首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations in scapular muscle activity, including excess activation of the upper trapezius (UT) and onset latencies of the lower trapezius (LT) and serratus anterior (SA) muscles, are associated with abnormal scapular motion and shoulder impingement. Limited information exists on the reliability of neuromuscular activity to demonstrate the efficacy of interventions. The purpose of this study was to characterize the reproducibility of scapular muscle activity (mean activity, relative onset timing) over time and establish the minimal detectable change (MDC). Surface electromyography (sEMG) of the UT, LT, SA and anterior deltoid (AD) muscles in 16 adults were captured during an overhead lifting task in two sessions, one-week apart. sEMG data were also normalized to maximum isometric contraction and the relative onset and mean muscle activity during concentric and eccentric phases of the scapular muscles were calculated. Additionally, reliability of the absolute sEMG data during the lifting task and MVIC was evaluated. Both intrasession and intersession reliability of normalized and absolute mean scapular muscle activity, assessed with intraclass correlation coefficients (ICC), ranged from 0.62 to 0.99; MDC values were between 1.3% and 11.7% MVIC and 24 to 135 mV absolute sEMG. Reliability of sEMG during MVIC was ICC = 0.82–0.99, with the exception of intersession upper trapezius reliability (ICC = 0.36). Within session reliability of muscle onset times was ICC = 0.88–0.97, but between session reliability was lower with ICC = 0.43–0.73; MDC were between 39 and 237 ms. Small changes in scapular neuromuscular mean activity (>11.7% MVIC) can be interpreted as meaningful change, while change in muscle onset timing in light of specific processing parameters used in this study is more variable.  相似文献   

2.
Functional shoulder assessments require the use of objective and reliable standardized outcome measures. Therefore, the aim of this study was to examine the between-day reliability of a hand-held dynamometer when measuring muscle strength during flexion, abduction, and internal and external rotation as well as surface electromyography (EMG) when measuring muscle activity from m. trapezius superior and deltoideus anterior. Twenty-four healthy subjects participated and performed four isometric contractions measured with a hand-held dynamometer and EMG. Both relative and absolute reliability were calculated based on the mean of the last three of the four repetitions. EMG amplitude was assessed calculating both absolute and normalized root-mean-square (RMS) values. The reliability of the hand-held dynamometer was high (LOA = 3.2–7.6% and ICC = 0.89–0.98). The absolute reliability for EMG showed similar results for absolute RMS values (LOA = 20.0–68.4%) and normalized RMS values (LOA = 42.4–66.5%). However, the results concerning the relative reliability showed higher ICC for absolute RMS values (ICC = 0.82–0.92) compared with normalized values (ICC = 0.57–0.72).The outcome measurements of this study with healthy subjects were found reliable and, therefore, have the potential to detect changes in muscle strength and muscle activity.  相似文献   

3.
Vaginal probes may induce changes in pelvic floor muscle (PFM) recruitment by the very presence of the probes. Fine-wire electrodes allow us to detect muscle activation parameters without altering the natural position and shape of the PFMs. The purpose of this study was to determine whether PFM activation is altered by changes in sensory feedback, muscle length or tissue position caused by two different vaginal probes used to record surface electromyography (EMG). Twelve continent women (30.1 ± 5.4 years), performed PFM maximal voluntary contractions (MVCs) in supine while fine-wire EMG was recorded bilaterally from the PFMs under three conditions: (a) without any probe inserted into the vagina, (b) while a Femiscan? probe was in situ, and (c) while a Periform? vaginal probe was in situ. The reliability of the fine wire EMG data was assessed using intra-class correlation coefficients (ICCs) and coefficients of variation (CV). A repeated measures analysis of variance (ANOVA) model was used to determine if there were differences in EMG amplitude recorded when the different vaginal probes were in situ. For each condition the between-trial reliability was excellent, ICC(3,1) = 0.93–0.96, (p < 0.001) and CV = 11.2–21.8%. There were no differences in peak EMG amplitude recorded during the MVCs across the three conditions (no probe 63.4 ± 48.4 μV, Femiscan? 55.3 ± 42.4 μV, Periform? 59.4 ± 42.2 μV, p = 0.178). These results suggest that women produce consistent MVCs over multiple contractions, and that PFM muscle activation is not affected by different probes inserted into the vagina.  相似文献   

