首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few studies have focused on the early colonization of New Caledonia by insects, after the re-emergence of the main island, 37 Myr ago. Here we investigate the mode and tempo of evolution of a new endemic cricket genus, Pixibinthus, recently discovered in southern New Caledonia. First we formally describe this new monotypic genus found exclusively in the open shrubby vegetation on metalliferous soils, named ‘maquis minier’, unique to New Caledonia. We then reconstruct a dated molecular phylogeny based on five mitochondrial and four nuclear loci in order to establish relationships of Pixibinthus within Eneopterinae crickets. Pixibinthus is recovered as thesister clade of the endemic genus Agnotecous, mostly rainforest-dwellers. Dating results show that the island colonization by their common ancestor occurred around 34.7 Myr, shortly after New Caledonia re-emergence. Pixibinthus and Agnotecous are then one of the oldest insect lineages documented so far for New Caledonia. This discovery highlights for the first time two clear-cut ecological specializations between sister clades, as Agnotecous is mainly found in rainforests with 19 species, whereas Pixibinthus is found in open habitats with a single documented species. The preference of Pixibinthus for open habitats and of Agnotecous for forest habitats nicely fits an acoustic specialization, either explained by differences in body size or in acoustic properties of their respective habitats. We hypothesize that landscape dynamics, linked to major past climatic events and recent change in fire regimes are possible causes for both present-day low diversity and rarity in genus Pixibinthus. The unique evolutionary history of this old New Caledonian lineage stresses the importance to increase our knowledge on the faunal biodiversity of ‘maquis minier’, in order to better understand the origin and past dynamics of New Caledonian biota.  相似文献   

2.
Tyrant flycatchers constitute a substantial component of the land bird fauna in all South American habitats. Past interpretations of the morphological and ecological evolution in the group have been hampered by the lack of a well‐resolved hypothesis of their phylogenetic interrelationships. Here, we present a well‐resolved phylogeny based on DNA sequences from three nuclear introns for 128 taxa. Our results confirm much of the overall picture of Tyrannidae relationships, and also identify several novel relationships. The genera Onychorhynchus, Myiobius and Terenotriccus are placed outside Tyrannidae and may be more closely related to Tityridae. Tyrannidae consists of two main lineages. An expanded pipromorphine clade includes flatbills, tody‐tyrants and antpipits, and also Phylloscartes and Pogonotriccus. The spadebills, Neopipo and Tachuris are their closest relatives. The remainder of the tyrant flycatchers forms a well‐supported clade, subdivided in two large subclades, which differ consistently in foraging behaviour, the perch‐gleaning elaeniines and the sallying myiarchines, tyrannines and fluvicolines. A third clade is formed by the genera Myiotriccus, Pyrrhomyias, Hirundinea and three species currently placed in Myiophobus. Ancestral habitat reconstruction and divergence date estimation suggest that early divergence events in Tyrannida took place in a humid forest environment during the Oligocene. Large‐scale diversification in open habitats is confined to the clade consisting of the elaeniines, myiarchines, tyrannines and fluvicolines. This radiation correlates in time to the expansion of semi‐open and open habitats from the mid‐Miocene (c. 15 Mya) onwards. The pipromorphine, elaeniine and myiarchine–tyrannine–fluvicoline clades each employ distinct foraging strategies (upward striking, perch‐gleaning and sallying, respectively), but the degree of diversity in morphology and microhabitat exploitation is markedly different between these clades. While the pipromorphines and elaeniines each are remarkably homogenous in morphology and exploit a restricted range of microhabitats, the myiarchine–tyrannine–fluvicoline clade is more diverse in these respects. This greater ecological diversity, especially as manifested in their success in colonizing a wider spectrum of open habitats, appears to be connected to a greater adaptive flexibility of the search‐and‐sally foraging behaviour.  相似文献   

