首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The melanization cascade, activated by the prophenoloxidase (proPO) system, plays a key role in the production of cytotoxic intermediates, as well as melanin products for microbial sequestration in invertebrates. Here, we show that the proPO system is an important component of the Penaeus monodon shrimp immune defense toward a major viral pathogen, white spot syndrome virus (WSSV). Gene silencing of PmproPO(s) resulted in increased cumulative shrimp mortality after WSSV infection, whereas incubation of WSSV with an in vitro melanization reaction prior to injection into shrimp significantly increased the shrimp survival rate. The hemolymph phenoloxidase (PO) activity of WSSV-infected shrimp was extremely reduced at days 2 and 3 post-injection compared with uninfected shrimp but was fully restored after the addition of exogenous trypsin, suggesting that WSSV probably inhibits the activity of some proteinases in the proPO cascade. Using yeast two-hybrid screening and co-immunoprecipitation assays, the viral protein WSSV453 was found to interact with the proPO-activating enzyme 2 (PmPPAE2) of P. monodon. Gene silencing of WSSV453 showed a significant increase of PO activity in WSSV-infected shrimp, whereas co-silencing of WSSV453 and PmPPAE2 did not, suggesting that silencing of WSSV453 partially restored the PO activity via PmPPAE2 in WSSV-infected shrimp. Moreover, the activation of PO activity in shrimp plasma by PmPPAE2 was significantly decreased by preincubation with recombinant WSSV453. These results suggest that the inhibition of the shrimp proPO system by WSSV partly occurs via the PmPPAE2-inhibiting activity of WSSV453.  相似文献   

2.
3.
In Manduca sexta, pathogen recognition triggers a branched serine proteinase cascade which generates active phenoloxidase (PO) in the presence of a proPO-activating proteinase (PAP) and two noncatalytic serine proteinase homologs (SPHs). PO then catalyzes the production of reactive compounds for microbe killing, wound healing, and melanin formation. In this study, we discovered that a minute amount of PAP1 (a final component of the proteinase pathway) caused a remarkable increase in PO activity in plasma from na?ve larvae, which was significantly higher than that from the same amounts of PAP1, proPO and SPHs incubated in vitro. The enhanced proPO activation concurred with the proteolytic activation of HP6, HP8, PAP1, SPH1, SPH2 and PO precursors. PAP1 cleaved proSPH2 to yield bands with mobility identical to SPH2 generated in vivo. PAP1 partially hydrolyzed proHP6 and proHP8 at a bond amino-terminal to the one cut in the PAP1-added plasma. PAP1 did not directly activate proPAP1. These results suggest that a self-reinforcing mechanism is built into the proPO activation system and other plasma proteins are required for cleaving proHP6 and proHP8 at the correct site to strengthen the defense response, perhaps in the early stage of the pathway activation.  相似文献   

4.
Activation of prophenoloxidase (proPO) in insects is a defense mechanism against intruding microorganisms and parasites. Pattern recognition molecules induce activation of an enzymatic cascade involving serine proteinases, which leads to the conversion of proPO to active phenoloxidase (PO). Phenolic compounds produced by pPO-activation are toxic to invaders. Here, we describe the isolation of a venom protein from the parasitoid, Cotesia rubecula, injected into the host, Pieris rapae, which is homologous to serine proteinase homologs (SPH). The data presented here indicate that the protein interferes with the proteolytic cascade, which under normal circumstances leads to the activation of proPO and melanin formation.  相似文献   

5.
In insects, the prophenoloxidase activation system is a defense mechanism against parasites and pathogens. Recognition of parasites or pathogens by pattern recognition receptors triggers activation of a serine proteinase cascade, leading to activation of prophenoloxidase-activating proteinase (PAP). PAP converts inactive prophenoloxidase (proPO) to active phenoloxidase (PO), which then catalyzes oxidation of phenolic compounds that can polymerize to form melanin. Because quinone intermediates and melanin are toxic to both hosts and pathogens, activation of proPO must be tightly regulated and localized. We report here purification and cDNA cloning of serine proteinase homologs (SPHs) from the tobacco hornworm, Manduca sexta, which interact with PAP-1 in proPO activation. Two SPHs were co-purified from plasma of M. sexta larvae with immulectin-2, a C-type lectin that binds to bacterial lipopolysaccharide. They contain an amino-terminal clip domain connected to a carboxyl-terminal serine proteinase-like domain. PAP-1 alone cannot efficiently activate proPO, but a mixture of SPHs and PAP-1 was much more effective for proPO activation. Immulectin-2, proPO and PAP-1 in hemolymph bound to the immobilized recombinant proteinase-like domain of SPH-1, indicating that a complex containing these proteins may exist in hemolymph. Since immulectin-2 is a pattern recognition receptor that binds to surface carbohydrates on pathogens, such a protein complex may localize activation of proPO on the surface of pathogens. SPH, which binds to immulectin-2, may function as a mediator to recruit proPO and PAP to the site of infection.  相似文献   