4.
A linear encoder measuring vertical displacement during the heel-rise endurance test (HRET) enables the assessment of work and maximum height in addition to the traditional repetitions measure. We aimed to compare the test-retest reliability and agreement of these three outcome measures. Thirty-eight healthy participants (20 females, 18 males) performed the HRET on two occasions separated by a minimum of seven days. Reliability was assessed by the intraclass correlation coefficient (ICC) and agreement by a range of measures including the standard error of measurement (SEM), coefficient of variation (CV), and 95% limits of agreement (LoA). Reliability for repetitions (ICC = 0.77 (0.66, 0.85)) was equivalent to work (ICC = 0.84 (95% CI 0.76, 0.89)) and maximum height (ICC = 0.85 (0.77, 0.90)). Agreement for repetitions (SEM = 6.7 (5.8, 7.9); CV = 13.9% (11.9, 16.8%); LoA = −1.9 ± 37.2%) was equivalent to work (SEM = 419 J (361, 499 J); CV = 13.1% (11.2, 15.8%); LoA = 0.1 ± 34.8%) with maximum height superior (SEM = 0.8 cm (0.6, 1.0 cm); CV = 6.6% (5.7, 7.9%); LoA = 1.3 ± 17.1%). Work and maximum height demonstrated acceptable reliability and agreement that was at least equivalent to the traditional repetitions measure.  相似文献   

5.
We investigated the reliability of a test assessing quadriceps strength, endurance and fatigability in a single session. We used femoral nerve magnetic stimulation (FMNS) to distinguish central and peripheral factors of neuromuscular fatigue. We used a progressive incremental loading with multiple assessments to limit the influence of subject’s cooperation and motivation.Twenty healthy subjects (10 men and 10 women) performed the test on two different days. Maximal voluntary strength and evoked quadriceps responses via FMNS were measured before, after each set of 10 submaximal isometric contractions (5-s on/5-s off; starting at 10% of maximal voluntary strength with 10% increments), immediately and 30 min after task failure.The test induced progressive peripheral (41 ± 13% reduction in single twitch at task failure) and central fatigue (3 ± 7% reduction in voluntary activation at task failure). Good inter-day reliability was found for the total number of submaximal contractions achieved (i.e. endurance index: ICC = 0.83), for reductions in maximal voluntary strength (ICC > 0.81) and evoked muscular responses (i.e. fatigue index: ICC > 0.85). Significant sex-differences were also detected.This test shows good reliability for strength, endurance and fatigability assessments. Further studies should be conducted to evaluate its feasibility and reliability in patients.  相似文献   

6.
Muscle co-activation around the knee is important during ambulation and balance. The wide range of methodological approaches for the quantification of co-activation index (CI) makes comparisons across studies and populations difficult. The present study determined within- and between-session reliability of different methodological approaches for the quantification of the CI of the knee extensor and flexor muscles during maximum voluntary isometric contractions (MVICs). Eight healthy volunteers participated in two repeated testing sessions. A series of knee extension MVICs of the dominant leg with concomitant torque and electromyographic (EMG) recordings were captured. CI was calculated utilizing different analytical approaches. Intraclass correlation coefficient (ICC) showed that within-session measures displayed higher reliability (ICC > 0.861) and lower variability (Coefficient of variation; CV < 21.8%) than between-session measures (ICC < 0.645; CV > 24.2%). A selection of a 500 ms or larger window of RMS EMG activity around the PT delivered more reliable and less variable results than other approaches. Our findings suggest that the CI can provide a reliable measure for comparisons among conditions and is best utilized for within-session experimental designs.  相似文献   

7.
Patellofemoral pain syndrome (PFPS) is one of the most common, yet misunderstood, knee pathologies. PFPS is thought to result from abnormal patella tracking caused from altered neuromuscular control. Researchers have investigated neuromuscular influences from the gluteus medius (GM), vastus medialis (VM), and vastus lateralis (VL) but with inconsistent findings. A reason for these discrepancies may be from varying methodology. The purpose of this study was to determine the reliability of electromyographic (EMG) methods used to assess amplitudes and timing differences of the GM, VM, and VL in subjects with PFPS. Seven females with PFPS participated. GM, VM, and VL activity was assessed during the stance phase of a stair descent task on two separate occasions. Amplitudes during the different intervals of stance were recorded and expressed as a percent of each muscle’s maximum voluntary isometric contraction. Muscle onsets at the beginning of stair descent were also determined. VM–GM, VL–GM, and VL–VM onset timing differences were quantified. Intraclass correlation coefficients (ICCs) and standard errors of measurement (SEMs) were calculated to assess between-day reliability. Most EMG measures had acceptable reliability (ICC3,5 ? 0.70). Although some measures had moderate reliability (ICC < 0.70), they had low SEMs, which suggested high measurement precision. These findings support using these methods for examining neuromuscular activity in subjects with PFPS.  相似文献   

