首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Segment lengths are known to influence walking kinematics and muscle activity patterns. During level walking at the same speed, taller individuals take longer, slower strides than shorter individuals. Based on this, we sought to determine if segment lengths also influenced hill walking strategies. We hypothesized that individuals with longer segments would display more joint flexion going uphill and more extension going downhill as well as greater lateral gastrocnemius and vastus lateralis activity in both directions. Twenty young adults of varying heights (below 155 cm to above 188 cm) walked at 1.25 m/s on a level treadmill as well as 6° and 12° up and downhill slopes while we collected kinematic and muscle activity data. Subsequently, we ran linear regressions for each of the variables with height, leg, thigh, and shank length. Despite our population having twice the anthropometric variability, the level and hill walking patterns matched closely with previous studies. While there were significant differences between level and hill walking, there were few hill walking variables that were correlated with segment length. In support of our hypothesis, taller individuals had greater knee and ankle flexion during uphill walking. However, the majority of the correlations were between tibialis anterior and lateral gastrocnemius activities and shank length. Contrary to our hypothesis, relative step length and muscle activity decreased with segment length, specifically shank length. In summary, it appears that individuals with shorter segments require greater propulsion and toe clearance during uphill walking as well as greater braking and stability during downhill walking.  相似文献   

2.
3.
Healthy young adults transition between level and hill surfaces of various angles while walking at fluctuating speeds. These surface transitions have the potential to decrease dynamic balance in both the anterior-posterior and medial-lateral directions. Hence, the purpose of the current study was to analyze modifications in temporal-spatial parameters during hill walking transitions. We hypothesized that in comparison with level walking, the transition strides would indicate the adoption of a distinct gait strategy with a greater base of support. Thirty-four participants completed level and hill trials on a walkway with a 15-degree portable ramp apparatus. We collected data during 4 transition strides between level and ramp surfaces. In support of our hypothesis, compared with level walking, the base of support was 20% greater during 3 out of the 4 transition strides. In short, our results illustrate that healthy young adults did adopt a distinct gait strategy different from both level and hill walking during transitions strides.  相似文献   

4.
Biomechanics of overground vs. treadmill walking in healthy individuals.   总被引:1,自引:0,他引:1  
The goal of this study was to compare treadmill walking with overground walking in healthy subjects with no known gait disorders. Nineteen subjects were tested, where each subject walked on a split-belt instrumented treadmill as well as over a smooth, flat surface. Comparisons between walking conditions were made for temporal gait parameters such as step length and cadence, leg kinematics, joint moments and powers, and muscle activity. Overall, very few differences were found in temporal gait parameters or leg kinematics between treadmill and overground walking. Conversely, sagittal plane joint moments were found to be quite different, where during treadmill walking trials, subjects demonstrated less dorsiflexor moments, less knee extensor moments, and greater hip extensor moments. Joint powers in the sagittal plane were found to be similar at the ankle but quite different at the knee and hip joints. Differences in muscle activity were observed between the two walking modalities, particularly in the tibialis anterior throughout stance, and in the hamstrings, vastus medialis and adductor longus during swing. While differences were observed in muscle activation patterns, joint moments and joint powers between the two walking modalities, the overall patterns in these behaviors were quite similar. From a therapeutic perspective, this suggests that training individuals with neurological injuries on a treadmill appears to be justified.  相似文献   

5.
6.
Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed.  相似文献   

7.
Although numerous studies have investigated the effects of load carriage on gait mechanics, most have been conducted on active military men. It remains unknown whether men and women adapt differently to carrying load. The purpose of this study was to compare the effects of load carriage on gait mechanics, muscle activation patterns, and metabolic cost between men and women walking at their preferred, unloaded walking speed. We measured whole body motion, ground reaction forces, muscle activity, and metabolic cost from 17 men and 12 women. Subjects completed four walking trials on an instrumented treadmill, each five minutes in duration, while carrying no load or an additional 10%, 20%, or 30% of body weight. Women were shorter (p<0.01), had lower body mass (p=0.01), and had lower fat-free mass (p=0.02) compared to men. No significant differences between men and women were observed for any measured gait parameter or muscle activation pattern. As load increased, so did net metabolic cost, the duration of stance phase, peak stance phase hip, knee, and ankle flexion angles, and all peak joint extension moments. The increase in the peak vertical ground reaction force was less than the carried load (e.g. ground force increased approximately 6% with each 10% increase in load). Integrated muscle activity of the soleus, medial gastrocnemius, lateral hamstrings, vastus medialis, vastus lateralis, and rectus femoris increased with load. We conclude that, despite differences in anthropometry, men and women adopt similar gait adaptations when carrying load, adjusted as a percentage of body weight.  相似文献   

