首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The histiophagous scuticociliate parasite Philasterides dicentrarchi is an emergent pathogen in aquaculture and causes significant economic losses on turbot (Scophthalmus maximus) farms. In this study, the surface antigens (Ag) of the parasite were encapsulated and covalently linked to a polymeric microparticle formulation composed of two biodegradable polymers (chitosan and Gantrez). The antigenicity of the formulation and the protection provided were compared in mice and turbot. This formulation induced a higher antibody (Ab) response in mice at doses of 5mg of microspheres (MS) conjugated with approximately 230 μg of Ag (MS-Ag(c)). However, Ab levels were significantly lower than in mice vaccinated with the same concentration of Ag in complete Freund's adjuvant (FCA). In turbot, the MS-Ag(c) formulation induced a higher level of Abs than that induced by the same vaccine emulsified in FCA. The challenge experiments performed with P. dicentrarchi and vaccinated turbot also showed a clear correlation between Ab levels and survival levels. Growth was significantly affected in fish vaccinated with FCA, but not in fish vaccinated with MS. The high adjuvant capacity of MS, together with its biodegradability and low toxicity to fish, makes this new vaccine an economical, effective and safe alternative to oil-based adjuvants for the immunoprophylaxis of scuticociliatosis in turbot.  相似文献   

2.
Philasterides dicentrarchi is a ciliate that causes high mortalities in cultured turbot, Psetta maxima (L.). This pathogen displays high phagocytic activity and after entering the body it multiplies and feeds on host cells and tissue components. In previous studies, we found that complement, activated through the classical pathway, is a potent killer of P. dicentrarchi. Here, we compared the killing activity of turbot leucocytes and humoral factors against two virulent isolates of P. dicentrarchi, in order to determine the importance of leucocytes in the defence against this pathogen. Components of P. dicentrarchi (ciliary and membrane) stimulated turbot leucocytes, and increased the respiratory burst, degranulation and the expression of pro-inflammatory cytokines. We tested the susceptibility of ciliates to reactive oxygen and nitrogen species, by incubating them with different oxidative systems (H2O2, Fe/ascorbate, which induces lipid peroxidation, an O2? donor (XOD/HX), an NO donor (SNAP) and an ONOO? donor (SIN-1)), for 24 h. Both isolates were susceptible to high concentrations of H2O2, Fe/ascorbate, XOD/HX, and SIN-1 but were resistant to incubation with SNAP. Leucocytes became strongly activated when they were in contact with or were phagocytosed by the ciliate. Incubation of P. dicentrarchi with a combination of fresh serum and specific antibodies killed most of the ciliates, but the addition of leucocytes to ciliate cultures did not increase the toxicity to the ciliates. On the contrary, the number of ciliates increased when leucocytes were added to the culture because the ciliates fed on them. Despite being activated, leucocytes did not produce sufficiently high concentrations of toxic substances to kill the parasite. The most virulent isolate was that which induced greatest activation of leucocytes but was least susceptible to complement. We concluded that humoral factors such as complement (activated through the classical pathway) are critical for fish defence against P. dicentrarchi and that cellular responses appear to play a minor role, if any, in defence against this ciliate.  相似文献   

3.
Disease resistance‐related traits have received increasing importance in aquaculture breeding programs worldwide. Currently, genomic information offers new possibilities in breeding to address the improvement of this kind of traits. The turbot is one of the most promising European aquaculture species, and Philasterides dicentrarchi is a scuticociliate parasite causing fatal disease in farmed turbot. An appealing approach to fight against disease is to achieve a more robust broodstock, which could prevent or diminish the devastating effects of scuticociliatosis on farmed individuals. In the present study, a genome scan for quantitative trait loci (QTL) affecting resistance and survival time to P. dicentrarchi in four turbot families was carried out. The objectives were to identify QTL using different statistical approaches [linear regression (LR) and maximum likelihood (ML)] and to locate significantly associated markers for their application in genetic breeding strategies. Several genomic regions controlling resistance and survival time to P. dicentrarchi were detected. When analyzing each family separately, significant QTL for resistance were identified by the LR method in two linkage groups (LG1 and LG9) and for survival time in LG1, while the ML methodology identified QTL for resistance in LG9 and LG23 and for survival time in LG6 and LG23. The analysis of the total data set identified an additional significant QTL for resistance and survival time in LG3 with the LR method. Significant association between disease resistance‐related traits and genotypes was detected for several markers, a single one explaining up to 22% of the phenotypic variance. Obtained results will be essential to identify candidate genes for resistance and to apply them in marker‐assisted selection programs to improve turbot production.  相似文献   

