首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Estimates of the amount of force exerted by a muscle using electromyography (EMG) rely partially upon the accuracy of the reference point used in the normalization technique. Accurate representations of muscle activities are essential for use in EMG-driven spinal loading models. The expected maximum contraction (EMC) normalization method was evaluated to explore whether it could be used to assess individuals who are not capable of performing a maximum exertion such as a person with a low back injury. Hence, this study evaluated the utility of an EMG normalization method (Marras and Davis, A non-MVC EMG normalization technique, Part 1, method development. Journal of Electromyography and Kinesiology 2000) that draws upon sub-maximal exertions to determine the reference points needed for normalization of the muscle activities. The EMC normalization technique was compared to traditional MVC-based EMG normalization by evaluating the spinal loads for 20 subjects (10 males and 10 females) performing dynamic lifts. The spinal loads (estimated via an EMG-assisted model) for the two normalization techniques were very similar with differences being <8%. The model performance variables indicated that both normalization techniques performed well (r(2)>0.9 and average error below 6%) with only the muscle gain being affected by normalization method as a result in different reference points. Based on these results, the proposed normalization technique was considered to be a viable method for EMG normalization and for use in EMG-assisted models. This technique should permit the quantitative evaluation of muscle activity for subjects unable to produce maximum exertions.  相似文献   

2.
Conventional electromyography-driven (EMG) musculoskeletal models are calibrated during maximum voluntary contraction (MVC) tasks, but individuals with low back pain cannot perform unbiased MVCs. To address this issue, EMG-driven models can be calibrated in submaximal tasks. However, the effects of maximal (when data points include the maximum contraction) and submaximal calibration techniques on model outputs (e.g., muscle forces, spinal loads) remain yet unknown. We calibrated a subject-specific EMG-driven model, using maximal/submaximal isometric contractions, and simulated different independent tasks. Both approaches satisfactorily predicted external moments (Pearson’s correlation ∼ 0.75; relative error = 44%), and removing calibration tasks under axial torques markedly improved the model performance (Pearson’s correlation ∼ 0.92; relative error ∼ 28%). Unlike individual muscle forces, gross (aggregate) model outputs (i.e., spinal loads, stability index, and sum of abdominal/back muscle forces) estimated from maximal and submaximal calibration techniques were highly correlated (r > 0.78). Submaximal calibration method overestimated spinal loads (6% in average) and abdominal muscle forces (11% in average). Individual muscle forces estimated from maximal and submaximal approaches were substantially different; however, gross model outputs (especially internal loads and stability index) remained highly correlated with small to moderate relative differences; therefore, the submaximal calibration technique can be considered as an alternative to the conventional maximal calibration approach.  相似文献   

3.
Electromyograms (EMGs) need to be normalized if comparisons are sought between trials when electrodes are reapplied, as well as between different muscles and individuals. The methods used to normalize EMGs recorded from healthy individuals have been appraised for more than a quarter of a century. Eight methods were identified and reviewed based on criteria relating to their ability to facilitate the comparison of EMGs. Such criteria included the magnitude and pattern of the normalized EMG, reliability, and inter-individual variability. If the aim is to reduce inter-individual variability, then the peak or mean EMG from the task under investigation should be used as the normalization reference value. However, the ability of such normalization methods to facilitate comparisons of EMGs is questionable. EMGs from MVCs can be as reliable as those from submaximal contractions, and do not appear to be affected by contraction mode or joint kinematics, particularly for the elbow flexors. Thus, the EMG from an isometric MVC is endorsed as a normalization reference value. Alternatively the EMG from a dynamic MVC can be used, although it is recognized that neither method is guaranteed to be able to reveal how active a muscle is in relation to its maximal activation capacity.  相似文献   

