associated with the retinal degenerative disease retinitis pigmentosa, was previously shown to cause structural misfolding of the mutant protein. Also, conservative mutations at this position were found to cause partial misfolding of the mutant receptors. We report here on a series of mutations at position 125 to further investigate the role of Leu125 in the correct folding and function of rhodopsin. In particular, the effect of the size of the substituted amino-acid side chain in the functionality of the receptor, measured as the ability of the mutant rhodopsins to activate the G protein transducin, has been analysed. The following mutations have been studied: L125G, L125N, L125I, L125H, L125P, L125T, L125D, L125E, L125Y and L125W. Most of the mutant proteins, expressed in COS-1 cells, showed reduced 11-cis-retinal binding, red-shifts in the wavelength of the visible absorbance maximum, and increased reactivity towards hydroxylamine in the dark. Thermal stability in the dark was reduced, particularly for L125P, L125Y and L125W mutants. The ability of the mutant rhodopsins to activate the G protein transducin was significantly reduced in a size dependent manner, especially in the case of the bulkier L125Y and L125W substitutions, suggesting a steric effect of the substituted amino acid. On the basis of the present and previous results, Leu125 in transmembrane helix III of rhodopsin, in the vicinity of the beta-ionone ring of 11-cis-retinal, is proposed to be an important residue in maintaining the correct structure of the chromophore binding pocket. Thus, bulky substitutions at this position may affect the structure and signallling of the receptor by altering the optimal conformation of the retinal binding pocket, rather than by direct interaction with the chromophore, as seen from the recent crystallographic structure of rhodopsin.  相似文献   

2.
A heterobifunctional cross-linking reagent, 125I-N-(3-iodo-4-azidophenylpropionamido-S-(2-thiopyridyl) cysteine (125-ACTP), has been synthesized. 125I-ACTP has been used to derivative reduced sulfhydryls of the retinal G protein, transducin (Gt), to form a mixed disulfide bond under mild, nondenaturing conditions (pH 7.4, 4 degrees C). The resulting disulfide was easily cleaved using reducing reagents. A 200-fold molar excess of 125I-ACTP relative to Gt resulted in the incorporation of 1-1.3 mol of the 125I-N-(3-iodo-4-azidophenylpropionamido)cysteine moiety of ACTP into Gt alpha. In contrast to 125I-ACTP, dithionitrobenzoate and dithiopyridone derivatized six sulfhydryls in native Gt. Incubation of a 10-fold molar excess of 125I-ACTP relative to Gt resulted in the derivatization of 0.75-0.9 and 0.1 mol of reduced sulfhydryls/mol Gt alpha and beta, respectively. Gt gamma was not derivatized by 125I-ACTP. Thus, Gt alpha was preferentially derivatized by 125I-ACTP. Tryptic digestion and amino acid sequencing of Gt alpha indicated that both Cys-347 near the carboxyl terminus and Cys-210 between the second and third consensus sequences forming the GTP-binding site were derivatized by 125I-ACTP in a ratio of approximately 70 and 30%, respectively. Thus, both Cys-210 and Cys-347 are labeled, even though derivatization by 125I-ACTP does not exceed 1 mol of SH/mol Gt alpha. It appears that derivatization of one sulfhydryl, either Cys-210 or Cys-347, excludes labeling of the second cysteine either by steric hindrance or induced conformational change making the second cysteine inaccessible to 125I-ACTP. Consistent with this finding was the observation that pertussis toxin-catalyzed ADP-ribosylation of Cys-347 inhibited 125I-ACTP derivatization of Cys-210. Derivatization of Gt alpha at either Cys-210 or Cys-347 by 125I-ACTP inhibited rhodopsin-catalyzed guanosine 5'-3-O-(thio)triphosphate binding to Gt, mimicking the effect of ADP-ribosylation of Cys-347 by pertussis toxin. ACTP contains a radioiodinated phenylazide moiety which, upon activation, can cross-link the derivatized cysteine to an adjacent polypeptide domain. Following reduction of the disulfide, the [125I] iodophenyl moiety will be transferred to the azide-inserted polypeptide. When photoactivation of the phenylazide moiety of 125I-ACTP after sulfhydryl derivatization was performed, insertion of the Cys-347 which contains Cys-210, was found.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A number of cellular processes, such as proliferation, differentiation, and transformation, are regulated by cell-extracellular matrix interactions. Previous studies have identified a novel tyrosine kinase, the focal adhesion kinase p125FAK, as a component of cell adhesion plaques. p125FAK was identified as a 125-kDa tyrosine-phosphorylated protein in cells transformed by the v-src oncogene. p125FAK is an intracellular protein composed of three domains: a central domain with homology to protein tyrosine kinases, flanked by two noncatalytic domains of 400 amino acids which bear no significant homology to previously cloned proteins. p125FAK is believed to play an important regulatory role in cell adhesion because it localizes to cell adhesion plaques and because its phosphorylation on tyrosine residues is regulated by binding of cell surface integrins to the extracellular matrix. Recent studies have shown that Src, through its SH2 domain, stably associates with pp125FAK and that this association prevents dephosphorylation of pp125FAK in vitro by protein tyrosine phosphatases. In this report, we identify Tyr-397 as the primary in vivo and in vitro site of p125FAK tyrosine phosphorylation and association with Src. Substituting phenylalanine for tyrosine at position 397 significantly reduces p125FAK tyrosine phosphorylation and association with Src but does not abolish p125FAK kinase activity. In addition, p125FAK kinase is able to trans-phosphorylate Tyr-397 in vitro in a kinase-deficient p125FAK variant. Phosphorylation of Tyr-397 provides a site [Y(P)AEI] that fits the consensus sequence for the binding of Src.  相似文献   