6.
E. coli phagocytosis by medfly hemocytes, in contrast to mammalian macrophages, associates with E. coli-challenged hemocyte secretion by mitogen activating protein (MAP) kinases. In the present work, we examined whether this system links with the proteolytic activation of prophenoloxidase (proPO). ProPO and prophenoloxidase-activating proteinases (PAPs) were initially identified within freshly isolated medfly hemocytes. Moreover, flow cytometry and immunocytochemical analysis revealed the constitutive expression of proPO and its stable association with hemocyte surface. The expression level of hemocyte surface proPO is not affected by E. coli infection. In addition, flow cytometry analysis in freshly isolated hemocytes showed that E. coli phagocytosis is markedly blocked by antibodies against proPO or PAPs, as well as by several serine protease inhibitors, strongly supporting the involvement of proPO cascade in the phagocytosis process. Similarly, it was shown that melanization process depends on proPO activation. MAP kinases appeared to control both phagocytosis and melanization, since they regulate PAPs secretion, a prerequisite for the conversion of proPO to active PO. From this and previous studies, hemocytes appear to be central to immune response in medfly.  相似文献   

7.
Upon wounding or infection, a serine proteinase cascade in insect hemolymph leads to prophenoloxidase (proPO) activation and melanization, a defense response against invading microbes. In the tobacco hornworm Manduca sexta, this response is initiated via hemolymph proteinase 14 (HP14), a mosaic protein that interacts with bacterial peptidoglycan or fungal beta-1,3-glucan to autoactivate. In this paper, we report the expression, purification, and functional analysis of M. sexta HP21 precursor, an HP14 substrate similar to Drosophila snake. The recombinant proHP21 is a 51.1 kDa glycoprotein with an amino-terminal clip domain, a linker region, and a carboxyl-terminal serine proteinase domain. HP14, generated by incubating proHP14 with beta-1,3-glucan and beta-1,3-glucan recognition protein-2, activated proHP21 by limited proteolysis between Leu(152) and Ile(153). Active HP21 formed an SDS-stable complex with M. sexta serpin-4, a physiological regulator of the proPO activation system. We determined the P1 site of serpin-4 to be Arg(355) and, thus, confirmed our prediction that HP21 has trypsin-like specificity. After active HP21 was added to the plasma, there was a major increase in PO activity. HP21 cleaved proPO activating proteinase-2 precursor (proPAP-2) after Lys(153) and generated an amidase activity, which activated proPO in the presence of serine proteinase homolog-1 and 2. In summary, we have discovered and reconstituted a branch of the proPO activation cascade in vitro: beta-1,3-glucan recognition--proHP14 autoactivation--proHP21 cleavage--PAP-2 generation--proPO activation--melanin formation.  相似文献   

8.
In insects, melanotic encapsulation is an important innate immune response against large pathogens or parasites, and phenoloxidase (PO) is a key enzyme in this process. Activation of prophenoloxidase (proPO) to PO is mediated by a serine proteinase cascade. PO has a tendency to adhere to foreign surfaces including hemocyte surfaces. In this study, we showed that in the naïve larvae of the tobacco hornworm Manduca sexta, hemolymph proPO bound to the surface of granulocytes and spherule cells but not to oenocytoids, and about 10% hemocytes had proPO on their surfaces. When larvae were injected with water (injury) or microsphere beads (immune-challenge), hemolymph proPO was activated, and the number of hemocytes with surface proPO/PO increased at 12 h post-injection, but dropped to the normal level at 24 h. Hemocyte surface proPO can be activated in vitro, leading to melanization of these hemocytes. The number of melanized hemocytes from the larvae injected with water or microsphere beads significantly increased. We also showed that neither hemocytes nor cell-free plasma alone triggered melanization of immulectin-2-coated agarose beads in vitro. However, agarose beads were effectively melanized by isolated hemocytes in the presence of cell-free plasma. Our results suggest that activation of hemocyte surface proPO may initiate melanization, leading to the systemic melanization of hemocyte capsules.  相似文献   