4.
Maximum voluntary isometric contractions (MVCs) are commonly used to normalize electromyography (EMG) data and must be reliable even if the individual has no prior experience performing MVCs. This study explored the effect of familiarization over three testing sessions on MVC performance and reliability by comparing muscle activation during standardized maximal and sub-maximal muscle contractions. Participants were recruited into two groups: (1) individuals who regularly engaged in upper body resistance training; (2) individuals with little or no prior experience in upper body resistance training. EMG was collected from two pairs of muscles; biceps brachii and triceps brachii from the arm, and erector spinae and external oblique from the trunk. The trunk muscles were chosen as muscles that are less frequently activated in isolation in day-to-day life. It was found that there were no significant improvements in MVC performance or within-day reliability over the three testing sessions for both resistance trained and non-resistance trained groups. Resistance-trained individuals showed a trend to be more reliable within-day than non-resistance trained participants. Day-to-day MVC reliability, particularly of the erector spinae muscle, was limited in some participants. This suggests that further efforts are needed to improve our capability of reliably eliciting muscle activation MVCs for EMG normalization, especially for muscles that are less frequently activated in isolation.  相似文献   

5.
Normalization of muscle activity has been commonly used to determine the amount of force exerted by a muscle. The most widely used reference point for normalization is the maximum voluntary contraction (MVC). However, MVCs are often subjective, and potentially limited by sensation of pain in injured individuals. The objective of the current study was to develop a normalization technique that predicts an electromyographic (EMG) reference point from sub-maximal exertions. Regression equations predicting maximum exerted trunk moments were developed from anthropometric measurements of 120 subjects. In addition, 20 subjects performed sub-maximal and maximal exertions to determine the necessary characteristic exertions needed for normalization purposes. For most of the trunk muscles, a highly linear relationship was found between EMG muscle activity and trunk moment exerted. This analysis determined that an EMG-moment reference point can be obtained via a set of sub-maximal exertions in combination with a predicted maximal exertion (expected maximum contraction or EMC) based upon anthropometric measurements. This normalization technique overcomes the limitations of the subjective nature for the MVC method providing a viable assessment method of individuals with a low back injury or those unwilling to exert an MVC as well as could be extended to other joints/muscles.  相似文献   

6.
This study aimed to investigate central and peripheral contributions to fatigue during repeated maximal voluntary isometric plantar flexions (MVCs). Changes in joint torque, level of activation (LOA), resting twitch amplitude (RT), electromyographic signals (EMG), and presynaptic inhibition of Ia afferents were investigated during 9 bouts of 10 MVCs. MVCs lasted for 2 s and were separated by 1 s. The interval between bouts was 10 s. Electrical stimulation was applied to the tibial nerve; at rest to evoke RTs, M waves, and two (1.5-s interval) H reflexes; with the soleus EMG at 30% of that during MVC to evoke M waves and two H reflexes; and during MVCs to measure LOA. Over the nine bouts, LOA decreased by 12.6% and RT by 16.2%. EMG root mean square during MVCs remained unchanged for the soleus and tibialis anterior muscles, but it decreased for medial gastrocnemius. Peripheral fatigue (decrease in RT) was positively correlated to LOA, whereas central fatigue (decrease in LOA) was not. Depression of both H reflexes suggests that presynaptic inhibition after the first bout was partly induced by homosynaptic postactivation depression of the Ia terminal. The H-reflex-to-M-wave ratio increased with fatigue in both passive and active states, with no change in the ratio of the second H reflex to the first, thereby indicating a decrease of presynaptic inhibition during fatigue. The results indicate that both central and peripheral mechanisms contributed to the fatigue observed during repeated MVCs and that the development of peripheral fatigue was influenced by the level of voluntary activation and initial plantar flexor torque.  相似文献   

7.
Previous curved muscle models have typically examined their robustness only under simple, single-plane static exertions. In addition, the empirical validation of curved muscle models through an entire lumbar spine has not been fully realized. The objective of this study was to empirically validate a personalized biologically-assisted curved muscle model during complex dynamic exertions. Twelve subjects performed a variety of complex lifting tasks as a function of load weight, load origin, and load height. Both a personalized curved muscle model as well as a straight-line muscle model were used to evaluate the model’s fidelity and prediction of three-dimensional spine tissue loads under different lifting conditions. The curved muscle model showed better model performance and different spinal loading patterns through an entire lumbar spine compared to the straight-line muscle model. The curved muscle model generally showed good fidelity regardless of lifting condition. The majority of the 600 lifting tasks resulted in a coefficient of determination (R2) greater than 0.8 with an average of 0.83, and the average absolute error less than 15% between measured and predicted dynamic spinal moments. As expected, increased load and asymmetry were generally found to significantly increase spinal loads, demonstrating the ability of the model to differentiate between experimental conditions. A curved muscle model would be useful to estimate precise spine tissue loads under realistic circumstances. This precise assessment tool could aid in understanding biomechanical causal pathways for low back pain.  相似文献   