8.
The superimposed burst technique is used to estimate quadriceps central activation ratio during a maximal voluntary isometric contraction, which is calculated from force data during an open-chain knee extension task. Assessing quadriceps activation in a closed-chain position would more closely simulate the action of the quadriceps during activity. Our aim was to determine the test–retest reliability of the quadriceps central activation ratio in the closed chain.MethodsTwenty-two healthy, active volunteers (13M/12F; age = 23.8 ± 3; height = 72.7 ± 14.5 cm; mass = 175.3 ± 9.6 kg) were recruited to participate. Knee extension MVIC torque and the peak torque during a superimposed electrical stimulus delivered to the quadriceps during an MVIC were measured to estimate quadriceps CAR. Interclass correlation coefficients were used to assess test–retest reliability between sessions, and Bland–Altman plots to graphically assess agreement between sessions.ResultsTest–retest reliability was fair for CAR (ICC2,k = 0.68; P = 0.005), with a mean difference of −2.8 ± 10.3%, and limits of agreement ranging −23.1–18.1%.ConclusionsCAR calculated using the superimposed burst technique is moderately reliable in a closed-chain position using technique-based instruction. Although acceptable reliability was demonstrated, wide limits of agreement suggest high variability between sessions.  相似文献   

9.
The purpose of this study was to determine the test–retest reliability of the soleus (SOL) H-reflex during rest and isometric contractions at 10%, 30%, and 50% of the maximal voluntary force (MVC) at the ankle joint angles of neutral (0°), plantarflexion (20°), and dorsiflexion (?20°) respectively, in a sitting position. Ten healthy participants, with mean age of 24.9 ± 5.0 (SD) years, height 168.3 ± 8.8 cm, weight 62.7 ± 12.3 kg, were tested for the SOL H-reflex (Hmax) on two separate occasions within 7 days. The intraclass correlation coefficient (ICC) for the test–retest of the SOL H-reflex during rest was found to be high at ankle joint angle of neutral (ICC = 0.92) and plantarflexion (0.96), and moderate at dorsiflexion (0.75). Inconsistent ICC values (range from 0.62 to 0.97) were found during the submaximal voluntary contractions at the three ankle joint positions. High ICCs were also found in Hmax/Mmax ratio at neutral (0.86), plantarflexion (0.96), and dorsiflexion (0.84) positions. It was concluded that the test–retest reliability of the SOL H-reflex was affected by the intensity of voluntary contraction and ankle joint position. The H-reflex demonstrated a higher reliability at the neutral and plantarflexion positions than that at the dorsiflexion position during rest, and a higher reliability at 10% MVC than that at 30% and 50% MVC.  相似文献   

10.
PurposeThis study investigated neuromuscular fatigue following high versus low-intensity eccentric exercise corresponding to the same amount of work.MethodsTen volunteers performed two eccentric exercises of the elbow flexors: a high-intensity versus a low-intensity exercise. Maximal voluntary contraction torque and surface electromyography of the biceps brachii muscle were recorded before, immediately and 48 h after exercises. Maximal voluntary activation level, neural (M-wave) and contractile (muscular twitch) properties of the biceps brachii muscle were analysed using electrical stimulation techniques.ResultsMaximal voluntary contraction torque was significantly (P < 0.01) reduced immediately and 48 h after exercise but the reduction was not different between the two conditions. Electromyography associated with maximal voluntary contraction significantly decreased (P < 0.05) immediately and 48 h after exercise for both conditions while maximal voluntary activation level was only significantly reduced immediately after the high-intensity exercise. Peak twitch alterations were observed immediately and 48 h after exercise for both conditions while M-wave did not change.ConclusionHigh and low-intensity eccentric exercises with the same amount of work induced the same reduction in maximal strength capacities of the biceps brachii muscles. The magnitude of peripheral and central fatigue was very similar in both conditions.  相似文献   