3.
We investigated the phylogenetic relationships of 12 species within a single genus of neotropical passerine (Poospiza) using 849 bp (283 codons) of the cytochrome b mitochondrial gene. We further explored evolutionary affinities of these taxa using sequence from an additional 47 thraupine (tanagers) and 7 emberizine (sparrows and buntings) genera, members of the predominantly New World family Emberizidae. Poospiza have traditionally been considered part of the emberizine radiation. However, our analyses suggest that members of this genus are more closely related to some thraupine lineages than they are to the other neotropical emberizine genera included in our study (Atlapetes, Embernagra, Melopyrrha, Phrygilus, Saltatricula, Tiaris). Although member taxa are closely related, the genus Poospiza appears to be paraphyletic with representatives of 6 thraupine genera (Cnemoscopus, Cypsnagra, Hemispingus, Nephelornis, Pyrrhocoma, Thylpopsis) interspersed among four well-supported Poospiza clades. The majority of species within this Poospiza–thraupine clade have geographic ranges that are exclusive to, or partially overlap with, the Andes Mountains. It is probable that these mountains have played an important role in driving cladogenesis within this group. Sequence divergence (transversions only; mean 4.7 ± 1.3%) within the clade suggests that much of this diversification occurred within the late Miocene and Pliocene, a period coincident with major orogenic activity in central-western South America.  相似文献   

4.
Legume subfamily Caesalpinioideae accommodates approximately 2250 species in 171 genera which traditionally are placed in four tribes: Caesalpinieae, Cassieae, Cercideae and Detarieae. The monophyletic tribe Detarieae includes the Amherstieae subclade which contains about 55 genera. Our knowledge of the relationships among those genera is good in some cases but for many other genera phylogenetic relationships have been unclear. The non-monophyletic nature of at least two amherstioid genera, Cynometra and Hymenostegia has also complicated the picture. During the course of a multi-disciplinary study of Hymenostegia sensu lato, which includes phylogenetic analyses based on matK and trnL data, we have recovered the “Scorodophloeus clade”, an exclusively tropical African clade of four genera which includes the eponymous genus Scorodophloeus, two undescribed generic segregates of Hymenostegia sensu lato, and the previously unsampled rare monospecific genus Micklethwaitia from Mozambique. Zenkerella is suggested as a possible sister genus to the Scorodophloeus clade. A distribution map is presented of the seven species that belong to the Scorodophloeus clade.  相似文献   

5.
Dung beetle species belonging to the worldwide tribe Canthonini (Scarabaeidae) and occurring in Madagascar are all endemic to that island. The Malagasy Canthonini form three lineages, one of which is the group Longitarsi that includes five genera. The phylogenetic relationships of Malagasy Canthonini are not fully resolved and only few species of Longitarsi have been included in previous studies. Here we infer the phylogenetic relationships within the Longitarsi group using molecular data and together with morphological examination revise the systematics of the group. The five genera of the Longitarsi group form one monophyletic clade and thus we suggest the synonymization of the younger genera Sikorantus, Phacosomoides, Madaphacosoma and Aleiantus; with the oldest genus belonging to this clade Epactoides. We describe two new species: Epactoides jounii sp. n and Epactoides mangabeensis sp. n. Most of the species of Longitarsi inhabit the eastern rainforests, with very low local species diversity and highly restricted geographical ranges. In the group Longitarsi four species are wingless. The loss of wings has evolved at least twice, at high altitude along the mountain range.  相似文献   