4.
The adrenergic receptors of rat pineal gland were investigated using radiolabeled ligand binding and photoaffinity labeling techniques. 125I-2-[beta-(4-hydroxyphenyl)ethylaminomethyl]tetralone (125I-HEAT) and 125I-cyanopindolol (125I-CYP) labeled specific sites on rat pineal gland membranes with equilibrium dissociation constants (KD) of 48 (+/- 5) pM and 30 (+/- 5) pM, respectively. Binding site maxima were 481 (+/- 63) and 1,020 (+/- 85) fmol/mg protein. The sites labeled by 125I-HEAT had the pharmacological characteristics of alpha 1-adrenergic receptors. 125I-CYP-labeled beta-adrenergic receptors were characterized as a homogeneous population of beta 1-adrenergic receptors. The alpha 1- and beta 1-adrenergic receptors were covalently labeled with the specific photoaffinity probes 4-amino-6,7-dimethoxy-2-(4-[5-(4-azido-3-[125I]iodophenyl) pentanoyl]-1-piperazinyl) quinazoline (125I-APDQ) and 125I-p-azidobenzylcarazolol (125I-pABC). 125I-APDQ labeled an alpha 1-adrenergic receptor peptide of Mr = 74,000 (+/- 4,000), which was similar to peptides labeled in rat cerebral cortex, liver, and spleen. 125I-pABC labeled a single beta 1-adrenergic receptor peptide with a Mr = 42,000 (+/- 1,500), which differed from the 60-65,000 peptide commonly seen in mammalian tissues. Possible reasons for these differences are discussed.  相似文献   

5.
3-Trifluoromethyl-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) has been shown to be a potent noncompetitive antagonist (NCA) of the nicotinic acetylcholine receptor (AChR). Amino acids that contribute to the binding site for [(125)I]TID in the ion channel have been identified in both the resting and desensitized state of the AChR (White, B.H., and Cohen, J.B. (1992) J. Biol. Chem. 267, 15770-15783). To characterize further the structure of the NCA-binding site in the resting state channel, we have employed structural analogs of TID. The TID analogs were assessed by the following: 1) their ability to inhibit [(125)I]TID photoincorporation into the resting state channel; 2) the pattern, agonist sensitivity, and NCA inhibition of [(125)I]TID analog photoincorporation into AChR subunits. The addition of a primary alcohol group to TID has no demonstrable effect on the interaction of the compound with the resting state channel. However, conversion of the alcohol function to acetate, isobutyl acetate (TIDBIBA), or to trimethyl acetate leads to rightward shifts in the concentration-response curves for inhibition of [(125)I]TID photoincorporation into the AChR channel and a progressive reduction in the agonist sensitivity of [(125)I]TID analog photoincorporation into AChR subunits. Inhibition of [(125)I]TID analog photoincorporation by NCAs (e.g. tetracaine) as well as identification of the sites of [(125)I]TIDBIBA photoincorporation in the deltaM2 segment indicate a common binding locus for each TID analog. We conclude that relatively small additions to TID progressively reduce its ability to interact with the NCA site in the resting state channel. A model of the NCA site and resting state channel is presented.  相似文献   

