首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimicrobial peptides (AMPs) are important components of the innate immunity. Many antimicrobial peptides have been found from marine mollusks. Little information about AMPs of mollusks living on land is available. A novel cysteine-rich antimicrobial peptide (mytimacin-AF) belonging to the peptide family of mytimacins was purified and characterized from the mucus of the snail of Achatina fulica. Its cDNA was also cloned from the cDNA library. Mytimacin-AF is composed of 80 amino acid residues including 10 cysteines. Mytimacin-AF showed potent antimicrobial activity against Gram-negative and Gram-positive bacteria and the fungus Candida albicans. Among tested microorganisms, it exerted strongest antimicrobial activity against Staphylococcus aureus with a minimal peptide concentration (MIC) of 1.9 μg/ml. Mytimacin-AF had little hemolytic activity against human blood red cells. The current work confirmed the presence of mytimacin-like antimicrobial peptide in land-living mollusks.  相似文献   

2.
3.
4.
Antimicrobial peptides (AMPs) are important components of the host innate immune response against microbial invasion. In the present study, we report the identification and characterization of a crustin (CrusSp) from the hemocyte of mud crab, Scylla paramamosain using an expressed sequence tag (EST) and rapid amplification cDNA end (RACE) approaches. Analysis of the nucleotide sequence revealed seven different variances of the CrusSp cDNA in mud crab. The open reading frame encodes a protein of 111 amino acids with 21 residues signal sequence. The predicted molecular mass of the mature protein (90 amino acids) is 10.27 kDa with an estimated pI of 8.54. Analysis of the protein domain features indicated typical conserved cysteine residues containing a single whey acidic protein (WAP) domain at the C-terminus. A neighbour-joining tree showed that S. paramamosain crustin is closely related to other crustin homologues, and displays the highest similarity to crustin antimicrobial peptide in shore crab Carcinus maenas. Four exons and three introns were identified within the 999 bp genomic DNA sequence of CrusSp. Tissue distribution analysis showed that CrusSp was highly expressed in hemocytes, gills, intestines and muscle but it was not expressed in hepatopancreas and eyestalks. To gain insight into the in vitro antimicrobial activities of CrusSp, the mature peptide coding region was cloned into E. coli for heterologous expression. The recombinant CrusSp could inhibit the growth of gram-positive bacteria but had no inhibition activity against gram-negative bacteria. These results indicated the involvement of CrusSp in the innate immunity of S. paramamosain.  相似文献   

5.
Antimicrobial proteins/peptides (AMPs) are effectors of innate immune systems against pathogen infection in multicellular organisms. Over half of the AMPs reported so far come from insects, and these effectors act in concert to suppress or kill bacteria, fungi, viruses, and parasites. In this work, we have identified 86 AMP genes in the Manduca sexta genome, most of which seem likely to be functional. They encode 15 cecropins, 6 moricins, 6 defensins, 3 gallerimycins, 4 X-tox splicing variants, 14 diapausins, 15 whey acidic protein homologs, 11 attacins, 1 gloverin, 4 lebocins, 6 lysozyme-related proteins, and 4 transferrins. Some of these genes (e.g. attacins, cecropins) constitute large clusters, likely arising after rounds of gene duplication. We compared the amino acid sequences of M. sexta AMPs with their homologs in other insects to reveal conserved structural features and phylogenetic relationships. Expression data showed that many of them are synthesized in fat body and midgut during the larval-pupal molt. Certain genes contain one or more predicted κB binding sites and other regulatory elements in their promoter regions, which may account for the dramatic mRNA level increases in fat body and hemocytes after an immune challenge. Consistent with these strong mRNA increases, many AMPs become highly abundant in the larval plasma at 24 h after the challenge, as demonstrated in our previous peptidomic study. Taken together, these data suggest the existence of a large repertoire of AMPs in M. sexta, whose expression is up-regulated via immune signaling pathways to fight off invading pathogens in a coordinated manner.  相似文献   

6.
7.
8.
9.
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, a novel C-type lectin gene from scallop Argopecten irradians (designated as AiCTL-6) was cloned by rapid amplification of cDNA ends (RACE) approach based on expression sequence tag (EST) analysis. The full-length cDNA of AiCTL-6 was 1080 bp. The open reading frame encoded a polypeptide of 307 amino acids, including a signal sequence and a C-type lectin-like domain (CTLD) of 150 amino acid residues longer than any usual CTLD. It contained six conserved cysteine residues involved in the formation of three internal disulfide bridges and an EPD (Glu269-Pro270-Asp271) motif at the Ca2+-binding site 2. The deduced amino acid sequence of AiCTL-6 showed high similarity to members of C-type lectin superfamily. By fluorescent quantitative real-time PCR, AiCTL-6 mRNA was found mainly in hepatopancreas and gill, and marginally expressed in other tissues. After the scallops were challenged by Listonella anguillarum for 6 h, the mRNA expression of AiCTL-6 was up-regulated significantly to 7.2-fold compared to the blank group. While at 9 h post Micrococcus luteus challenge, its expression level was 60.1 times higher than that of the blank group. The functional activity of AiCTL-6 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta gami (DE3). The recombinant AiCTL-6 could agglutinate Gram-negative bacteria Ecoli TOP10F′, Gram-positive bacteria M. luteus and Staphylococcus aureus. These results collectively suggested that AiCTL-6, as a novel member of C-type lectin family, contributed to the host defense mechanisms against invading microorganism in A. irradians.  相似文献   