8.
Psoas major (PM) and quadratus lumborum (QL) muscles have anatomically discrete regions. Redistribution of activity between these regions has been observed in people with low back pain (LBP). We hypothesised that the bias of activity of specific regions of PM and QL towards trunk extension may change depending on whether LBP individuals have more or less erector spinae (ES) activity in an extended/upright lumbar posture. Ten volunteers with recurring episodes of LBP and nine pain-free controls performed isometric trunk efforts in upright sitting. LBP individuals were subgrouped into those with high and low ES electromyographic activity (EMG) when sitting with a lumbar lordosis. Fine-wire electrodes were inserted into fascicles of PM arising from the transverse process (PM-t) and vertebral body (PM-v) and anterior (QL-a) and posterior layers (QL-p) of QL. The LBP group with low ES EMG had greater bias of PM-t, PM-v and QL-p towards trunk extension. The LBP group with high ES activity showed less PM activity towards extension. These findings suggest redistribution of activity within and/or between these muscles with extensor moments. This is likely to be important to consider for effective clinical interventions for individuals with LBP.  相似文献   

9.
Although deficits in the activation of abdominal muscles are present in people with low back pain (LBP), this can be modified with motor training. Training of deep abdominal muscles in isolation from the other trunk muscles, as an initial phase of training, has been shown to improve the timing of activation of the trained muscles, and reduce symptoms and recurrence of LBP. The aim of this study was to determine if training of the trunk muscles in a non-isolated manner can restore motor control of these muscles in people with LBP. Ten subjects with non-specific LBP performed a single session of training that involved three tasks: “abdominal curl up”, “side bridge” and “birdog”. Electromyographic activity (EMG) of trunk and deltoid muscles was recorded with fine-wire and surface electrodes during rapid arm movements and walking, before and immediately following the intervention. Onset of trunk muscle EMG relative to that of the prime mover (deltoid) during arm movements and the mean, standard deviation (SD) and coefficient of variation of abdominal muscle EMG during walking were calculated. There was no significant change in the times of onset of trunk muscle EMG during arm movements nor was there any change in the variability of EMG of the abdominal muscles during walking. However, the mean amplitude and SD of abdominal EMG was reduced during walking after training. The results of this study suggest that unlike isolated voluntary training, co-contraction training of the trunk muscles does not restore the motor control of the deep abdominal muscles in people with LBP after a single session of training.  相似文献   

10.
The hypothesis that control of lumbar spinal muscle synergies is biomechanically optimized was studied by comparing EMG data with an analytical model with a multi-component cost function that could include (1) trunk displacements, (2) intervertebral displacements, (3) intervertebral forces; (4) sum of cubed muscle stresses, and (5) eigenvalues for the first two spinal buckling modes. The model's independent variables were 180 muscle forces. The 36 displacements of 6 vertebrae were calculated from muscle forces and the spinal stiffness. Calculated muscle activation was compared with EMG data from 14 healthy human subjects who performed isometric voluntary ramped maximum efforts at angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees and 180 degrees to the right from the anterior direction. Muscle activation at each angle was quantified as the linear regression slope of the RMS EMG versus external force relationship, normalized by the maximum observed EMG.There was good agreement between the analytical model and EMG data for the dorsal muscles when the model included either minimization of intervertebral displacements or minimization of intervertebral forces in its cost function, but the model did not predict a realistic level of abdominal muscles activation. Agreement with EMG data was improved with the sum of the cubed muscle stresses added to the cost function. Addition of a cost function component to maximize the trunk stability produced higher levels of antagonistic muscle activation at low efforts than at greater efforts. It was concluded that the muscle activation strategy efficiently limits intervertebral forces and displacements, and that costs of higher muscle stresses are taken into account, but stability does not appear to be maximized. Trunk muscles are apparently not controlled solely to optimize any one of the biomechanical costs considered here.  相似文献   