6.
CA125 is a mucin commonly employed as a diagnostic marker for epithelial ovarian cancer. Induction of humoral responses to CA125 leads to increased survival times in patients with this form of cancer, suggesting a potential role for this mucin in tumor progression. In this study, oligosaccharides linked to CA125 derived from the human ovarian tumor cell line OVCAR-3 were subjected to rigorous biophysical analysis. Sequencing of the O-glycans indicates the presence of both core type 1 and type 2 glycans. An unusual feature is the expression of branched core 1 antennae in the core type 2 glycans. CA125 is also N-glycosylated, expressing primarily high mannose and complex bisecting type N-linked glycans. High mannose type glycans include Man5-Man9GlcNAc2. The predominant N-glycans are the biantennary, triantennary, and tetraantennary bisecting type oligosaccharides. Remarkably, the N-glycosylation profiles of CA125 and the envelope glycoprotein gp120 (derived from H9 lymphoblastoid cells chronically infected with HIV-1) are very similar. The CA125-associated N-glycans have also recently been implicated in crucial recognition events involved in both the innate and adaptive arms of the cell-mediated immune response. CA125 may therefore induce specific immunomodulatory effects by employing its carbohydrate sequences as functional groups, thereby promoting tumor progression. Immunotherapy directed against CA125 may attenuate these immunosuppressive effects, leading to the prolonged survival of patients with this extremely serious form of cancer.  相似文献   

7.
Electron microscope autoradiographic and biochemical methods were used to study the intracellular fates of several 125I-glycoproteins, known to be specifically bound and internalized by the different cell types in the liver. At the earliest times examined (1--2 min), 125I-glycoproteins (ASGP) were localized predominantly along the sinusoidal front of hepatocytes. Analysis of the distribution of autoradiographic grains indicated that: (a) approximately 40--60% of the 125I-ligand could be ascribed to the plasmalemma; (b) a significant fraction had already been internalized; yet (c) very little 125I-ligand was present in the lysosome-Golgi region. Between 4 and 15 min after administration of 125I-ASGPs, there was a dramatic redistribution of autoradiographic grains from regions of the plasmalemma and peripheral cytoplasm (30% decrease) to the lysosome-Golgi region (30% increase). At longer times (30 min), there was continued drainage of 125I-ASGP into this region. The grain density over secondary lysosomes was 60--90 times higher than that over recognizable Golgi elements, clearly indicating that lysosomes were the ultimate destination of the 125I-ASGP. However, no more than 60% of the total 125I-ligand could be localized to lysosome-rich regions of the hepatocyte, with the remaining 40% primarily in the intermediate cytoplasm. Biochemical evidence for proteolysis of the internalized 125I-ASGP (presumably within lysosomes) was obtained when [125I]-mono-iodotyrosine was found in the liver (i.e., hepatocytes) at times later than 15 min. The temporal redistribution observed for mannose and N-acetylglucosamine-terminated glycoproteins (ahexosamino-orosomucoid and agalacto-orosomucoid, respectively) in endothelial cells indicated that the 125I-ligands resided in macropinocytic vesicles (1--15 min) before their ultimate residence in dense bodies (15 min). The same 125I-ligands were also localized to structures resembling secondary lysosomes in Kupffer cells. The lysosomal nature of "these organelles" was implied from the appearance of [125I]mono-iodotyrosine in the liver at later times. 125I-beta-glucuronidase followed the same intracellular pathway in both cell types but was not degraded.  相似文献   

8.
The covalent attachment of 125I-calmodulin to canine cardiac sarcolemma has been achieved using the crosslinker dithiobis(succinimidyl propionate). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the crosslinked products revealed three 125I-calmodulin-labeled components of Mr = 125,000, 108,000 and 81,000. That the formation of these three components was Ca-dependent and inhibited by unlabeled calmodulin, or calmodulin antagonists, would indicate that the formation of these components was calmodulin-specific. The size of these 125I-labeled components was unchanged over a range of crosslinker or 125I-calmodulin concentrations indicating that they represent 1:1 complexes between 125I-calmodulin (Mr = 17,000) and Mr = 108,000, 91,000 and 64,000 sarcolemma components respectively. The labeling of these components with 125I-calmodulin was not enhanced when endogenous calmodulin was removed from sarcolemma. The possible identity of the 125I-calmodulin-labeled sarcolemma components is discussed.  相似文献   