11.
This study examined the reliability and scaling of the flexor carpi radialis (FCR) V-wave during submaximal and maximal voluntary muscle contractions (MVC). 23 participants were tested on three separate sessions. For each session, participants performed isometric wrist flexions at five contraction levels (20, 40, 60, 80 and 100 %MVC). When the target contraction level was reached, a supramaximal electrical stimulus was applied to the median nerve in order to elicit an FCR V-wave. Across all participants, the FCR V-wave amplitude, normalized to its superimposed M-wave amplitude, increased from 0.030 ± 0.001 to 0.143 ± 0.015 (P < 0.001) as the muscle contraction increased from 20 to 100 %MVC. Contraction level did not influence the reliability of evoking the FCR V-wave, as the V-wave demonstrated both stability and consistency. With the exception of a single day main effect during the 20 %MVC condition, V:Msup was not different across days or trials (P > 0.05) indicating measurement stability. High reliability co-efficients (0.827–0.913) at each contraction level signified measurement consistency. This study establishes that FCR V-waves can be reliably evoked during both submaximal and maximal muscle contractions and suggests the possibility for FCR V-wave recordings to be used to document neuromuscular adaptations associated with factors such as training or fatigue.  相似文献   

12.
This study aimed to examine within-day and between-days intratester reliability of mechanomyography (MMG) in assessing muscle fatigue. An accelerometer was used to detect the MMG signal from rectus femoris. Thirty one healthy subjects (15 males) with no prior knee problems initially performed three maximum voluntary contractions (MVCs) using an ISOCOM dynamometer. After 10 min rest, subjects performed a fatiguing protocol in which they performed three isometric knee extensions at 75% MVC for 40 s. The fatiguing protocol was repeated on two other days, two to four days apart for between-days reliability. MMG activity was determined by overall root mean squared amplitude (RMS), mean power frequency (MPF) and median frequency (MF) during a 40 s contraction. RMS, MPF and MF linear regression slopes were also analysed. Intraclass Correlation Coefficients (ICC); ICC1,1 and ICC1,2 were used to assess within-day reliability and between-days reliability respectively. Standard error of measurement (SEM) and smallest detectable difference (SDD) described the within-subjects variability. MMG fatigue measures using linear regression slopes showed low reliability and large between-days error (ICC1,2 = 0.43–0.46; SDD = 306.0–324.8% for MPF and MF slopes respectively). Overall MPF and MF, on the other hand, were reliable with high ICCs and lower SDDs compared to linear slopes (ICC1,2 = 0.79–0.83; SDD = 21.9–22.8% for MPF and MF respectively). ICC1,2 for overall MMG RMS and linear RMS slopes were 0.81 and 0.66 respectively; however, the SDDs were high (56.4% and 268.8% respectively). The poor between-days reliability found in this study suggests caution in using MMG RMS, MPF and MF and their corresponding slopes in assessing muscle fatigue.  相似文献   

13.
IntroductionThe aim of this study was to determine the within- and between-day reliability of lower limb biomechanical variables collected during single leg squat (SLS) and single leg landing (SLL) tasks.Methods15 recreational athletes took part in three testing sessions, two sessions on the same day and another session one week later. Kinematic and kinetic data was gathered using a ten-camera movement analysis system (Qualisys) and a force platform (AMTI) embedded into the floor.ResultsThe combined averages of within-day ICC values (ICCSLS = 0.87; ICCSLL = 0.90) were higher than between-days (ICCSLS = 0.81; ICCSLL = 0.78). Vertical GRF values (ICCSLS = 0.90; ICCSLL = 0.98) were more reliable than joint angles (ICCSLS = 0.85; ICCSLL = 0.82) and moments (ICCSLS = 0.83; ICCSLL = 0.87).DiscussionThis study demonstrates that all joint angles, moments, and vertical ground reaction force (GRF) variables obtained during both tasks showed good to excellent consistency with relatively low standard error of measurement values. These findings would be of relevance to practitioners who are using such measures for screening and prospective studies of rehabilitative techniques.  相似文献   