8.
The goal of this study was to identify which muscle activation patterns and gait features best predict the metabolic cost of inclined walking. We measured muscle activation patterns, joint kinematics and kinetics, and metabolic cost in sixteen subjects during treadmill walking at inclines of 0%, 5%, and 10%. Multivariate regression models were developed to predict the net metabolic cost from selected groups of the measured variables. A linear regression model including incline and the squared integrated electromyographic signals of the soleus and vastus lateralis explained 96% of the variance in metabolic cost, suggesting that the activation patterns of these large muscles have a high predictive value for metabolic cost. A regression model including only the peak knee flexion angle during stance phase, peak knee extension moment, peak ankle plantarflexion moment, and peak hip flexion moment explained 89% of the variance in metabolic cost; this finding indicates that kinematics and kinetics alone can predict metabolic cost during incline walking. The ability of these models to predict metabolic cost from muscle activation patterns and gait features points the way toward future work aimed at predicting metabolic cost when gait is altered by changes in neuromuscular control or the use of an assistive technology.  相似文献   

9.
Walking with increased ankle pushoff decreases hip muscle moments   总被引:1,自引:1,他引:0  
In a simple bipedal walking model, an impulsive push along the trailing limb (similar to ankle plantar flexion) or a torque at the hip can power level walking. This suggests a tradeoff between ankle and hip muscle requirements during human gait. People with anterior hip pain may benefit from walking with increased ankle pushoff if it reduces hip muscle forces. The purpose of our study was to determine if simple instructions to alter ankle pushoff can modify gait dynamics and if resulting changes in ankle pushoff have an effect on hip muscle requirements during gait. We hypothesized that changes in ankle kinetics would be inversely related to hip muscle kinetics. Ten healthy subjects walked on a custom split-belt force-measuring treadmill at 1.25m/s. We recorded ground reaction forces and lower extremity kinematic data to calculate joint angles and internal muscle moments, powers and angular impulses. Subjects walked under three conditions: natural pushoff, decreased pushoff and increased pushoff. For the decreased pushoff condition, subjects were instructed to push less with their feet as they walked. Conversely, for the increased pushoff condition, subjects were instructed to push more with their feet. As predicted, walking with increased ankle pushoff resulted in lower peak hip flexion moment, power and angular impulse as well as lower peak hip extension moment and angular impulse (p<0.05). Our results emphasize the interchange between hip and ankle kinetics in human walking and suggest that increased ankle pushoff during gait may help to compensate for hip muscle weakness or injury and reduce hip joint forces.  相似文献   

10.
Post-stroke individuals often exhibit abnormal kinematics, including increased pelvic obliquity and hip abduction coupled with reduced knee flexion. Prior examinations suggest these behaviors are expressions of abnormal cross-planar coupling of muscle activity. However, few studies have detailed the impact of gait-retraining paradigms on three-dimensional joint kinematics. In this study, a cross-tilt walking surface was examined as a novel gait-retraining construct. We hypothesized that relative to baseline walking kinematics, exposure to cross-tilt would generate significant changes in subsequent flat-walking joint kinematics during affected limb swing. Twelve post-stroke participants walked on a motorized treadmill platform during a flat-walking condition and during a 10-degree cross-tilt with affected limb up-slope, increasing toe clearance demand. Individuals completed 15 min of cross-tilt walking with intermittent flat-walking catch trials and a final washout period (5 min). For flat-walking conditions, we examined changes in pelvic obliquity, hip abduction/adduction and knee flexion kinematics at the spatiotemporal events of swing initiation and toe-off, and the kinematic event of maximum angle during swing. Pelvic obliquity significantly reduced at swing initiation and maximum obliquity in the final catch trial and late washout. Knee flexion significantly increased at swing initiation, toe-off, and maximum flexion across catch trials and late washout. Hip abduction/adduction was not significantly influenced following cross-tilt walking. Significant decrease in the rectus femoris and medial hamstrings muscle activity across catch trials and late washout was observed. Exploiting the abnormal features of post-stroke gait during retraining yielded desirable changes in muscular and kinematic patterns post-training.  相似文献   