11.
The aims of this study were to compare the steadiness index of spinal regions during single-leg standing in older adults with and without chronic low back pain (LBP) and to correlate measurements of steadiness index with the performance of clinical balance tests. Thirteen community-dwelling older adults (aged 55 years or above) with chronic LBP and 13 age- and gender-matched asymptomatic volunteers participated in this study. Data collection was conducted in a university research laboratory. Measurements were steadiness index of spinal regions (trunk, thoracic spine, lumbar spine, and pelvis) during single-leg standing including relative holding time (RHT) and relative standstill time (RST), and clinical balance tests (timed up and go test and 5-repetition sit to stand test). The LBP group had a statistically significantly smaller RHT than the control group, regardless of one leg stance on the painful or non-painful sides. The RSTs on the painful side leg in the LBP group were not statistically significantly different from the average RSTs of both legs in the control group; however, the RSTs on the non-painful side leg in the LBP group were statistically significantly smaller than those in the control group for the trunk, thoracic spine, and lumbar spine. No statistically significant intra-group differences were found in the RHTs and RSTs between the painful and non-painful side legs in the LBP group. Measurements of clinical balance tests also showed insignificant weak to moderate correlations with steadiness index. In conclusion, older adults with chronic LBP demonstrated decreased spinal steadiness not only in the symptomatic lumbar spine but also in the other spinal regions within the kinetic chain of the spine. When treating older adults with chronic LBP, clinicians may also need to examine their balance performance and spinal steadiness during balance challenging tests.  相似文献   

12.
Low back loading during occupational lifting is thought to be an important causative factor in the development of low back pain. In order to regulate spinal loading in the workplace, it is necessary to measure it accurately. Various methods have been developed to do this, but each has its own limitations, and none can be considered a "gold standard". The purpose of the current study was to compare the results of three contrasting techniques in order to gain insight into possible sources of error to which each is susceptible. The three techniques were a linked segment model (LSM), an electromyographic (EMG)-based model, and a neural network (NN) that used both EMG and inertial sensing techniques. All three techniques were applied simultaneously to calculate spinal loading when eight volunteers performed a total of eight lifts in a laboratory setting. Averaged results showed that, in comparison with the LSM, the EMG technique calculated a 25.5+/-33.4% higher peak torque and the NN technique a 17.3+/-10.5% lower peak torque. Differences between the techniques varied with lifting speed and method of lifting, and could be attributed to differences in anthropometric assumptions, antagonistic muscle activity, damping of transient force peaks by body tissues, and, specific to the NN, underestimation of trunk flexion. The results of the current study urge to reconsider the validity of other models by independent comparisons.  相似文献   

13.
Portable amplifiers that record electromyograms (EMGs) for longer than four hours are commonly priced over $20,000 USD. This cost, and the technical challenges associated with recording EMGs during free-living situations, typically restrict EMG use to laboratory settings. A low-cost system (μEMG; OT Bioelecttronica, 100€), using specialized concentric bipolar electrodes, has been developed specifically for free-living situations. The purpose of this study was to validate the μEMG system by comparing EMGs from μEMG with a laboratory-based alternative (Telemyo 900; Noraxon USA, Inc.). Surface EMGs from biceps brachii (BB) and tibialis anterior (TA) of ten subjects were recorded simultaneously with both systems as subjects performed maximal voluntary contractions (MVCs), submaximal contractions at 25%, 50%, and 75% MVC, seven simulated activities of daily living (ADLs), and >60 min of simulated free-living inside the laboratory. In general, EMG parameters (e.g., average full-wave rectified EMG amplitude) derived from both systems were not significantly different for all outcome variables, except there were small differences across systems in baseline noise and absolute EMG amplitudes during MVCs. These results suggest that μEMG is a valid approach to the long-term recording of EMG.  相似文献   