4.
An effective screening method for inhibitors of NO production in natural products using LC-QTOF MS/MS coupled with a cell-based assay was proposed. The ethyl acetate fraction of Catalpa ovata exhibited a strong inhibitory effect on NO production in lipopolysaccharide-induced BV2 microglia cells. We attempted to identify the active constituents of C. ovata by using LC-QTOF MS/MS coupled with a cell-based assay. Peaks at approximately 14–15 min on the MS chromatogram were estimated to be the bioactive constituents. A new iridoid compound, 6-O-trans-feruloyl-3β-hydroxy-7-deoxyrehamaglutin A (4), and nine known compounds (13, 510) were isolated from the ethyl acetate fraction of C. ovata by repeated column chromatography. Compounds 3, 4, 5, 7, and 8 significantly attenuated lipopolysaccharide-stimulated NO production in BV2 cells. Our results indicate that LC-QTOF MS/MS coupled with a cell-based NO production inhibitory assay successfully predicted active compounds without a time-consuming isolation process.  相似文献   

5.
Philasterides dicentrarchi is a histophagous scuticociliate causes fatal scuticociliatosis in farmed olive flounder Paralichthys olivaceus. The average monthly prevalence of scuticociliatosis due to P. dicentrarchi infections was increased from May to July (40 ± 3.1% to 79.4 ± 1.7%) and it decreased from August to November (63 ± 2.3% to 30 ± 2.6%) in olive flounder farms at Jeju Island, South Korea during 2000-2006. The prevalence of mixed infection along with Vibrio spp. bacterial infection was 49 ± 7.2% than that of other mixed infection. At present no effective control measure for P. dicentrarchi infection has been described and large production losses continue. In the present study, formalin, hydrogen peroxide and Jenoclean chemotheraputants were used for bath treatment. Among Jenoclean at a low concentration of 50 ppm proved effective. The results were confirmed with in vitro motility assessments and morphological changes scoring system in P. dicentrarchi. On the other hand, similar trend was noted following hydrogen peroxide treatment at this concentration, but formalin was only moderately effective. Either hydrogen peroxide or Jenoclean are the promising compounds effective at low concentrations with short application time for P. dicentrarchi. Therefore, these substances were evaluated on day 10, 20 and 30 for their ability to enhance innate immune response and disease resistance against P. dicentrarchi in olive flounder after chemotheraputants bath treatment with 100 ppm for 30 min per day. All the tested immune parameters were enhanced by treatment with Jenoclean, but not formalin and hydrogen peroxide. These findings suggest that Jenoclean bath treatment can be used for ensuring the heath of cultured marine fish against internal parasites such as P. dicentrarchi.  相似文献   

6.
As an important feedstock monomer for the production of biodegradable stereo-complex poly-lactic acid polymer, d-lactate has attracted much attention. To improve d-lactate production by microorganisms such as Lactobacillus delbrueckii, various fermentation conditions were performed, such as the employment of anaerobic fermentation, the utilization of more suitable neutralizing agents, and exploitation of alternative nitrogen sources. The highest d-lactate titer could reach 133 g/L under the optimally combined fermentation condition, increased by 70.5% compared with the control. To decipher the potential mechanisms of d-lactate overproduction, the time-series response of intracellular metabolism to different fermentation conditions was investigated by GC–MS and LC–MS/MS-based metabolomic analysis. Then the metabolomic datasets were subjected to weighted correlation network analysis (WGCNA), and nine distinct metabolic modules and eight hub metabolites were identified to be specifically associated with d-lactate production. Moreover, a quantitative iTRAQ–LC–MS/MS proteomic approach was employed to further analyze the change of intracellular metabolism under the combined fermentation condition, identifying 97 up-regulated and 42 down-regulated proteins compared with the control. The in-depth analysis elucidated how the key factors exerted influence on d-lactate biosynthesis. The results revealed that glycolysis and pentose phosphate pathways, transport of glucose, amino acids and peptides, amino acid metabolism, peptide hydrolysis, synthesis of nucleotides and proteins, and cell division were all strengthened, while ATP consumption for exporting proton, cell damage, metabolic burden caused by stress response, and bypass of pyruvate were decreased under the combined condition. These might be the main reasons for significantly improved d-lactate production. These findings provide the first omics view of cell growth and d-lactate overproduction in L. delbrueckii, which can be a theoretical basis for further improving the production of d-lactate.  相似文献   