10.
Cationic Antimicrobial Peptides in Penaeid Shrimp   总被引:1,自引:0,他引:1  
Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.  相似文献   

11.
Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.  相似文献   

12.
13.
In invertebrates, C-type lectins play crucial roles in innate immunity responses by mediating the recognition of host cells to pathogens and clearing microinvaders, which interact with carbohydrates and function as pattern recognition receptors (PRRs). A novel C-type lectin gene (LvLec) cDNA was cloned from hemocytes of Litopenaeus vannamei by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of LvLec was of 618 bp, consisting of a 5′-terminal untranslated region (UTR) of 60 bp and a 3′-UTR of 87 bp with a poly (A) tail. The deduced amino acid sequence of LvLec possessed all conserved features critical for the fundamental structure, such as the four cysteine residues (Cys53, Cys128, Cys144, Cys152) involved in the formation of disulfides bridges and the potential Ca2+/carbohydrate-binding sites. The high similarity and the close phylogenetic relationship of LvLec shared with C-type lectins from vertebrates and invertebrates. The structural features of LvLec indicated that it was an invertebrate counterpart of the C-type lectin family. The cDNA fragment encoding the mature peptide of LvLec was recombined and expressed in Escherichia coli BL21(DE3)-pLysS. The recombinant protein (rLvLec) could agglutinate bacteria E. coli JM109 depending on Ca2+, and the agglutination could be inhibited by mannose and EDTA. These results indicated that LvLec was a new member of C-type lectin family and involved in the immune defence response to Gram negative bacteria in Litopenaeus vannamei.  相似文献   

14.
15.

Analysis of a Selected Set of Antimicrobial Peptides

The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants.

Cap18 Shows a High Broad Spectrum Antimicrobial Activity

Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our findings from analyzing LPS mutant strains suggest that the core oligosaccharide of the LPS molecule is not essential for the antimicrobial activity of cationic AMPs, but in fact has a protective role against AMPs.  相似文献   

16.
Microplusin, a Rhipicephalus (Boophilus) microplus antimicrobial peptide (AMP) is the first fully characterized member of a new family of cysteine-rich AMPs with histidine-rich regions at the N and C termini. In the tick, microplusin belongs to the arsenal of innate defense molecules active against bacteria and fungi. Here we describe the NMR solution structure of microplusin and demonstrate that the protein binds copper II and iron II. Structured as a single α-helical globular domain, microplusin consists of five α-helices: α1 (residues Gly-9 to Arg-21), α2 (residues Glu-27 to Asn-40), α3 (residues Arg-44 to Thr-54), α4 (residues Leu-57 to Tyr-64), and α5 (residues Asn-67 to Cys-80). The N and C termini are disordered. This structure is unlike any other AMP structures described to date. We also used NMR spectroscopy to map the copper binding region on microplusin. Finally, using the Gram-positive bacteria Micrococcus luteus as a model, we studied of mode of action of microplusin. Microplusin has a bacteriostatic effect and does not permeabilize the bacterial membrane. Because microplusin binds metals, we tested whether this was related to its antimicrobial activity. We found that the bacteriostatic effect of microplusin was fully reversed by supplementation of culture media with copper II but not iron II. We also demonstrated that microplusin affects M. luteus respiration, a copper-dependent process. Thus, we conclude that the antibacterial effect of microplusin is due to its ability to bind and sequester copper II.  相似文献   

17.
Antimicrobial peptides (AMPs) constitute a diverse class of naturally occurring or synthetic antimicrobial molecules that have potential for use in the treatment of drug-resistant infections. Several undesirable properties of AMPs, however, may ultimately hinder their development as antimicrobial agents. Thus, new synthetic strategies, including primarily the de novo design of AMPs, urgently need to be developed. In this study, a series of peptides, H-(RWL) n (n = 1, 2, 3, 4, or 5), were designed. H represents GLRPKYS from the C-terminal sequence of AvBD-4. Our results showed that these RWL-tagged peptides can kill not only bacteria but also human hepatocellular carcinoma HepG2 cells. However, the peptide tagged with two repeats of RWL (GW13) showed less affinity to human embryonic lung fibroblast MRC-5 cells or human red blood cells (hRBCs) than HepG2 cells. These results demonstrated that GW13, with high amphiphilicity, exerted great selectivity toward bacteria and cancer cells, sparing host mammalian cells. The mechanism of action against bacteria was elucidated through combined studies of scanning electron microscopy (SEM) and fluorescence assays, showing that the peptide possessed membrane-lytic activities against microbial cells. The fluorescence assays illustrated that GW13 induced apoptosis in HepG2 cells. The cell morphology of HepG2 cells, observed by SEM, further illustrated that GW13 causes cell death by damaging the cell membrane. Our results indicate that GW13 has considerable potential for future development as an antimicrobial and antitumor agent.  相似文献   

