首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
We characterized two novel members of the RAET1/ULBP gene cluster, RAET1E and RAET1G. The encoded proteins were similar to the ULBP in their class I-like alpha1 and alpha2 domains, but differed in that, instead of being GPI-anchored, their sequences were type 1 membrane-spanning molecules. Both proteins were capable of being expressed at the cell surface. Both proteins bound the activating receptor NKG2D, and RAET1G bound the human CMV protein UL16. The expression of diverse NKG2D-binding molecules in different tissues and with different properties is consistent with multiple modes of infection- or stress-induced activation.  相似文献   

4.
The MHC class I-chain-related proteins (MICs) and the UL16-binding proteins (ULBPs) are inducible stress response molecules that work as activators of a specific receptor, NKG2D, which is expressed on effector cells, such as NK cells and subsets of T cells. In this study, we sought to explore the biological significance of NKG2D ligands in human neoplasms by comprehensively examining the immunohistochemical expression profile of NKG2D ligands in a variety of human epithelial neoplasms. Following careful validation of the immunohistochemical specificity and availability of anti-human ULBP antibodies for formalin-fixed paraffin-embedded (FFPE) materials, the expression of NKG2D ligands was analyzed in FFPE tissue microarrays comprising 22 types of epithelial neoplastic tissue with their non-neoplastic counterpart from various organs. Hierarchical cluster analysis demonstrated a positive relationship among ULBP2/6, ULBP3, ULBP1, and ULBP5, whose expression patterns were similar across all of the neoplastic tissues examined. In contrast, MICA/B, as well as ULBP4, did not appear to be related to any other ligand. These expression profiles of NKG2D ligands in human neoplasms based on well-validated specific antibodies, followed by hierarchical cluster analysis, should help to clarify some functional aspects of these molecules in cancer biology, and also provide a path to the development of novel tumor-type-specific treatment strategies.  相似文献   

5.
Objective  To investigate the clinical significance of the expression of the NKG2D ligands MICA/B and ULBP2 in ovarian cancer. Methods  Eighty-two ovarian cancer patients and six patients without ovarian cancer from Department of Obstetrics and Gynecology of Kyoto University Hospital were enrolled in this study between 1993 and 2003. Expression of MICA/B, ULBP2, and CD57 in ovarian cancer tissue and normal ovary tissue was evaluated by immunohistochemical staining, and the relationship of these results to relevant clinical patient data was analyzed. Expression of MICs, ULBP2, and HLA-class I molecules in 33 ovarian cancer cell lines and two normal ovarian epithelial cell lines, as well as levels of soluble MICs and ULBP2 in the culture supernatants, were measured. Results  Expression of MICA/B and ULBP2 was detected in 97.6 and 82.9% of ovarian cancer cells, respectively, whereas neither was expressed on normal ovarian epithelium. The expression of MICA/B in ovarian cancer was highly correlated with that of ULBP2. Strong expression of ULBP2 in ovarian cancer cells was correlated with less intraepithelial infiltration of T cells and bad prognoses for patients, suggesting that ULBP2 expression is a prognostic indicator in ovarian cancer. The expression of NKG2D ligands did not correlate with the levels of the soluble forms of the ligands. Conclusions  High expression of ULBP2 is an indicator of poor prognosis in ovarian cancer and may relate to T cell dysfunction in the tumor microenvironment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by grants from Grant-in-Aid for Scientific Research (19390426, 19591932, 18209052 and 19659421) from the Ministry of Education, Science, Sports, Culture and Technology of Japan.  相似文献   

6.
7.
Human CMV infection results in MHC class I down-regulation and induction of NKG2D ligand expression favoring NK recognition of infected cells. However, human CMV-encoded UL16 counteracts surface expression of several NKG2D ligands by intracellular retention. Interestingly, UL16 interacts with MICB, but not with the closely related MICA, and with UL16-binding proteins (ULBP) ULBP1 and ULBP2, which are only distantly related to MICB, but not with ULPB3 or ULBP4, although all constitute ligands for NKG2D. Here, we dissected the molecular basis of MICA-MICB discrimination by UL16 to elucidate its puzzling binding behavior. We report that the UL16-MICB interaction is independent of glycosylation and demonstrate that selective MICB recognition by UL16 is governed by helical structures of the MICB alpha2 domain. Transplantation of the MICB alpha2 domain confers UL16 binding capacity to MICA, and thus, diversification of the MICA alpha2 domain may have been driven by the selective pressure exerted by UL16.  相似文献   