11.
The aims of the present study were to assess the volume of physical activity (PA) throughout pregnancy in normal-weight vs overweight/obese women, and to investigate which factors may predict compliance to PA recommendations in these women throughout gestation. In 236 pregnant women, 177 normal-weight and 59 overweight/obese (median[IQR] BMI 21.2[19.9–22.8] vs 26.5[25.5–29.0] kg/m2, respectively), medical history, anthropometry and clinical data, including glucose tolerance, were recorded. In addition, pre-pregnancy PA was estimated by the Kaiser questionnaire, while total, walking and fitness/sport PA during pregnancy were assessed by the Physical Activity Scale for the Elderly (PASE) modified questionnaire, at 14–16, 24–28 and 30–32 weeks of gestation. PA volume was very low in the first trimester of pregnancy in both groups of women. However, it increased in the second and third trimester in normal-weight, but not in overweight/obese subjects. Higher pre-pregnancy PA was a statistically significant predictor of being physically active (>150 minutes of PA per week) during all trimesters of gestation. In conclusion, physical activity volume is low in pregnant women, especially in overweight/obese subjects. PA volume increases during pregnancy only in normal-weight women. Pre-pregnancy PA is an independent predictor of achieving a PA volume of at least 150 min per week during pregnancy.  相似文献   

12.
A three-dimensional dynamic simulation of walking was used together with induced position analysis to determine how kinematic conditions at toe-off and muscle forces following toe-off affect peak knee flexion during the swing phase of normal gait. The flexion velocity of the swing-limb knee at toe-off contributed 30 degrees to the peak knee flexion angle; this was larger than any contribution from an individual muscle or joint moment. Swing-limb muscles individually made large contributions to knee angle (i.e., as large as 22 degrees), but their actions tended to balance one another, so that the combined contribution from all swing-limb muscles was small (i.e., less than 3 degrees of flexion). The uniarticular muscles of the swing limb made contributions to knee flexion that were an order of magnitude larger than the biarticular muscles of the swing limb. The results of the induced position analysis make clear the importance of knee flexion velocity at toe-off relative to the effects of muscle forces exerted after toe-off in generating peak knee flexion angle. In addition to improving our understanding of normal gait, this study provides a basis for analyzing stiff-knee gait, a movement abnormality in which knee flexion in swing is diminished.  相似文献   

13.
We used a lower limb robotic exoskeleton controlled by the wearer's muscle activity to study human locomotor adaptation to disrupted muscular coordination. Ten healthy subjects walked while wearing a pneumatically powered ankle exoskeleton on one limb that effectively increased plantar flexor strength of the soleus muscle. Soleus electromyography amplitude controlled plantar flexion assistance from the exoskeleton in real time. We hypothesized that subjects' gait kinematics would be initially distorted by the added exoskeleton power, but that subjects would reduce soleus muscle recruitment with practice to return to gait kinematics more similar to normal. We also examined the ability of subjects to recall their adapted motor pattern for exoskeleton walking by testing subjects on two separate sessions, 3 days apart. The mechanical power added by the exoskeleton greatly perturbed ankle joint movements at first, causing subjects to walk with significantly increased plantar flexion during stance. With practice, subjects reduced soleus recruitment by approximately 35% and learned to use the exoskeleton to perform almost exclusively positive work about the ankle. Subjects demonstrated the ability to retain the adapted locomotor pattern between testing sessions as evidenced by similar muscle activity, kinematic and kinetic patterns between the end of the first test day and the beginning of the second. These results demonstrate that robotic exoskeletons controlled by muscle activity could be useful tools for testing neural mechanisms of human locomotor adaptation.  相似文献   