9.
Receptor-mediated uptake and degradation of 125I-asialoorosomucoid (ASOR) in human hepatoma HepG2 cells is inhibited by the lysosomotropic amines chloroquine and primaquine. In the absence of added ligand at 37 degrees C, these amines induce a rapid (t1/2 5.5-6 min) and reversible loss of cell surface 125I-ASOR binding sites as well as a rapid decrease in 125I-ASOR uptake and degradation. There is no effect of these amines on the binding of 125I-ASOR to the cell surface at 4 degrees C or on the rate of internalization of prebound 125I-ASOR. The loss of 125I-ASOR surface binding at 37 degrees C is not attributable to altered affinity of ligand-receptor binding. In the presence of added ligand at 37 degrees C, there is a more rapid (t1/2 2.5-3 min) loss of hepatoma cell surface receptors. In addition, the amines inhibit the rapid return of the internalized receptor to the cell surface. We examined the nature of this loss of 125I-ASOR surface binding sites by following the fate of receptor molecules after biosynthetic labeling and after cell surface iodination. At 37 degrees C, chloroquine and primaquine induce a loss of asialoglycoprotein receptor molecules from the hepatoma cell surface to an internal pool.  相似文献   

10.
Translocation is a necessary and rate-limiting step for diphtheria toxin (DT) cytotoxicity. We have reconstituted DT translocation in a cell-free system using endosomes purified from lymphocytes and have demonstrated this using two different probe/cell systems, which provided identical results: 125I-DT/human CEM cells and 125I-transferrin-DT/mouse BW cells. The cell-free DT translocation process was found to be dependent on the presence of the pH gradient endosome (pH 5.3)/cytosol (pH 7). Among the pH equilibrating agents, nigericin (5 microM) was found to be the most effective, inhibiting DT translocation by 88%. An optimum pH value of 7 on the cytosolic side of the membrane (pH gradient approximately 1.7) was determined. ATP per se is not required for DT translocation. 125I-DT translocation was 3-fold more active from late than from early endosomes, probably because of their slightly more acidic pH. Only the A chain of the toxin was found to escape from either 125I-DT/CEM or 125I-transferrin-DT/BW endosomes. Translocation of control endosome labels (125I-transferrin and 125I-horseradish peroxidase) was never observed. We also show that DT receptors present on resistant (mouse) cells block the translocation of the toxin and are responsible for the resistance of these cells to DT.  相似文献   

11.
12.
CA 125: the past and the future   总被引:14,自引:0,他引:14  
Over the last 15 years, substantial progress has been made in understanding the potential and the limitations of the CA 125 assay. More than 2000 papers have been published concerning laboratory and clinical studies of CA 125. The original CA 125 assay utilized the OC 125 antibody that recognizes the CA 125 epitope on a high molecular weight glycoprotein. Despite repeated attempts, the gene encoding the peptide component has not yet been cloned. Monoclonal antibodies have been raised against other epitopes expressed by this molecule, leading to the development of the CA 125-II assay that exhibits less day-to-day variation. Using either assay, elevated levels of CA 125 are detected in a number of benign conditions, including endometriosis. CA 125 is most consistently elevated in epithelial ovarian cancer, but can be expressed in a number of gynecologic (endometrial, fallopian tube) and non-gynecologic (pancreatic, breast, colon and lung) cancers. The best established application of the CA 125 assay is in monitoring ovarian cancer. The rate of decline in CA 125 during primary chemotherapy has been an important independent prognostic factor in several multivariate analyses. Persistent elevation of CA 125 at the time of a second look surgical surveillance procedure predicts residual disease with > 95% specificity. Rising CA 125 values have preceded clinical detection of recurrent disease by at least 3 months in most, but not all studies. Given the modest activity of salvage chemotherapy, this information has not yet impacted on survival. Rising CA 125 during subsequent chemotherapy has been associated with progressive disease in more than 90% of cases. CA 125 may serve as an effective surrogate marker for clinical response in phase II trials of new drugs. CA 125 levels can aid in distinguishing malignant from benign pelvic masses, permitting effective triage of patients for primary surgery. Early detection of ovarian cancer remains the most promising application of CA 125. An algorithm has been developed that estimates the risk of ovarian cancer (ROC) based upon the level and trend of CA 125 values. A major trial has been initiated that uses the ROC algorithm to trigger transvaginal sonography and/or subsequent laparotomy. Such a trial could demonstrate improvement in survival through early detection. This strategy should provide adequate specificity, but sensitivity for early stage disease may not be optimal. In the future, improved sensitivity may be attained using multiple markers and neural network analysis. Most serum tumor markers have been proteins or carbohydrates, but lipid markers such as lysophosphatidic acid deserve evaluation. Genomic and proteonomic technologies should identify additional novel markers.  相似文献   