18.
Inhibitors of apoptosis (IAPs) play important roles in apoptosis and NF-κB activation. In this study, we cloned and characterized three IAPs (LvIAP1-3) from the Pacific white shrimp, Litopenaeusvannamei . LvIAP1-3 proteins shared signature domains and exhibited significant similarities with other IAP family proteins. The tissue distributions of LvIAP1-3 were studied. The expression of LvIAP1-3 was induced in the muscle after white spot syndrome virus (WSSV) infection. LvIAP1 expression in the gill, hemocytes, hepatopancreas, and intestine was responsive to WSSV and Vibrio alginolyticus infections. LvIAP2 expression in the gill, hemocytes, and hepatopancreas was also responsive to WSSV infection. The expression of LvIAP3 in the gill, hemocytes, and intestine was reduced after V . alginolyticus infection. When overexpressed in Drosophila S2 cells, GFP labeled-LvIAP2 was distributed in the cytoplasm and appeared as speck-like aggregates in the nucleus. Both LvIAP1 and LvIAP3 were widely distributed throughout the cytoplasm and nucleus. The expression of LvIAP1, LvIAP2, and LvIAP3 was significantly knocked down by dsRNA-mediated gene silencing. In the gill of LvIAP1- or LvIAP3-silenced shrimp, the expression of WSSV VP28 was significantly higher than that of the dsGFP control group, suggesting that LvIAP1 and LvIAP3 may play protective roles in host defense against WSSV infection. Intriguingly, the LvIAP2-silenced shrimp all died within 48 hours after dsLvIAP2 injection. In the hemocytes of LvIAP2-silenced shrimps, the expression of antimicrobial peptide genes (AMPs), including Penaeidins, lysozyme, crustins, Vibrio penaeicidae-induced cysteine and proline-rich peptides (VICPs), was significantly downregulated, while the expression of anti-lipopolysaccharide factors (ALFs) was upregulated. Moreover, LvIAP2 activated the promoters of the NF-κB pathway-controlled AMPs, such as shrimp Penaeidins and Drosophila drosomycin and attacin A, in Drosophila S2 cells. Taken together, these results reveal that LvIAP1 and LvIAP3 might participate in the host defense against WSSV infection, and LvIAP2 might be involved in the regulation of shrimp AMPs.  相似文献   

19.
Innate immune system is a primary line of defense in fish that protects it from the invading pathogens. Antimicrobial peptides (AMPs) are widely distributed in nature and are essential components of innate immunity. These molecules enable the host’s innate immune system to fight against a variety of infectious agents. One such AMP, hepcidin, is a cysteine rich amphipathic peptide. We have amplified, cloned and characterized hepcidin like AMP from Schizothorax richardsonii that inhabits one of the most difficult aquatic ecosystems in the Indian Himalayas. The cDNA encoding hepcidin like peptide was amplified as a 371 bp fragment with an open reading frame (ORF) of 279 nucleotides flanked by 5′ and 3′ UTRs of 70 and 22 bases respectively. This ORF encodes a peptide of 93 amino acids with a signal peptide of 24 amino acids and a mature peptide of 25 amino acids. The mature hepcidin like peptide of S. richardsonii has eight cystine residues that participate in the formation of four disulfide bonds, a unique feature of hepcidin like AMPs. A 3D model of hepcidin like mature peptide was generated using Modeller 9.10 which was validated using PROCHECK and ERRAT. Phylogenetic analysis of hepcidin like AMP from S. richardsonii revealed that it was closely related to hepcidin from olive barb (Puntius sarana).  相似文献   

20.
CpG oligodeoxynucleotides (CpG ODNs), also called bacterial DNA or synthetic oligodeoxynucleotides, can induce apparent immunity protection against various pathogens, and they are widely used as functional immunostimulant or vaccine adjuvant in mammals. In the present study, CpG-rich plasmid pUC57-CpG was constructed and employed to stimulate the shrimp Litopenaeus vannamei, and the total hemocyte count, percentage of apoptotic hemocytes, regeneration of circulating hemocytes, the ability of phagocytosis and generation of reactive oxygen species (ROS) were measured to reveal the possible protection mechanism of CpG ODNs. After the injection of pUC57-CpG, the total hemocyte count significantly decreased (p < 0.01) to 2.56 × 107 cell/mL at the first day post stimulation, while the apoptosis increased (p < 0.01), which was 1.72-fold of that in control group. At the same time, the regeneration of circulating hemocytes fluctuated in a similar trend, and a significant increase was observed at the first day post stimulation. The phagocytotic activity including the percentage of phagocytosis and phagocytotic index, experienced an upward tend during the whole experimental period and the ROS level increased by 22% (p < 0.05) compared to that in the control group at first day post stimulation. These results together suggested that pUC57-CpG could promote the apoptosis and regeneration of circulating hemocytes, and enhance the phagocytosis and ROS production, which might contribute to the boosted immunity against the infection of pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号