7.
Bacillus strains have been widely used for the production of fibrinolytic enzymes having role in the treatment of cardiovascular disorders. Purification and overproduction of such enzymes has increased their usage in medical fields including metalloproteinases with the ability to degrade extracellular matrix (ECM). Camelysin, a neutral metalloproteinase has been isolated from different species of bacteria like Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis with fibrinolytic, collagenolytic and actin degradation activity. This project successfully demonstrated the presence of 734-bp coding DNA sequence (CDS) encoding a 20.72331 kDa camelysin gene in local strain of Bacillus thuringiensis containing a signal peptide with cleavage site between residues 19 and 20. The sequence was submitted to GenBank (KT023597) and the sequence showed high homology with the camelysin protein of closely related Bacillus species. The alignment of related proteins through ClustalW displayed difference of four amino acids (“Q” replaced by “P” at position 169 and at position 182–184, “NQE” replaced by “HLK”) in the isolated protein. Comparison including structural and functional analysis of camelysin sequences isolated from different Bacillus species was carried out using different bioinformatics tools and software. The information would help in better understanding the properties of camelysin protein and its role in pathogenicity and clinical treatments.  相似文献   

8.
Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production.  相似文献   

9.
Two bacteriocins, ST28MS and ST26MS, produced by Lactobacillus plantarum isolated from molasses, inhibited the growth of Lactobacillus casei, Lactobacillus sakei, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumanii. The mode of activity of the bacteriocins is bacteriostatic, as observed against L. casei and P. aeruginosa. Reduction in antimicrobial activity was recorded after treatment with Proteinase K, papain, trypsin, chymotrypsin, pronase, pepsin and protease. Both peptides remained active after 20 min at 121 °C. Bacteriocin ST28MS was produced at much higher levels (12,800 AU/mL) compared to bacteriocin ST26MS (6400 AU/mL) with glucose as carbon source. The activity of bacteriocin ST28MS decreased by 50% at pH below 4.0. Bacteriocin ST26MS, on the other hand, is more stable at this pH. Production of both bacteriocins is stimulated by tryptone. Potassium (KH2PO4 and K2HPO4) at 5 and 10 g/L stimulated the production of bacteriocin ST28MS, but not bacteriocin ST26MS. MRS supplemented with glycerol (1–5 g/L) did not result in any changes in the activity levels of the two bacteriocins. Ascorbic acid and Vitamins B1 and B12 are required for bacteriocin ST28MS production, but only Vitamin B12 for bacteriocin ST26MS production. No plasmids were recorded for strains ST28MS and ST26MS, suggesting that the genes encoding production of the two bacteriocins are located on the genomes.  相似文献   