14.
ObjectivesTo quantify the variance introduced to trapezius electromyography (EMG) through normalization by sub-maximal reference voluntary exertions (RVE), and to investigate the effect of increased normalization efforts as compared to other changes in data collection strategy on the precision of occupational EMG estimates.MethodsWomen performed four RVE contractions followed by 30 min of light, cyclic assembly work on each of two days. Work cycle EMG was normalized to each of the RVE trials and seven exposure parameters calculated. The proportions of exposure variance attributable to subject, day within subject, and cycle and normalization trial within day were determined. Using this data, the effect on the precision of the exposure mean of altering the number of subjects, days, cycles and RVEs during data collection was simulated.ResultsFor all exposure parameters a unique component of variance due to normalization was present, yet small: less than 4.4% of the total variance. The resource allocation simulations indicated that marginal improvements in the precision of a group exposure mean would occur above three RVE repeats for EMG collected on one day, or beyond two RVEs for EMG collected on two or more days.  相似文献   

15.
The purpose of this study was to compare four different methods of normalising electromyograms (EMGs) recorded during normal gait. Comparisons were made between the amplitude, intra-individual variability and inter-individual variability of EMGs. Surface EMGs were recorded from the biceps femoris, semitendinosus, vastus lateralis and vastus medialis of ten males and two females while they walked on a treadmill at a self-selected speed. EMGs from the same muscles were subsequently recorded during isometric maximal voluntary contractions (MVCs) and concentric, isokinetic MVCs that were performed between 0.52 and 7.85 rad·s−1 on a BIODEX dynamometer. EMGs were also recorded during eccentric, isokinetic MVCs between 0.52 and 2.62 rad·s−1. Gait EMGs were then normalised at 2% intervals of the gait cycle by expressing them as a percentage of the following reference values: the mean (mean dynamic method) and the peak (peak dynamic method) EMG from the intra-individual ensemble average; the EMG from an isometric MVC (isometric MVC method); and the EMG from an isokinetic MVC that occurred with the same muscle action, length and velocity of musculotendinous unit as the gait EMGs (isokinetic MVC method). The isokinetic MVC method produced significantly greater (P<0.05) intra-individual variability compared to the other methods when it was measured using the variance ratio. Inter-individual variability of gait EMGs, again measured using the variance ratio, was also greatest when they were normalised using the isokinetic MVC method. The pattern and amplitude of EMGs normalised using the isometric MVC method and the isokinetic MVC method were very similar (root mean square difference and absolute difference both less than 3%). It was concluded that the isokinetic MVC method should not be adopted by gait researchers or clinicians as it does not reduce intra- or inter-individual variability anymore than existing normalisation methods, nor does it provide a more representative measure of muscle activation during gait than the isometric MVC method.  相似文献   

16.
Microarray scanner calibration curves: characteristics and implications   总被引:1,自引:0,他引:1  

Background

Microarray-based measurement of mRNA abundance assumes a linear relationship between the fluorescence intensity and the dye concentration. In reality, however, the calibration curve can be nonlinear.

Results

By scanning a microarray scanner calibration slide containing known concentrations of fluorescent dyes under 18 PMT gains, we were able to evaluate the differences in calibration characteristics of Cy5 and Cy3. First, the calibration curve for the same dye under the same PMT gain is nonlinear at both the high and low intensity ends. Second, the degree of nonlinearity of the calibration curve depends on the PMT gain. Third, the two PMTs (for Cy5 and Cy3) behave differently even under the same gain. Fourth, the background intensity for the Cy3 channel is higher than that for the Cy5 channel. The impact of such characteristics on the accuracy and reproducibility of measured mRNA abundance and the calculated ratios was demonstrated. Combined with simulation results, we provided explanations to the existence of ratio underestimation, intensity-dependence of ratio bias, and anti-correlation of ratios in dye-swap replicates. We further demonstrated that although Lowess normalization effectively eliminates the intensity-dependence of ratio bias, the systematic deviation from true ratios largely remained. A method of calculating ratios based on concentrations estimated from the calibration curves was proposed for correcting ratio bias.