6.
Phylogenetic relationships among the true finches (Fringillidae) have been confounded by the recurrence of similar plumage patterns and use of similar feeding niches. Using a dense taxon sampling and a combination of nuclear and mitochondrial sequences we reconstructed a well resolved and strongly supported phylogenetic hypothesis for this family. We identified three well supported, subfamily level clades: the Holoarctic genus Fringilla (subfamly Fringillinae), the Neotropical Euphonia and Chlorophonia (subfamily Euphoniinae), and the more widespread subfamily Carduelinae for the remaining taxa. Although usually separated in a different family-group taxon (Drepanidinae), the Hawaiian honeycreepers are deeply nested within the Carduelinae and sister to a group of Asian Carpodacus. Other new relationships recovered by this analysis include the placement of the extinct Chaunoproctus ferreorostris as sister to some Asian Carpodacus, a clade combining greenfinches (Carduelis chloris and allies), Rhodospiza and Rhynchostruthus, and a well-supported clade with the aberrant Callacanthis and Pyrrhoplectes together with Carpodacus rubescens. Although part of the large Carduelis-Serinus complex, the poorly known Serinus estherae forms a distinct lineage without close relatives. The traditionally delimited genera Carduelis, Serinus, Carpodacus, Pinicola and Euphonia are polyphyletic or paraphyletic. Based on our results we propose a revised generic classification of finches and describe a new monotypic genus for Carpodacus rubescens.  相似文献   

7.
The genus Basidiophora has long been thought to contain only two species, Basidiophora entospora and Basidiophora kellermanii, the latter of which was transferred to a newly described monotypic genus, Benua, at the end of the twentieth century, leaving Basidiophora monotypic, despite its vast host range, including a member of the Eupatoriae and several genera in the subfamily Asteroideae of the Asteraceae. Using historic herbarium specimens, we demonstrate that while Benua kellermanii is genetically highly homogenous, at least seven distinct phylogenetic lineages exist within Basidiophora, which, based on sequence divergence, most likely constitute hitherto overlooked cryptic species. As the specimens from Symphyotrichum novae-angliae formed a well-supported clade with little variation, we consider Peronospora simplex described on this host as an independent species, which is transferred to the genus Basidiophora in this study. The phylogeny of the pathogens corresponds well to the phylogeny of the respective hosts, which is unusual in downy mildews and might hint at clade-limited colonisation and subsequent radiation to closely related hosts of Astereae or even suggest a co-evolution scenario. Our findings provide further evidence that species with assumed broad host ranges should be thoroughly evaluated with respect to their phylogenetic relationships, especially in biotrophic genera with only limited morphological diversity. In some cases, host specificity of genetically divergent lineages might be the only phenotypic trait remaining for species delimitation. Future detailed morphological comparisons are needed to reveal if the seemingly cryptic species of Basidiophora can be distinguished based on subtle morphological characteristics.  相似文献   

8.
9.
Phylogenetic relationships of the subfamily Combretoideae (Combretaceae) were studied based on DNA sequences of nuclear ribosomal internal transcribed spacer (ITS) regions, the plastid rbcL gene and the intergenic spacer between the psaA and ycf3 genes (PY-IGS), including 16 species of eight genera within two traditional tribes of Combretoideae, and two species of the subfamily Strephonematoideae of Combretaceae as outgroups. Phylogenetic trees based on the three data sets (ITS, rbcL, and PY-IGS) were generated by using maximum parsimony (MP) and maximum likelihood (ML) analyses. Partition-homogeneity tests indicated that the three data sets and the combined data set are homogeneous. In the combined phylogenetic trees, all ingroup taxa are divided into two main clades, which correspond to the two tribes Laguncularieae and Combreteae. In the Laguncularieae clade, two mangrove genera, Lumnitzera and Laguncularia, are shown to be sister taxa. In the tribe Combreteae, two major clades can be classified: one includes three genera Quisqualis, Combretum and Calycopteris, within which the monophyly of the tribe Combreteae sensu Engler and Diels including Quisqualis and Combretum is strongly supported, and this monophyly is then sister to the monotypic genus Calycopteris; another major clade includes three genera Anogeissus, Terminalia and Conocarpus. There is no support for the monophyly of Terminalia as it forms a polytomy with Anogeissus. This clade is sister to Conocarpus. Electronic Publication  相似文献   