8.
9.
NKG2D is an activating receptor that is expressed on most natural killer (NK) cells, CD8 alphabeta T cells, and gammadelta T cells. Among its ligands is the distant major histocompatibility complex class I homolog MICA, which has no function in antigen presentation but is induced by cellular stress. To extend previous functional evidence, the NKG2D-MICA interaction was studied in isolation. NKG2D homodimers formed stable complexes with monomeric MICA in solution, demonstrating that no other components were required to facilitate this interaction. MICA glycosylation was not essential but enhanced complex formation. Soluble NKG2D also bound to cell surface MICB, which has structural and functional properties similar to those of MICA. Moreover, NKG2D stably interacted with surface molecules encoded by three newly identified cDNA sequences (N2DL-1, -2, and -3), which are identical to the human ULBP proteins and may represent homologs of the mouse retinoic acid-early inducible family of NKG2D ligands. Because of the substantial sequence divergence among these molecules, these results indicated promiscuous modes of receptor binding. Comparison of allelic variants of MICA revealed large differences in NKG2D binding that were associated with a single amino acid substitution at position 129 in the alpha2 domain. Varying affinities of MICA alleles for NKG2D may affect thresholds of NK-cell triggering and T-cell modulation.  相似文献   

10.
Human cytomegalovirus (HCMV) employs a variety of strategies to modify or evade the host immune response, and natural killer (NK) cells play a crucial role in controlling cytomegalovirus infections in mice and humans. Activation of NK cells through the receptor NKG2D/DAP10 leads to killing of NKG2D ligand-expressing cells. We have previously shown that HCMV is able to down-regulate the surface expression of some NKG2D ligands, ULBP1, ULBP2, and MICB via the viral glycoprotein UL16. Here, we show that the viral gene product UL142 is able to down-regulate another NKG2D ligand, MICA, leading to protection from NK cytotoxicity. UL142 is not able to affect surface expression of all MICA alleles, however, which may reflect selective pressure on the host to thwart viral immune evasion, further supporting an important role for the MICA-NKG2D interaction in immune surveillance.  相似文献   

11.
The activating immunoreceptor NKG2D promotes elimination of infected or malignant cells by cytotoxic lymphocytes through engagement of stress-induced MHC class I-related ligands. The human cytomegalovirus (HCMV)-encoded immunoevasin UL16 subverts NKG2D-mediated immune responses by retaining a select group of diverse NKG2D ligands inside the cell. We report here the crystal structure of UL16 in complex with the NKG2D ligand MICB at 1.8 Å resolution, revealing the molecular basis for the promiscuous, but highly selective, binding of UL16 to unrelated NKG2D ligands. The immunoglobulin-like UL16 protein utilizes a three-stranded β-sheet to engage the α-helical surface of the MHC class I-like MICB platform domain. Intriguingly, residues at the center of this β-sheet mimic a central binding motif employed by the structurally unrelated C-type lectin-like NKG2D to facilitate engagement of diverse NKG2D ligands. Using surface plasmon resonance, we find that UL16 binds MICB, ULBP1, and ULBP2 with similar affinities that lie in the nanomolar range (12–66 nM). The ability of UL16 to bind its ligands depends critically on the presence of a glutamine (MICB) or closely related glutamate (ULBP1 and ULBP2) at position 169. An arginine residue at this position however, as found for example in MICA or ULBP3, would cause steric clashes with UL16 residues. The inability of UL16 to bind MICA and ULBP3 can therefore be attributed to single substitutions at key NKG2D ligand locations. This indicates that selective pressure exerted by viral immunoevasins such as UL16 contributed to the diversification of NKG2D ligands.  相似文献   

12.
13.

Background

Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored.

Methodology/Principal Findings

We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation.

Conclusions/Significance

Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance.  相似文献   

14.

Background

Biomarkers predicting tuberculosis treatment response and cure would facilitate drug development. This study investigated expression patterns of the co-stimulation molecule NKG2D in human tuberculosis and treatment to determine its potential usefulness as a host biomarker of tuberculosis drug efficacy.

Methods

Tuberculosis patients (n = 26) were recruited in Lahore, Pakistan, at diagnosis and followed up during treatment. Household contacts (n = 24) were also recruited. NKG2D expression was measured by qRT-PCR in RNA samples both ex vivo and following overnight mycobacterial stimulation in vitro. Protein expression of NKG2D and granzyme B was measured by flow cytometry.

Results

NKG2D expression in newly diagnosed tuberculosis patients was similar to household contacts in ex vivo RNA, but was higher following in vitro stimulation. The NKG2D expression was dramatically reduced by intensive phase chemotherapy, in both ex vivo blood RNA and CD8+ T cell protein expression, but then reverted to higher levels after the continuation phase in successfully treated patients.

Conclusion

The changes in NKG2D expression through successful treatment reflect modulation of the peripheral cytotoxic T cell response. This likely reflects firstly in vivo stimulation by live Mycobacterium tuberculosis, followed by the response to dead bacilli, antigen-release and finally immunopathology resolution. Such changes in host peripheral gene expression, alongside clinical and microbiological indices, could be developed into a biosignature of tuberculosis drug-induced cure to be used in future clinical trials.  相似文献   

15.
Lu J  Aggarwal R  Kanji S  Das M  Joseph M  Pompili V  Das H 《PloS one》2011,6(9):e23348

Background

Mechanisms of human Vγ2Vδ2 T cell-mediated tumor immunity have yet to be fully elucidated.