10.
This study describes metabolite profiles of Ralstonia eutropha H16 focusing on biosynthesis of polyhydroxyalkanoates (PHAs), bacterial polyesters attracted as biodegradable bio-based plastics. As CoA-thioesters are important intermediates in PHA biosynthesis, four kinds of acyl-CoAs with medium chain length were prepared and used to establish analytical conditions for capillary electrophoresis-electron spray ionization-tandem mass spectrometry (CE–ESI-MS/MS). Metabolites were extracted from R. eutropha cells in growth, PHA production, and stationary phases on fructose and PHA production phase on octanoate, and subjected to stable isotope dilution-based comparative quantification by multiple reaction monitoring using CE–ESI-MS/MS and 13C-labeled metabolites prepared by extraction from R. eutropha mutant grown on U-13C6-glucose. This procedure allowed to quantify relative changes of 94 ionic metabolites including CoA-thioesters. Hexose-phosphates except for glucose 1-phosphate were decreased in the PHA production phase than in the growth phase, suggesting reduced flux of sugar degradation after the cell growth. Several intermediates in TCA cycle and gluconeogenesis were increased in the PHA production phase on octanoate. Interestingly, ribulose 1,5-bisphosphate were detected in all the samples examined, raising possibilities of CO2 fixation by Calvin–Benson–Bassham cycle in this bacterium even under heterotrophic growth conditions. Turnover of acyl moieties through β-oxidation was suggested to be active on fructose, as CoA-thioesters of C6 and C8 were detected in the fructose-grown cells. In addition, major metabolic pools in R. eutropha cells were estimated from the signal intensities. The results of the present study provided new insights into global metabolisms in PHA-producing R. eutropha.  相似文献   

11.
The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.  相似文献   

12.
This study describes the isolation of angiotensin I converting enzyme and antioxidative peptides from head protein hydrolysate of red scorpionfish (Scorpaena notata) prepared by treatment with a protease from the fungus Penicillium digitatum. After ultrafiltration, three peptides were isolated by a two-step procedure: size exclusion chromatography on a Toyopearl HW-40 followed by reversed-phase high performance liquid chromatography (RP-HPLC) with a high purification yield of 2.22 mg of peptide/g of initial protein. Active peptides were then identified by nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC/MS–MS), corresponding to the following sequences: Gln–Gln–Pro–His–Ser–Arg–Ser–Lys–Gly–Phe–Pro–Gly–Pro (1424.724 Da), Gly–Gln–Lys–Ser–Val–Pro–Glu–Val–Arg (1000.565 Da) and Val–Glu–Gly–Lys–Ser–Pro–Asn–Val (830.448 Da). Peptides D-I, E-I and F-I showed high angiotensin-I converting enzyme inhibitory activity with an IC50 values of 0.98, 1.69 and 1.44 µM, respectively as well as a synergistic antioxidant activity between the different fractions. Thus, we have demonstrated that underutilized wastes can be valorized by production of peptides that can be used as potential therapeutic compounds active against oxidative stress and hypertension.  相似文献   

13.
Graphene-based silver nanoparticles (Ag NPs–GE) material has been developed and demonstrated antibacterial effect against Escherichia coli and Pseudomonas aeruginosa. In this study, the antibacterial activity and mechanism on P. aeruginosa were investigated. The experiments results showed the minimum bactericidal concentration of Ag NPs–GE to P. aeruginosa is 20 μg/ml. When P. aeruginosa were exposed to 20 μg/ml Ag NPs–GE for 1 h, the cell wall was breakdown. In order to study the mechanism of antibacterial effect of Ag NPs–GE, two-dimensional electrophoresis was carried out to compare the protein expressional profiles of P. aeruginosa exposed to 5 μg/ml Ag NPs–GE or 5 μg/ml AgNO3 with the untreated bacteria. Identification of differentially expressed protein was performed by MALDI–TOF/TOF MS. The change of proteomic profile induced by Ag NPs–GE was distinct from that induced by AgNO3. Seven identified proteins were found induced and nine proteins were suppressed by Ag NPs–GE. Five identified proteins were found induced and twenty proteins were suppressed by AgNO3. In addition, either Ag NPs–GE or AgNO3 suppressed the expression of eight proteins, amidotransferase, 30S ribosomal protein S6, bifunctional proline dehydrogenase/pyrroline-5-carboxylate dehydrogenase, arginyl-tRNA synthetase, nitroreductase, acetolactate synthase 3, methionyl-tRNA synthetase and periplasmic tail-specific protease. Furthermore, gene ontology analysis and KEGG pathway analysis were used to characterize the functions of those proteins.  相似文献   