14.
Stiff-knee gait is a movement abnormality in which knee flexion during swing phase is significantly diminished. This study investigates the relationships between knee flexion velocity at toe-off, joint moments during swing phase and double support, and improvements in stiff-knee gait following rectus femoris transfer surgery in subjects with cerebral palsy. Forty subjects who underwent a rectus femoris transfer were categorized as "stiff" or "not-stiff" preoperatively based on kinematic measures of knee motion during walking. Subjects classified as stiff were further categorized as having "good" or "poor" outcomes based on whether their swing-phase knee flexion improved substantially after surgery. We hypothesized that subjects with stiff-knee gait would exhibit abnormal joint moments in swing phase and/or diminished knee flexion velocity at toe-off, and that subjects with diminished knee flexion velocity at toe-off would exhibit abnormal joint moments during double support. We further hypothesized that subjects classified as having a good outcome would exhibit postoperative improvements in these factors. Subjects classified as stiff tended to exhibit abnormally low knee flexion velocities at toe-off (p<0.001) and excessive knee extension moments during double support (p=0.001). Subjects in the good outcome group on average showed substantial improvement in these factors postoperatively. All eight subjects in this group walked with normal knee flexion velocity at toe-off postoperatively and only two walked with excessive knee extension moments in double support. By contrast, all 10 of the poor outcome subjects walked with low knee flexion velocity at toe-off postoperatively and seven walked with excessive knee extension moments in double support. Our analyses suggest that improvements in stiff-knee gait are associated with sufficient increases in knee flexion velocity at toe-off and corresponding decreases in excessive knee extension moments during double support. Therefore, while stiff-knee gait manifests during the swing phase of the gait cycle, it may be caused by abnormal muscle activity during stance.  相似文献   

15.
Walking on both outdoor and indoor surfaces requires the ability to negotiate connections between vertical distances, simply known as hills and stairs. Therefore, the purpose of the present study was to evaluate the muscle activity patterns of the TFL and ADL during both hill and stair walking. We hypothesized that TFL and ADL activity during initial swing, initial stance, and late stance of up-ramp and up-stair walking would be greater than level walking. In contrast, we hypothesized that both TFL and ADL activity during initial swing of down-ramp and down-stair walking would be less. We utilized a 15° ramp, a 35° stair set, and for comparison of this steep angle, we also collected data on a 33° ramp. During up-ramp and up-stair walking, TFL and ADL activity during both initial swing and late stance of the up conditions were greater than level walking. For the down conditions, ADL activity during the swing phase of the steep down-ramp was less. Practically, our muscle activity results demonstrate that the hip abductors and hip adductors may provide additional pelvic stability and supplementary thigh acceleration during ramp and stair walking.  相似文献   

16.
17.
Gait dynamics on an inclined walkway   总被引:1,自引:0,他引:1  
OBJECTIVE: This paper documents research that quantifies and describes the biomechanics of normal gait on inclined surfaces. DESIGN: Experimental, investigative. BACKGROUND: It is necessary to walk on inclined surfaces to negotiate the natural and built environments. Little research has been conducted on the biomechanics of normal gait on inclined surfaces. METHODS: The gait of 11 healthy male volunteers was measured using a Vicon system 370 on an inclinable walkway. Gait was measured at 0 degrees , 5 degrees , 8 degrees and 10 degrees of incline. Passive optical markers were placed on each subject and they walked at a self-selected speed up and down the walkway. Ground reaction forces and EMG were measured. Gait data were analysed in Vicon Clinical Manager. RESULTS: Changes in the dynamics of the lower limbs with respect to incline angles are described. Between subject and between condition differences in biomechanical parameters were significant. Hip flexion increased at heel strike with inclines from -10 degrees to +10 degrees . Knee flexion and ankle dorsiflexion at heel strike increased with increasing angle walking up, but not down. Changes in joint moments and powers due to change in the angle of incline or direction of walking were observed. CONCLUSIONS: The mechanisms by which the body enables walking up and downhill, specifically raising and lowering the centre of mass, and preventing slipping, can be seen in the alteration in the dynamics of the lower limbs. Increases in range of motion and muscle strength requirements need to be considered in the design of lower limb prostheses and in orthopaedic and neurological rehabilitation. RELEVANCE: Gait, prosthetics, rehabilitation, balance and falls.  相似文献   