10.
Pollen morphology has played a major role in elucidating infrafamiliar‐level systematics and evolution within Annonaceae, especially within the African genera. The Monodora clade is composed of five genera, Asteranthe, Hexalobus, Isolona, Monodora and Uvariastrum, which are restricted to Africa and contain together c. 50 species. A molecular phylogeny of the family showed that the monophyly of the Monodora clade is strongly supported and that it is part of a larger clade of 11 African genera. In order to support classification a detailed survey was made of the pollen morphological variation within the Monodora clade, using scanning and transmission electron microsopy. For the two most species‐rich genera, Isolona and Monodora, a molecular species‐level phylogeny was used to assess the taxonomic usefulness of the pollen characters. The survey showed a wide range of pollen morphological diversity. The most conspicuous variation concerned the occurrence of monads without a thicker outer foliation in the basal exine layer in Isolona in contrast to tetrads with a thicker outer foliation in Asteranthe, Hexalobus, Monodora and Uvariastrum. At the infrageneric level, Hexalobus, Isolona and Monodora showed the largest diversity, with various pollen types based on tectum morphology. Hexalobus is exceptional with three types within only five species. The pollen types defined in this study are hardly useful in characterizing major groups identified within both Isolona and Monodora, but they do illustrate relationships within smaller groups.  相似文献   

11.
Relative to its diversity (34 genera, 700 species), Scolopendromorpha has been undersampled in molecular phylogenetic analyses compared with the other chilopod orders. Previous analyses based on morphology have not resolved several key controversies in systematics and evolutionary morphology unambiguously. Here we apply new molecular and morphological data to scolopendromorph phylogenetics, with a focus on the evolution of blindness. The taxonomic sample includes 19 genera, many lacking previous molecular data, and diverse, cosmopolitan genera of Scolopendridae are sampled by multiple species. Phylogenetic analysis with Direct Optimization used 94 morphological characters and ca. 4.5 kb of sequence data from two nuclear (18S and 28S rRNA) and two mitochondrial (16S rRNA and COI) loci. A single most‐parsimonious cladogram selected after sensitivity analyses resolves Scolopendromorpha as monophyletic, and divides it into a blind clade of three families (Plutoniumidae, Cryptopidae, Scolopocryptopidae) and its ocellate sister group, Scolopendridae. Some species‐rich, cosmopolitan genera (Cormocephalus, Otostigmus, Scolopendra) in Scolopendridae are non‐monophyletic, and in several instances (e.g. New and Old World Scolopendra) relationships are more congruent with geographical distributions than with traditional classifications. The tribe Asanadini is particularly subject to parameter‐sensitivity, nesting in the combined analysis within Scolopendrini but as sister to all other Scolopendrinae for molecular data alone. The total‐evidence tree unambiguously optimizes trunk segmentation: a 23‐segmented trunk has a single origin in the blind clade. © The Willi Hennig Society 2011.  相似文献   

12.
Vorticella includes more than 100 currently recognized species and represents one of the most taxonomically challenging genera of ciliates. Molecular phylogenetic analysis of Vorticella has been performed so far with only sequences coding for small subunit ribosomal RNA (SSU rRNA); only a few of its species have been investigated using other genetic markers owing to a lack of similar sequences for comparison. Consequently, phylogenetic relationships within the genus remain unclear, and molecular discrimination between morphospecies is often difficult because most regions of the SSU rRNA gene are too highly conserved to be helpful. In this paper, we move molecular systematics for this group of ciliates to the infrageneric level by sequencing additional molecular markers—fast-evolving internal transcribed spacer (ITS) regions—in a broad sample of 66 individual samples of 28 morphospecies of Vorticella collected from Asia, North America and Europe. Our phylogenies all featured two strongly supported, highly divergent, paraphyletic clades (I, II) comprising the morphologically defined genus Vorticella. Three major lineages made up clade I, with a relatively well-resolved branching order in each one. The marked divergence of clade II from clade I confirms that the former should be recognized as a separate taxonomic unit as indicated by SSU rRNA phylogenies. We made the first attempt to elucidate relationships between species in clade II using both morphological and multi-gene approaches, and our data supported a close relationship between some morphospecies of Vorticella and Opisthonecta, indicating that relationships between species in the clade are far more complex than would be expected from their morphology. Different patterns of helix III of ITS2 secondary structure were clearly specific to clades and subclades of Vorticella and, therefore, may prove useful for resolving phylogenetic relationships in other groups of ciliates.  相似文献   