14.
The objective of this study was to estimate sex-specific effects in the test–retest cross-reliability of peripheral and central changes in nonlinear and linear measures of a surface electromyography signal during a brief (5 second) and sustained (2 minute) isometric maximal voluntary contraction, combined with superimposed electrical stimulation involving the ankle plantar flexors over five identical trials. In this study, we repeated the testing protocol used in our previous study of 10 women (age 20.9, SD = 0.3 years) (Bernecke et al., 2015) in a group of 10 men (age 21.2, SD = 0.4 years). Despite the central (sex effect; p < 0.05, ηp2 > 0.71, SP > 70%) and peripheral fatigability (sex effect; p < 0.01, ηp2 > 0.8, SP > 90%) during sustained isometric maximal voluntary contraction, and lower reliability for central activation ratio during brief (intraclass correlation coefficient [ICC] = 0.95 for men and ICC = 0.82 for women) and sustained maximal voluntary contraction (ICC > 0.82 for men and ICC > 0.66 for women) over ankle plantar flexors expressed in women more than in men, all the ICCs of all indices measured by tests assessing neuromuscular function across the five identical test–retest trials were found as meaningful (correlation significance of p < 0.05 was reached) and no significant differences were found between trials for any of the measured variables. In conclusion, the present study demonstrated greater central and peripheral fatigue for female participants following sustained (2 minute) isometric maximal voluntary contraction of the plantar flexor muscles for all repeated trials and indicated an acceptable agreement between measurements of the characteristic variables made using the three different devices (dynamometry, electrical stimulation, and surface electromyography) over time for both sexes.  相似文献   

15.
The aim of this exploratory study was to verify whether the evaluation of quadriceps muscle weakness is influenced by the testing modality (isometric vs. isokinetic vs. isoinertial) and by the calculation method (within-subject vs. between-subject comparisons) in patients 4–8 months after total knee arthroplasty (TKA, n = 29) and total hip arthroplasty (THA, n = 30), and in healthy controls (n = 19). Maximal quadriceps strength was evaluated as (1) the maximal voluntary contraction (MVC) torque during an isometric contraction, (2) the peak torque during an isokinetic contraction, and (3) the one repetition maximum (1-RM) load during an isoinertial contraction. Muscle weakness was calculated as the difference between the involved and the uninvolved side (within-subject comparison) and as the difference between the involved side of patients and controls (between-subject comparison). Muscle weakness estimates were not significantly affected by the calculation method (within-subject vs. between-subject; P > 0.05), whereas a significant main effect of testing modality (P < 0.05) was observed. Isometric MVC torque provided smaller weakness estimates than isokinetic peak torque (P = 0.06) and isoinertial 1-RM load (P = 0.008), and the clinical occurrence of weakness (proportion of patients with large strength deficits) was also lower for MVC torque. These results have important implications for the evaluation of quadriceps muscle weakness in TKA and THA patients 4–8 months after surgery.  相似文献   

16.
In this study, we aimed to compare the intrarater reliability and validity of muscle thickness measured using ultrasonography (US) and muscle activity via electromyography (EMG) during manual muscle testing (MMT) of the external oblique (EO) and lumbar multifidus (MF) muscles. The study subjects were 30 healthy individuals who underwent MMT at different grades. EMG was used to measure the muscle activity in terms of ratio to maximum voluntary contraction (MVC) and root mean square (RMS) metrics. US was used to measure the raw muscle thickness, the ratio of muscle thickness at MVC, and the ratio of muscle thickness at rest. One examiner performed measurements on each subject in 3 trials. The intrarater reliabilities of the % MVC RMS and raw RMS metrics for EMG and the % MVC thickness metrics for US were excellent (ICC = 0.81–0.98). There was a significant difference between all the grades measured using the % MVC thickness metric (p < 0.01). Further, this % MVC thickness metric of US showed a significantly higher correlation with the EMG measurement methods than with the others (r = 0.51–0.61). Our findings suggest that the % MVC thickness determined by US was the most sensitive of all methods for assessing the MMT grade.  相似文献   