18.
Skilled locomotor behaviour requires information from various levels within the central nervous system (CNS). Mathematical models have permitted researchers to simulate various mechanisms in order to understand the organization of the locomotor control system. While it is difficult to adequately characterize the numerous inputs to the locomotor control system, an alternative strategy may be to use a kinematic movement plan to represent the complex inputs to the locomotor control system based on the possibility that the CNS may plan movements at a kinematic level. We propose the use of artificial neural network (ANN) models to represent the transformation of a kinematic plan into the necessary motor patterns. Essentially, kinematic representation of the actual limb movement was used as the input to an ANN model which generated the EMG activity of 8 muscles of the lower limb and trunk. Data from a wide variety of gait conditions was necessary to develop a robust model that could accommodate various environmental conditions encountered during everyday activity. A total of 120 walking strides representing normal walking and ten conditions where the normal gait was modified in terms of cadence, stride length, stance width or required foot clearance. The final network was assessed on its ability to predict the EMG activity on individual walking trials as well as its ability to represent the general activation pattern of a particular gait condition. The predicted EMG patterns closely matched those recorded experimentally, exhibiting the appropriate magnitude and temporal phasing required for each modification. Only 2 of the 96 muscle/gait conditions had RMS errors above 0.10, only 5 muscle/gait conditions exhibited correlations below 0.80 (most were above 0.90) and only 25 muscle/gait conditions deviated outside the normal range of muscle activity for more than 25% of the gait cycle. These results indicate the ability of single network ANNs to represent the transformation between a kinematic movement plan and the necessary muscle activations for normal steady state locomotion but they were also able to generate muscle activation patterns for conditions requiring changes in walking speed, foot placement and foot clearance. The abilities of this type of network have implications towards both the fundamental understanding of the control of locomotion and practical realizations of artificial control systems for use in rehabilitation medicine.  相似文献   

19.
Pathological movement patterns like crouch gait are characterized by abnormal kinematics and muscle activations that alter how muscles support the body weight during walking. Individual muscles are often the target of interventions to improve crouch gait, yet the roles of individual muscles during crouch gait remain unknown. The goal of this study was to examine how muscles contribute to mass center accelerations and joint angular accelerations during single-limb stance in crouch gait, and compare these contributions to unimpaired gait. Subject-specific dynamic simulations were created for ten children who walked in a mild crouch gait and had no previous surgeries. The simulations were analyzed to determine the acceleration of the mass center and angular accelerations of the hip, knee, and ankle generated by individual muscles. The results of this analysis indicate that children walking in crouch gait have less passive skeletal support of body weight and utilize substantially higher muscle forces to walk than unimpaired individuals. Crouch gait relies on the same muscles as unimpaired gait to accelerate the mass center upward, including the soleus, vasti, gastrocnemius, gluteus medius, rectus femoris, and gluteus maximus. However, during crouch gait, these muscles are active throughout single-limb stance, in contrast to the modulation of muscle forces seen during single-limb stance in an unimpaired gait. Subjects walking in crouch gait rely more on proximal muscles, including the gluteus medius and hamstrings, to accelerate the mass center forward during single-limb stance than subjects with an unimpaired gait.  相似文献   

20.
The Avon Longitudinal Study of Parents and Children (ALSPAC) is an observational study of 14,273 UK pregnant singleton mothers in 1990/1991. We examined outcomes of self report of strenuous activity (hours per week) at 18 and 32 weeks of gestation, hours spent in leisure-time physical activities and types, and pre-pregnancy body mass index (BMI); overweight status was defined as pre-pregnancy BMI≥25 and obesity BMI≥30. Pet ownership and activity data were reported for 11,466 mothers. Twenty-five percent of mothers owned at least one dog. There was a positive relationship between participation in activity at least once a week and dog ownership (at 18 weeks, Odds ratio 1.27, 95% confidence interval 1.11-1.44, P<0.001). Dog owners were 50% more likely to achieve the recommended 3 hours activity per week, equivalent to 30 minutes per day, most days of the week (1.53, 1.35-1.72, P<0.001). Dog owners were also more likely to participate in brisk walking activity than those who did not have a dog (compared to no brisk walking 2-6 hrs per week 1.43, 1.23 to 1.67, P<0.001; 7+ hrs per week 1.80, 1.43 to 2.27, P<0.001). However, no association was found with any other types of activities and there was no association between dog ownership and weight status. During the time period studied, pregnant women who had dogs were more active, through walking, than those who did not own dogs. As walking is a low-risk exercise, participation of pregnant women in dog walking activities may be a useful context to investigate as part of a broader strategy to improve activity levels in pregnant women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号