13.
The viviparous sea snakes (Hydrophiinae: Hydrophiini) comprise a young but morphologically and ecologically diverse clade distributed throughout the Indo-Pacific. Despite presenting a very promising model for marine diversification studies, many relationships among the 62 species and 16 genera in Hydrophiini remain unresolved. Here, we extend previous taxonomic and genomic sampling for Hydrophiini using three mitochondrial fragments and five nuclear loci for multiple individuals of 39 species in 15 genera. Our results highlight many of the impediments to inferring phylogenies in recent rapid radiations, including low variation at all five nuclear markers, and conflicting relationships supported by mitochondrial and nuclear trees. However, concatenated Bayesian and likelihood analyses, and a multilocus coalescent tree, recovered concordant support for primary clades and several previously unresolved inter-specific groupings. The Aipysurus group is monophyletic, with egg-eating specialists forming separate, early-diverging lineages. All three monotypic semi-aquatic genera (Ephalophis, Parahydrophis and Hydrelaps) are robustly placed as early diverging lineages along the branch leading to the Hydrophis group, with Ephalophis recovered as sister to Parahydrophis. The molecular phylogeny implies extensive evolutionary convergence in feeding adaptations within the Hydrophis group, especially the repeated evolution of small-headed (microcephalic) forms. Microcephalophis (Hydrophis) gracilis is robustly recovered as a relatively distant sister lineage to all other sampled Hydrophis group species, here termed the ‘core Hydrophis group’. Within the ‘core Hydrophis group’, Hydrophis is recovered as broadly paraphyletic, with several other genera nested within it (Pelamis, Enhydrina, Astrotia, Thalassophina, Acalyptophis, Kerilia, Lapemis, Disteira). Instead of erecting multiple new genera, we recommend dismantling the latter (mostly monotypic) genera and recognising a single genus, Hydrophis Latreille 1802, for the core Hydrophis group. Estimated divergence times suggest that all Hydrophiini last shared a common ancestor ~6 million years ago, but that the majority of extant lineages diversified over the last ~3.5 million years. The core Hydrophis group is a young and rapidly speciating clade, with 26 sampled species and 9 genera and dated at only ~1.5–3 million years old.  相似文献   

14.
Recently, molecular and ultrastructural analyses have resulted in revised phylogenetic hypotheses in the phylum Chytridiomycota. The order Chytridiales, once considered monophyletic, has been subdivided into several new orders. However, the most recent analyses indicate that the emended Chytridiales is also polyphyletic. One monophyletic lineage in Chytridiales includes Cladochytrium, Nowakowskiella, and five other genera. Many of the chytrids in this clade have often been observed growing on decaying plant tissue and other cellulosic substrates from aquatic habitats and moist soils. In this study we analysed combined nu-rRNA gene sequences (partial SSU and LSU) of 30 isolates from North American aquatic and soil samples. Based on molecular monophyly and zoospore ultrastructure, we designate this clade as a new order, Cladochytriales, which includes four families: Cladochytriaceae, Nowakowskiellaceae, Septochytriaceae fam. nov., and Endochytriaceae.  相似文献   

15.
Two species of Suiriri (Aves: Tyrannidae) inhabit semi‐open habitats in South America: the polytypic Suiriri Flycatcher (S. suiriri) and the monotypic Chapada Flycatcher (S. affinis). The phylogenetic relationship between these congeneric species has never been investigated in detail. Here we used molecular tools—three nuclear introns and two mitochondrial genes—to investigate the systematic position of the Chapada Flycatcher, comparing the results found with morphological and behavioral data. We found that the polytypic Suiriri Flycatcher to be monophyletic and that it is included in a clade of Elaeniini flycatchers including Phyllomyias, Phaeomyias, and Capsiempis among other genera. The Chapada Flycatcher, on the other hand, is a member of the Fluvicolini, sister to Sublegatus, and should be allocated on its own monospecific genus, which we herein describe. We suggest that social mimicry is responsible for the remarkable convergence in size, shape, plumage coloration, and behavior in the adults of the Suiriri Flycatcher and the Chapada Flycatcher.  相似文献   