14.
Philasterides dicentrarchi is a causative agent of scuticociliatosis in olive flounder Paralichthys olivaceus, aquaculture in Korea. In this study, a cDNA encoding a cathepsin L-like cysteine protease (PdCtL) of P. dicentrarchi (synonym Miamiensis avidus) was identified. To express the PdCtL recombinant protein in a heterologous system, 10 codons were redesigned to conform to the standard eukaryotic genetic code using polymerase chain reaction (PCR)-based site-directed mutagenesis. The recombinant P. dicentrarchi procathepsin L (proPdCtL) was expressed at high levels in E. coli Rosetta (DE3) pLysS with a pPET21a vector, and successfully refolded, purified, and activated into a functional and enzymatically active form. The optimal pH for protease activity was 5. Similar to other cysteine proteases, enzyme activity was inhibited by E64 and leupeptin. Immunogenicity of recombinant PdCtL was assessed by enzyme-linked immunosorbent assay, western blot, and specific anti-recombinant PdCtL antibodies were detected. Our results suggest that the biochemical characteristics of the recombinant ciliate proPdCtL protein are similar to those of the cathepsin L-like cysteine protease, that the PCR-based site-direct mutated ciliate gene was successfully expressed in a biochemically active form, and that the recombinant PdCtL acted as a specific epitope in olive flounder.  相似文献   

15.
The TF cell line, derived from a top predatory, carnivorous marine teleost, the turbot (Scophthalmus maximus), is known to have a limited conversion of C18 to C20 polyunsaturated fatty acids (PUFA). To illuminate the underlying processes, we studied the conversions of stearidonic acid, 18:4(n–3), and its elongation product, 20:4(n–3), in TF cells and also in a cell line, AS, derived from Atlantic salmon (Salmo salar), by adding unlabelled (25 μM), U-14C (1 μM) or deuterated (d5; 25 μM) fatty acids. Stearidonic acid, 18:4(n–3), was metabolised to 20:5(n–3) in both cells lines, but more so in AS than in TF cells. Δ5 desaturation was more active in TF cells than in AS cells, whereas C18 to C20 elongation was much reduced in TF as compared to AS cells. Only small amounts of docosahexaenoic acid (22:6(n–3)) were produced by both cell lines, although there was significant production of 22:5(n–3) in both cultures, especially when 20:4(n–3) was supplemented. We conclude that limited elongation of C18 to C20 fatty acids rather than limited fatty acyl Δ5 desaturation accounts for the limited rate of conversion of 18:3(n–3) to 20:5(n–3) in the turbot cell line, as compared to the Atlantic salmon cell line. The results can account for the known differences in conversions of C18 to C20 PUFA by the turbot and the Atlantic salmon in vivo.  相似文献   

16.
Hitherto this is the first report pertaining to production of biofilm inhibitory compound(s) (BIC) from Bacillus subtilis BR4 against Pseudomonas aeruginosa (ATCC 27853) coupled with production optimization. In order to achieve this, combinations of media components were formulated by employing statistical tools such as Plackett–Burman analysis and central composite rotatable design (CCRD). It was evident that at 35 ml L?1 glycerol and 3.8 g L?1 casamino acid, anti-biofilm activity and production of extracellular protein significantly increased by 1.5-fold and 1.2-fold, respectively. These results corroborate that the combination of glycerol and casamino acid plays a key role in the production of BIC. Further, metabolic profiling of BIC was carried out using liquid chromatography/tandem mass spectrometry (LC–MS/MS) based on m/z value. The presence of Stigmatellin Y was predicted with monoisotopic neutral mass of 484.2825 Da. In support of optimization study, higher production of BIC was confirmed in the optimized-media-grown BR4 (OPT-BR4) than in the ideal-media-grown BR4 (ID-BR4) by LC–MS/MS analysis. PqsR in P. aeruginosa is a potential target for anti-virulent therapy. Molecular docking study has revealed that Stigmatellin Y interacts with PqsR in the similar orientation like a cognate signal (PQS) and synthetic inhibitor. In addition, Stigmatellin Y was found to exhibit interaction with four more amino acid residues of PqsR to establish strong affinity. Stigmatellin Y thus might play a role of competitor for PQS to distract PQS–PqsR mediated communication in P. aeruginosa. The present investigation thus paves new avenues to develop anti-Pseudomonas virulent therapy.  相似文献   

17.