17.
While muscle contraction in voluntary efforts has been widely investigated, little is known about contraction during neuromuscular electrical stimulation (NMES). The aim of this study was to quantify in vivo muscle architecture of agonist and antagonist muscles at the ankle joint during NMES. Muscle fascicle lengths and pennation angles of the tibialis anterior (TA) and lateral gastrocnemius muscles were assessed via ultrasonography in 8 healthy young males. Measures were obtained during maximal NMES and torque-matched voluntary dorsiflexion contractions. In the TA, NMES induced a shorter fascicle length (67.2 ± 8.1 mm vs 74.6 ± 11.4 mm; p = 0.04) and a greater pennation angle (11.0 ± 2.4° vs 9.3 ± 2.5°; p = 0.03) compared with voluntary torque-matched dorsiflexion contractions. Architectural responses in the antagonist lateral gastrocnemius muscle did not significantly differ from rest or between voluntary and electrically induced contractions (p > 0.05). Contraction of the antagonist muscle was not a contributing factor to a greater fascicle shortening and increased pennation angle in the TA during NMES. TA architectural response during NMES likely arose from the contribution of muscle synergists during voluntary contractions coupled with a potentially localized contractile activity under the stimulation electrodes during NMES induced contractions.  相似文献   

18.
This study investigated the effect of water immersion on surface electromyography (EMG) signals recorded from the brachioradial muscle of 11 healthy subjects, both in a dry environment and a thermo-neutral forearm bath (36 °C). EMG measurements were registered in a sitting position, using waterproof electrodes under 3 conditions: relaxed muscle, maximum voluntary isometric contraction (MVC, 1 s, grip test) and 70% of the MVC (5 s). In relaxed muscle, mean EMG values were significantly higher under immersion compared to the dry conditions (dry: 5.4 ± 3.6 μV; water: 19.5 ± 14.9 μV; p = 0.014). In maximum voluntary isometric contraction, there was a significant difference, though not in the same direction (dry: 145.9 ± 58.9 μV; water: 73.2 ± 35.0 μV; p = 0.003). Under 70% MVC, there was no difference between wet and dry conditions (dry: 102.4 ± 75.0 μV; water: 100.4 ± 65.3 μV; p = 0.951). Results suggest that dry and underwater conditions influence EMG readings; however, the results are inconsistent. These findings indicate additional influences on resting muscle activity, as well as MVC. Further measurements with other muscle groups and different types of immersion are needed to clarify conflicting observations.  相似文献   

19.
The purposes were twofold: (a) to ascertain the inter-session reliability of hamstrings total reaction time, pre-motor time and motor time; and (b) to examine sex-related differences in the hamstrings reaction times profile. Twenty-four men and 24 women completed the study. Biceps femoris and semitendinosus total reaction time, pre-motor time and motor time measured during eccentric isokinetic contractions were recorded on three different occasions. Inter-session reliability was examined through typical percentage error (CVTE), percentage change in the mean (CM) and intraclass correlations (ICC). For both biceps femoris and semitendinosus, total reaction time, pre-motor time and motor time measures demonstrated moderate inter-session reliability (CVTE < 10%; CM < 3%; ICC > 0.7). The results also indicated that, although not statistically significant, women reported consistently longer hamstrings total reaction time (23.5 ms), pre-motor time (12.7 ms) and motor time (7.5 ms) values than men. Therefore, an observed change larger than 5%, 9% and 8% for total reaction time, pre-motor time and motor time respectively from baseline scores after performing a training program would indicate that a real change was likely. Furthermore, while not statistically significant, sex differences were noted in the hamstrings reaction time profile which may play a role in the greater incidence of ACL injuries in women.  相似文献   

20.
Normalization of electromyographic (EMG) amplitudes is necessary in the study of human motion. However, there is a lack of agreement on the most reliable and appropriate normalization method. This study evaluated the reliability of single leg stance (SLS) and maximal voluntary isometric contraction (MVIC) normalization methods and the relationship between these measures for the gluteus maximus (GMax), gluteus medius (GMed), rectus femoris (RF), vastus lateralis (VL), hip adductor group (ADD), and biceps femoris (BF). Surface EMG was recorded in 20 subjects during three 5 s trials of SLS and MVIC. SLS and MVIC methods both demonstrated good-to-excellent reliability in all muscles (ICCs > 0.80). Intrasubject coefficients of variation were lower for the MVIC method (9–36%) than for the SLS method (20–59%). EMG amplitudes during MVIC and SLS were significantly correlated for all muscles (Pearson r’s = 0.604–0.905, p < 0.005) except GMax (r = 0.250, p = 0.288). Use of SLS normalization for the RF, VL, and BF is not recommended due to a lack of measurement precision. However, this method is justified in the GMax, GMed, and ADD and may provide a better representation of coordinated muscle function during a functional task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号