13.
Treatment of 125I-labelled high-density lipoprotein ([125I]HDL3) with monospecific polyclonal antibodies against apolipoproteins A-I and A-II resulted in a dose-dependent inhibition of the [125I]HDL3 binding to isolated human small intestine epithelial cells by 25% and 50%, respectively. Both antibodies also inhibited intracellular degradation of [125I]HDL3 by 80%. Treatment of enterocytes with polyclonal antibody against apolipoprotein A-I binding protein, a putative HDL receptor, inhibited both binding and degradation of [125I]HDL3 by these cells by 50%. Antibodies to apolipoprotein A-I, A-II and apo A-I-binding protein also inhibited [125I]HDL3 binding to cholesterol-loaded cells.  相似文献   

14.
We have investigated mechanisms involved in integrin-mediated signal transduction in platelets by examining integrin-dependent phosphorylation and activation of a newly identified protein tyrosine kinase, pp125FAK (FAK, focal adhesion kinase). This kinase was previously shown to be localized in focal adhesions in fibroblasts, and to be phosphorylated on tyrosine in normal and Src-transformed fibroblasts. We show that thrombin and collagen activation of platelets causes an induction of tyrosine phosphorylation of pp125FAK and that pp125FAK molecules isolated from activated platelets display enhanced levels of phosphorylation in immune-complex kinase assays. pp125FAK was not phosphorylated on tyrosine after thrombin or collagen treatment of Glanzmann's thrombasthenic platelets deficient in the fibrinogen receptor GPIIb-IIIa, or of platelets pretreated with an inhibitory monoclonal antibody to GP IIb-IIIa. Fibrinogen binding to GP IIb-IIIa was not sufficient to induce pp125FAK phosphorylation because pp125FAK was not phosphorylated on tyrosine in thrombin-treated platelets that were not allowed to aggregate. These results indicate that tyrosine phosphorylation of pp125FAK is dependent on platelet aggregation mediated by fibrinogen binding to the integrin receptor GP IIb-IIIa. The induction of tyrosine phosphorylation of pp125FAK was inhibited in thrombin- and collagen-treated platelets preincubated with cytochalasin D, which prevents actin polymerization following activation. Under all of these conditions, there was a strong correlation between the induction of tyrosine phosphorylation of pp125FAK in vivo and stimulation of the phosphorylation of pp125FAK in vitro in immune-complex kinase assays. This study provides the first genetic evidence that tyrosine phosphorylation of pp125FAK is dependent on integrin-mediated events, and demonstrates that there is a strong correlation between tyrosine phosphorylation of pp125FAK in platelets, and the activation of pp125FAK-associated phosphorylating activity in vitro.  相似文献   

15.
Several lines of evidence indicate that the platelet membrane glycoprotein IIb-IIIa complex (GP IIb-IIIa) is necessary for the expression of platelet fibrinogen receptors. The purpose of the present study was to determine whether purified GP IIb-IIIa retains the properties of the fibrinogen receptor on platelets. Glycoprotein IIb-IIIa was incorporated by detergent dialysis into phospholipid vesicles composed of 30% phosphatidylcholine and 70% phosphatidylserine. 125I-Fibrinogen binding to the GP IIb-IIIa vesicles, as measured by filtration, had many of the characteristics of 125I-fibrinogen binding to whole platelets or isolated platelet plasma membranes: binding was specific, saturable, reversible, time dependent, and Ca2+ dependent. The apparent dissociation constant for 125I-fibrinogen binding to GP IIb-IIIa vesicles was 15 nM, and the maximal binding capacity was 0.1 mol of 125I-fibrinogen/mol of GP IIb-IIIa. 125I-Fibrinogen binding was inhibited by amino sugars, the GP IIb and/or IIIa monoclonal antibody 10E5, and the decapeptide from the carboxyl terminus of the fibrinogen gamma chain. Furthermore, little or no 125I-fibrinogen bound to phospholipid vesicles lacking protein or containing proteins other than GP IIb-IIIa (i.e. bacteriorhodopsin, apolipoprotein A-I, or glycophorin). Also, other 125I-labeled plasma proteins (transferrin, orosomucoid) did not bind to the GP IIb-IIIa vesicles. These results demonstrate that GP IIb-IIIa contains the platelet fibrinogen receptor.  相似文献   