16.
Cariniana as previously circumscribed is a genus of 16 species restricted to neotropical forest habitats on well-drained sites. A phylogenetic analysis of the genus based on 33 morphological and anatomical characters was undertaken. The results show that Cariniana consists of two clades: the Allantoma/Cariniana decandra clade includes Allantoma lineata and seven species of actinomorphic-flowered Cariniana and is characterized by 5-merous flowers, carnose petals, incurved petal apex, scarcely lobed calyces, eucamptodromous secondary veins, dichotomizing venation, and poorly developed areolation; the C. legalis clade is made up of nine species and is characterized by an obliquely zygomorphic androecium, reticulate tertiary venation, and anomocytic stomata. The actinomorphic-flowered Cariniana are more closely related to the monotypic Allantoma lineata than they are to the species of the C. legalis clade. In order to reflect these relationships, Cariniana is divided into two genera: species in the C. legalis clade, which includes the generic type C. legalis, remain as Cariniana while species of Cariniana in the Allantoma/Cariniana decandra clade are transferred to Allantoma. The following new combinations are proposed: Allantoma decandra, A. integrifolia, A. kuhlmannii, A. pluriflora (a nomen novum for Cariniana multiflora because Allantoma multiflora is a synonym of Couratari multiflora), A. pachyantha, A. pauciramosa, and A. uaupensis.  相似文献   

17.
The phylum Gastrotricha includes about 700 species. They are small worm‐like organisms abundant among marine and freshwater meiobenthos. In spite of their ubiquity, diversity and relative abundance, phylogenetic relationships of these animals remain enigmatic due to the conflicting results of morphological and molecular cladistic analyses. Also unclear are the alliances within the phylum. In order to best estimate the position of Gastrotricha among the Metazoa and to shed some light on the ingroup phylogenetic relationships, small subunit (SSU) ribosomal DNA (rDNA) from 15 species of Chaetonotida (eight genera) and 28 species of Macrodasyida (26 genera) were included in an alignment of 50 metazoan taxa representing 26 phyla. Of the gastrotrich SSU rDNA sequences, eight are new and, along with published sequences represent eight families, including the five marine most speciose. Gastrotricha were resolved within a monophyletic Lophotrochozoa as part of a clade including Micrognathozoa, Rotifera and Cycliophora. The Gnathostomulida were sister to this clade. Nodal support was low for all of these relationships except the grouping of the Micrognathozoa, Rotifera and Cycliophora. Bayesian inference resolved the Gastrotricha as monophyletic with weak nodal support; the Macrodasyida were resolved as paraphyletic with many basal nodes poorly supported. Within the Chaetonotida, the monotypic Multitubulatina Neodasys was found in alliance with the macrodasyidan Urodasys while all the Paucitubulatina were found to form a single, well‐supported clade, with Musellifer as the most basal member. Among the more densely sampled Macrodasyida the Lepidodasyidae and Macrodasyidae were each found to be polyphyletic while monophyly was well supported for the Turbanellidae and Thaumastodermatidae. The congruence of our results with those of the cladistic analysis based on morphological traits provides confidence about the value of each dataset, and calls for widening of the research to include additional taxa of particular phylogenetic significance such as the Dactylopodolidae, Diuronotus, Heteroxenotrichula and Draculiciteria. The study highlights the problems in working with small species, the need for voucher specimens and the confused taxonomic status and membership of various gastrotrich families.  相似文献   

18.