Conclusion

It is preferable to scan microarray slides at fixed, optimal gain settings under which the linearity between concentration and intensity is maximized. Although normalization methods improve reproducibility of microarray measurements, they appear less effective in improving accuracy.
  相似文献   

17.
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.  相似文献   

18.
This study investigated long-term effects of training on postural control using the model of deficits in activation of transversus abdominis (TrA) in people with recurrent low back pain (LBP). Nine volunteers with LBP attended four sessions for assessment and/or training (initial, two weeks, four weeks and six months). Training of repeated isolated voluntary TrA contractions were performed at the initial and two-week session with feedback from real-time ultrasound imaging. Home program involved training twice daily for four weeks. Electromyographic activity (EMG) of trunk and deltoid muscles was recorded with surface and fine-wire electrodes. Rapid arm movement and walking were performed at each session, and immediately after training on the first two sessions. Onset of trunk muscle activation relative to prime mover deltoid during arm movements, and the coefficient of variation (CV) of EMG during averaged gait cycle were calculated. Over four weeks of training, onset of TrA EMG was earlier during arm movements and CV of TrA EMG was reduced (consistent with more sustained EMG activity). Changes were retained at six months follow-up (p<0.05). These results show persistence of motor control changes following training and demonstrate that this training approach leads to motor learning of automatic postural control strategies.  相似文献   

19.
One of the most obvious impacts of roads on wildlife is vehicle-induced mortality. The aims of this study were to examine the spatial pattern of mammal–vehicle collisions (MVCs), identify and examine factors that contribute to MVCs, and determine whether the factors that increase the odds of MVCs are similar between species. On 103 road surveys that covered 7,094 total km I recorded the location of each MVC along the survey route. I measured landscape and roadway features associated with each MVC and used kernel density and network analysis tools to identify road mortality hotspots and measure spatial clustering of MVCs. I used logistic regression to model the likelihood of MVCs for all mammal data and separately for Porcupine (Erethizon dorsatum), Raccoon (Procyon lotor), Skunk (Mephitis mephitis), Muskrat (Ondatra zibethicus) and Cottontail (Sylvilagus floridanus) data sets. I identified 51 MVC hotspots and found spatial clustering of MVCs for Porcupines, Raccoons and Skunks. Two landscape variables, distance to cover and the presence of an ecotone, as well as one road variable, road width, appeared as broadly important predictors of mammalian road mortality, though there was also species-specific variation in factors that increased the risk of MVCs. Field-measured variables were more important than remotely-measured variables in predicting the odds of MVCs. Conservation implications are that mitigation of landscape features associated with higher risk of vehicle-collisions may reduce the number of MVCs in general, but species-specific research is required to more carefully tailor mitigation efforts for particular species.  相似文献   

20.
Electromyographic (EMG) raw signals are sensitive to intrinsic and extrinsic factors. Consequently, EMG normalization is required to draw proper interpretations of standardized data. Specific recommendations are needed regarding a relevant EMG normalization method for participants who show atypical EMG patterns, such as post-stroke subjects. This study compared three EMG normalization methods (“isometric MVC”, “isokinetic MVC”, “isokinetic MVC kinematic-related”) on muscle activations and the antagonist-agonist co-contraction index. Fifteen post-stroke subjects and fifteen healthy controls performed active elbow extensions, followed by isometric and isokinetic maximum voluntary contractions (MVC). Muscle activations were obtained by normalizing EMG envelopes during active movement using a reference value determined for each EMG normalization method. The results showed no significant difference between the three EMG normalization methods in post-stroke subjects on muscle activation and the antagonist-agonist co-contraction index. We highlighted that the antagonist-agonist co-contraction index could underestimate the antagonist co-contraction in the presence of atypical EMG patterns. Based on its practicality and feasibility, we recommend the use of isometric MVC as a relevant procedure for EMG normalization in post-stroke subjects. We suggest combined analysis of the antagonist-agonist co-contraction index and agonist and antagonist activations to properly investigate antagonist co-contraction in the presence of atypical EMG patterns during movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号