16.
17.
18.
Human secretory component (SC) was isolated from colostral whey, and the binding of 125I-SC to purified IgA and IgM monoclonal proteins was studied using two methods to separate free from immunoglobulin-bound 125I-SC: a) gel filtration on Sephadex G-200, and b) precipitation of 125I-SC-Ig complexes with anti-Ig antibody. Both IgA dimeric proteins and IgM pentamers bound 125I-SC with approximately one SC-binding site per mole of polymer and similar affinity. Assuming a reversible equilibrium, an apparent association constant congruent to 10-8 M-1 was calculated to govern the binding of 125I-SC to immunoglobulin polymers. The assignment of a single association constant may be an oversimplication, particularly for the case of IgA polymers, since evidence was obtained that disulfide bonds were formed in the 125I-SC-IgA complex. Despite the complexity of the reaction, binding of 125I-SC to both IgA and IgM polymers could be analyzed by standard methods of saturation analysis, and both were shown to have a similar affinity for 125I-SC. No differences were noted in the affinity of 125I-SC binding to the IgA1 and IgA2 subclasses. Binding of monomeric IgA and IgM proteins could not be measured and was at least 100-fold lower than that found for IgA and IgM polymers. Complexes of 125I-SC with IgA dimers were presumed to involve covalent bond formation, since these complexes did not dissociate in guanidine-HCl. One IgA2 trimer did not form a covalent bond since it was completely dissociated in guanidine. In contrast, 125I-SC-IgM complexes were dissociated in denaturing solvent, indicating that such complexes were held together primarily by non-covalent bonds. Experiments with (Fc)5 mu isolated by high temperature tryptic digestion of IgM showed that binding of 125I-SC was to the Fc region of IgM proteins. It was suggested that the binding of SC with similar affinity to both IgA and IgM polymers may be important in the biologic function of both these immunoglobulin classes.  相似文献   

19.
We have previously used immunohistochemistry to show that the brain of the hagfish, Myxine glutinosa, contains a rich distribution of natriuretic peptide-immunoreactive elements with the densest distribution occurring in the telencephalon and the diencephalon. In this study, the distribution of (125)I-rat ANP and (125)I-porcine CNP binding sites was determined in the brain of M. glutinosa. The binding pattern of (125)I-rat ANP and (125)I-porcine CNP showed similarities; however, some differences were observed in the olfactory bulb and the caudal brain regions. Specific (125)I-rat ANP and (125)I-porcine CNP binding was observed in the olfactory bulb, outer layers of the pallium, and in regions of the diencephalon. Very little specific binding was observed in the habenula and the primordium hippocampi. In the diencephalon, a distinct zone of specific (125)I-rANP binding separated a region of moderate binding in the lateral regions of the diencephalon from the thalamic and hypothalamic nuclei. Moderate levels of specific (125)I-rANP binding were observed in the mesencephalon and medulla oblongata; little or no (125)I-porcine CNP binding was observed in these regions. The data, in combination with previous immunohistochemical studies, show that the natriuretic peptide system of the hagfish brain is well-developed and suggest that natriuretic peptides have a long evolutionary history as neurotransmitters and/or neuromodulators in the vertebrate brain. J. Exp. Zool. 284:407-413, 1999.  相似文献   

20.
Lysosomotropic amines, such as chloroquine and methylamine, increase the intracellular accumulation of 125I-EGF by inhibiting lysosomal degradation. It has been shown previously that BALB/c-3T3 cells, prelabeled at 4 degrees C with 125I-EGF for 3 h and subsequently chased at 37 degrees C in the presence of chloroquine, internalized the surface bound 125I-EGF which was subsequently released into the extracellular medium in a high molecular weight form which co-migrated with native 125I-EGF. The secreted 125I-EGF rebound to the cells from which it was released more efficiently than does peptide in the extracellular media. We now show that when the BALB/c-3T3 cells were prelabeled at 37 degrees C for 2 h in the presence of chloroquine, the internalized 125I-EGF released into the medium was in a high molecular weight form which co-migrated with native 125I-EGF and did not rebind anymore efficiently than did peptide in the extracellular media. This lack of rebinding was not due to an alteration in the 125I-EGF molecule since it was still capable of rebinding to naive A431 cells, nor was it due to the exhaustion of EGF receptors on the BALB/c-3T3 cells. The inhibition of rebinding was observed only when the cells were treated with EGF in the presence of chloroquine, and was not due to a general down-regulation of membrane receptors. The differences between the rebinding of 125I-EGF at 4 degrees C and 37 degrees C suggest that EGF may be processed via different pathways in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号