Methods and Findings

At least some tumor cell recognition is mediated by NKG2D-MICA interactions. Herein, by using MTT assay and PI-BrdU co-staining and Western-blot, we show that these Vγ2Vδ2 T cells can limit the proliferation of ovarian tumor cells by down regulation of apoptosis and cell cycle related molecules in tumor cells. Cell-to-cell contact is critical. γδ T cell-resistant, but not susceptible ovarian tumor cells escape γδ T cell-mediated immune recognition by up-regulating pErk1/2, thereby decreasing surface MICA levels. Erk1/2 inhibitor pretreatment or incubation prevents this MICA decrease, while up-regulating key cell cycle related molecules such as CDK2, CDK4 and Cyclin D1, as well as apoptosis related molecules making resistant tumor cells now vulnerable to γδ T cell-mediated lysis.

Conclusion

These findings demonstrate novel effects of γδT cells on ovarian tumor cells.  相似文献   

16.
17.

Background

NK cells are key players in anti tumor immune response, which can be employed in cell-based therapeutic modalities. One of the suggested ways to amplify their anti tumor effect, especially in the field of stem cell transplantation, is by selecting donor/recipient mismatches in specific HLA, to reduce the inhibitory effect of killer Ig-like receptors (KIRs). Here we suggest an alternative approach for augmentation of anti tumor effect of allogeneic NK cells, which is founded on profile matching of donor NK lysis receptors (NKLR) phenotype with tumor lysis-ligands.

Methodology/Principal Findings

We show that an NKLR-mediated killing directly correlates with the NKLR expression intensity on NK cells. Considerable donor variability in the expression of CD16, NKp46, NKG2D and NKp30 on circulating NK cells, combined with the stability of phenotype in several independently performed tests over two months, indicates that NKLR-guided selection of donors is feasible. As a proof of concept, we show that melanoma cells are dominantly recognized by three NKLRs: NKG2D, NKp30 and NKp44. Notably, the expression of NKp30 on circulating NK cells among metastatic melanoma patients was significantly decreased, which diminishes their ability to kill melanoma cells. Ex vivo expansion of NK cells results not only in increased amount of cells but also in a consistently superior and predictable expression of NKG2D, NKp30 and NKp44. Moreover, expanded NK cultures with high expression of NKG2D or NKp30 were mostly derived from the corresponding NKG2Dhigh or NK30high donors. These NK cultures subsequently displayed an improved cytotoxic activity against melanoma in a HLA/KIR-ligand mismatched setup, which was NKLR-dependent, as demonstrated with blocking anti-NKG2D antibodies.

Conclusions/Significance

NKLR/NKLR-ligand matching reproducibly elicits enhanced NK anti-tumor response. Common NKLR recognition patterns of tumors, as demonstrated here in melanoma, would allow implementation of this approach in solid malignancies and potentially in hematological malignancies, either independently or in adjunction to other modalities.  相似文献   

18.
19.

Objective

To investigate the clinical significance of the expression of MHC class I chain-related gene A (MICA) in patients with advanced non-small cell lung cancer and explore the relationship between MICA expression and the efficacy of cytokine-induced killer cell (CIK) therapy for treating advanced non-small cell lung cancer.

Methods

We obtained data on 222 patients with advanced non-small cell lung cancer, including data on MICA expression, age, gender, ECOG score, pathological type, stage, treatment history (including 38 patients who were given autologous CIK cell infusion), and overall survival (OS). MICA expression in lung cancer tissue was evaluated by immunohistochemical staining. Analyses of MICA expression, and CIK therapy association with survival outcomes were performed using Cox proportional models, Kaplan-Meier methods, and the log-rank test.

Result

s MICA was expressed in both membrane and cytoplasm. MICA expression correlated with the stage of lung cancer, ECOG score, gender and age. Multivariate COX regression analysis showed that the expression of MICA was an independent prognostic factor of advanced non-small cell lung cancer (p = 0.002). In subgroup analysis, we divided the 222 patients into CIK and control groups. In the CIK group, the medium OS (mOS) of patients with a high expression of MICA was longer than in those with low expression of MICA (27 months vs. 13 months). In the control group, the mOS in patients with a high expression of MICA was shorter than in patients with low MICA expression (9 months vs. 18 months). COX regression analysis showed that the MICA expression affects the effect of CIK therapy (p<0.0001).

Conclusion

1) The high expression of MICA is one of the indicators of a poor prognosis for advanced non-small cell lung cancer patients. 2) The high expression of MICA might be one of the predictive factors for successful CIK therapy.  相似文献   

20.
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号