Background

Chaetognatha are a phylum of marine carnivorous animals which includes more than 130 extant species. The internal systematics of this group have been intensively debated since it was discovered in the 18th century. While they can be traced back to the earlier Cambrian, they are an extraordinarily homogeneous phylum at the morphological level - a fascinating characteristic that puzzled many a scientist who has tried to clarify their taxonomy. Recent studies which have attempted to reconstruct a phylogeny using molecular data have relied on single gene analyses and a somewhat restricted taxon sampling. Here, we present the first large scale phylogenetic study of Chaetognatha based on a combined analysis of nearly the complete ribosomal RNA (rRNA) genes. We use this analysis to infer the evolution of some morphological characters. This work includes 36 extant species, mainly obtained from Tara Oceans Expedition 2009/2012, that represent 16 genera and 6 of the 9 extant families.

Results

Cladistic and phenetic analysis of morphological characters, geometric morphometrics and molecular small subunit (SSU rRNA) and large subunit (LSU rRNA) ribosomal genes phylogenies provided new insights into the relationships and the evolutionary history of Chaetognatha. We propose the following clade structure for the phylum: (((Sagittidae, Krohnittidae), Spadellidae), (Eukrohniidae, Heterokrohniidae)), with the Pterosagittidae included in the Sagittidae. The clade (Sagittidae, Krohnittidae) constitutes the monophyletic order of Aphragmophora. Molecular analyses showed that the Phragmophora are paraphyletic. The Ctenodontina/Flabellodontina and Syngonata/Chorismogonata hypotheses are invalidated on the basis of both morphological and molecular data. This new phylogeny also includes resurrected and modified genera within Sagittidae.

Conclusions

The distribution of some morphological characters traditionally used in systematics and for species diagnosis suggests that the diversity in Chaetognatha was produced through a process of mosaic evolution. Moreover, chaetognaths have mostly evolved by simplification of their body plan and their history shows numerous convergent events of losses and reversions. The main morphological novelty observed is the acquisition of a second pair of lateral fins in Sagittidae, which represents an adaptation to the holoplanktonic niche.
  相似文献   

19.
Diversification of avifaunas associated with savannah and steppes appears to correlate with open habitats becoming available, starting in the Miocene. Few comparative analyses exist for families for which all species are predominantly adapted to these habitats. One such group is Laniidae (Passeriformes), which are small‐ to medium‐sized predatory passerines known for their distinctive behaviour of impaling prey. We used multispecies coalescent‐based and concatenation methods to provide the first complete species‐level phylogeny for this group, as well as an estimate of the timing of diversification. Our analyses indicate that Laniidae as currently delimited is not monophyletic, as the genus Eurocephalus is not closely related to the remaining species. The two species currently assigned to the monotypic genera Urolestes and Corvinella are part of the same clade as the Lanius species, and we propose that they are included in the genus Lanius, making Laniidae monogeneric. The initial diversification of the clade is inferred to have occurred very rapidly, starting about 7.2–9.1 million years ago, timing depending on calibration method, but in either case coinciding with the expansion of C4 grasses. An African origin is inferred in the biogeographic analysis. In the redefined Laniidae, cooperative breeding is inferred to be restricted to a single clade, characterized by gregarious behaviour and rallying. Migratory behaviour evolved multiple times within the family.  相似文献   

20.

Background  

The family Accipitridae (hawks, eagles and Old World vultures) represents a large radiation of predatory birds with an almost global distribution, although most species of this family occur in the Neotropics. Despite great morphological and ecological diversity, the evolutionary relationships in the family have been poorly explored at all taxonomic levels. Using sequences from four mitochondrial genes (12S, ATP8, ATP6, and ND6), we reconstructed the phylogeny of the Neotropical forest hawk genus Leucopternis and most of the allied genera of Neotropical buteonines. Our goals were to infer the evolutionary relationships among species of Leucopternis, estimate their relationships to other buteonine genera, evaluate the phylogenetic significance of the white and black plumage patterns common to most Leucopternis species, and assess general patterns of diversification of the group with respect to species' affiliations with Neotropical regions and habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号