Background

With the exception of some live vaccines, e.g. BCG, subunit vaccines formulated with “classical” adjuvants do not induce similar responses in neonates as in adults. The usual neonatal profile is characterized by lower levels of TH1-associated biomarkers. This has hampered the development of new neonatal vaccines for diseases that require early protection. Tuberculosis is one of the major targets for neonatal immunization. In this study, we assessed the immunogenicity of a novel candidate vaccine comprising a mycobacterial fusion protein, Ag85B-ESAT-6, in a neonatal murine immunization model.

Methods/Findings

The Ag85B-ESAT-6 fusion protein was formulated either with a classical alum based adjuvant or with the novel IC31® adjuvant. Following neonatal or adult immunization, 3 parameters were studied in vivo: (1) CD4+ T cell responses, (2) vaccine targeting/activation of dendritic cells (DC) and (3) protection in a surrogate mycobacterial challenge model. Conversely to Alum, IC31® induced in both age groups strong Th1 and Th17 responses, characterized by multifunctional T cells expressing IL-2 and TNF-α with or without IFN-γ. In the draining lymph nodes, a similarly small number of DC contained the adjuvant and/or the antigen following neonatal or adult immunization. Expression of CD40, CD80, CD86 and IL-12p40 production was focused on the minute adjuvant-bearing DC population. Again, DC targeting/activation was similar in adults and neonates. These DC/T cell responses resulted in an equivalent reduction of bacterial growth following infection with M. bovis BCG, whereas no protection was observed when Alum was used as adjuvant.

Conclusion

Neonatal immunization with the IC31®- adjuvanted Ag85B-ESAT-6 subunit vaccine elicited adult-like multifunctional protective anti-mycobacterial T cell responses through the induction of an adult pattern of in vivo DC activation.  相似文献   

18.
A trinorguaian-type sesquiterpenoid named kanalpin and two acylated flavonol glycosides named erzurumin and ilicanin have been isolated from Pimpinella cappadocica Boiss. & Bal., together with three known sesquiterpenoids and six known flavonoid glycosides. The structures of these compounds were determined by extensive spectroscopic (UV, IR, EI–MS, APCI–MS, HR-ESI-MS, 1D and 2D NMR) analyses. Antioxidant capacity of isolated secondary metabolites containing extracts of P. cappadocica was evaluated.  相似文献   

19.
An investigation on the chemical constituents in the root barks of Litsea glutinosa was performed for the first time. Three new lignan glycosides named Litseasins A–C (1–3), together with a known one (4), were obtained. The structures of the new compounds were established through extensive spectroscopic analyses including HR-ESI–MS, NMR, and circluar dichroism (CD). The new compounds were evaluated for their anti-inflammatory activities on lipopolysaccharide (LPS)-induce nitric oxide (NO) production in RAW264.7 murine macrophage cells. However, these compounds showed no inhibition on LPS-induced NO productions.  相似文献   

20.
In this research, a microbial endophytic strain obtained from the rhizosphere of the conifer Taxus baccata and designated as Streptomyces sp. AC35 (FJ001754.1 Streptomyces, GenBank) was investigated. High 16S rDNA gene sequence similarity suggests that this strain is closely related to S. odorifer. The major fatty acid profile of intracellular lipids was also carried out to further identify this strain. Atomic force microscopy and scanning acoustic microscopy were used to image our strain. Its major excreted substances were extracted, evaluated for antimicrobial activity, purified, and identified by ultraviolet–visible spectroscopy (UV–vis), liquid chromatography–mass spectrometry (LC–MS/MS) and nuclear magnetic resonance as the bioactive isoflavone aglycones—daidzein, glycitein and genistein. Batch cultivation, performed under different pH conditions, revealed enhanced production of antimycin components when the pH was stable at 7.0. Antimycins were detected by HPLC and identified by UV–vis and LC–MS/MS combined with the multiple reaction monitoring. Our results demonstrate that Streptomyces sp. AC35 might be used as a potential source of effective, pharmaceutically active compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号