9.
10.
Proteolytic activation of prophenoloxidase (proPO) is an integral part of the insect immune system against pathogen and parasite infection. This reaction is mediated by a proPO-activating proteinase (PAP) and its cofactor in the tobacco hornworm, Manduca sexta (Proc. Natl. Acad. Sci. USA 95 (1998) 12220; J. Biol. Chem. 278 (2003) 3552; Insect Biochem. Mol. Biol. 33 (2003) 1049). The cofactor consists of two serine proteinase homologs (SPHs), which associate with immulectin-2, a calcium-dependent lectin that binds to lipopolysaccharide (Insect Biochem. Mol. Biol. 33 (2003) 197). In order to understand the auxiliary effect of SPH-1 and SPH-2 in proPO activation, we started to investigate the molecular interactions among proPO, PAP-3, and the proteinase-like proteins. M. sexta SPH-1 and SPH-2 were purified from hemolymph of prepupae by hydroxylapatite, gel filtration, lectin-affinity, and ion exchange chromatography. They existed as non-covalent oligomers with an average molecular mass of about 790 kDa. MALDI-TOF mass fingerprint analysis revealed a new cleavage site in SPH-1 before Asp85. The PAP cofactor did not significantly alter Michaelis constant (KM) or kcat of PAP-3 towards a synthetic substrate, acetyl-Ile-Glu-Ala-Arg-p-nitroanilide, but greatly enhanced proPO activation by PAP-3. The apparent KM for proPO was determined to be about 9.4 microg/ml, close to its estimated concentration in larval hemolymph. In the presence of excess proPO and a set amount of PAP-3, increasing levels of phenoloxidase (PO) activity were detected as more SPHs were added. Half of the maximum proPO activation occurred when the molar ratio of PAP-3 to SPH was 1:1.4. Gel filtration experiments suggested that proPO, PAP-3, and the cofactor formed a ternary complex.  相似文献   

11.
The prophenoloxidase (proPO) activation system is an important defense mechanism in arthropods, and activation of proPO to active phenoloxidase (PO) involves a serine proteinase cascade. Here, we report the purification and characterization of a small cationic protein CP8 from the tobacco hornworm, Manduca sexta, which can stimulate proPO activation. BLAST search showed that Manduca CP8 is similar to a fungal proteinase inhibitor-1 (AmFPI-1), an inducible serine proteinase inhibitor-1 (ISPI-1), and other small cationic proteins with unknown functions. However, we showed that Manduca CP8 did not inhibit proteinase activity, but stimulated proPO activation in plasma. When small amount (0.1 μg) of purified native CP8 or BSA was added to cell-free plasma samples and incubated for 20 min, low PO activity was observed in both groups. But significantly higher PO activity was observed in the CP8-group than in the BSA-group when more proteins (0.5 μg) were added and incubated for 20 min. However, when the plasma samples were incubated with proteins for 30 min, high PO activity was observed in both the CP8 and BSA groups regardless of the amount of proteins added. Moreover, when PO in the plasma was pre-activated with Micrococcus luteus, addition of CP8 did not have an effect on PO activity, and CP8/bacteria mixture did not stimulate PO activity to a higher level than did BSA/bacteria. These results suggest that CP8 helps activate proPO more rapidly at the initial stage. CP8 mRNA was specifically expressed in fat body and its mRNA level decreased when larvae were injected with saline or bacteria. However, CP8 protein concentration in hemolymph did not change significantly in larvae injected with saline or microorganisms.  相似文献   

12.
The prophenoloxidase (proPO) cascade is a major innate immune response in invertebrates, which is triggered into its active form by elicitors, such as lipopolysaccharide, peptidoglycan, and 1,3-beta-D-glucan. A key question of the proPO system is how pattern recognition proteins recognize pathogenic microbes and subsequently activate the system. To investigate the biological function of 1,3-beta-D-glucan pattern recognition protein in the proPO cascade system, we isolated eight different 1,3-beta-D-glucan-binding proteins from the hemolymph of large beetle (Holotrichia diomphalia) larvae by using 1,3-beta-D-glucan immobilized column. Among them, a 20- and 17-kDa protein (referred to as Hd-PGRP-1 and Hd-PGRP-2) show high sequence identity with the short forms of peptidoglycan recognition proteins (PGRPs-S) from human and Drosophila melanogaster. To be able to characterize the biochemical properties of these two proteins, we expressed them in Drosophila S2 cells. Hd-PGRP-1 and Hd-PGRP-2 were found to specifically bind both 1,3-beta-D-glucan and peptidoglycan. By BIAcore analysis, the minimal 1,3-beta-D-glucan structure required for binding to Hd-PGRP-1 was found to be laminaritetraose. Hd-PGRP-1 increased serine protease activity upon binding to 1,3-beta-D-glucan and subsequently induced the phenoloxidase activity in the presence of both 1,3-beta-D-glucan and Ca(2+), but no phenoloxidase activity was elicited under the same conditions in the presence of peptidoglycan and Ca(2+). These results demonstrate that Hd-PGRP-1 can serve as a receptor for 1,3-beta-D-glucan in the insect proPO activation system.  相似文献   

13.
The biochemical basis of antimicrobial responses in Manduca sexta   总被引:1,自引:0,他引:1  
Innate immunity is essential for the wellbeing of vertebrates and invertebrates. Key components of this defense system include pattern recognition receptors that bind to infectious agents, extra-and intra-cellular proteins that relay signals, as well as molecules and cells that eliminate pathogens. We have been studying the defense mechanisms in a biochemical model insect, Manduca sexta. In this insect, hemolin, peptidoglycan recognition proteins, β-1,3-glucan recognition proteins and C-type lectins detect microbial surface molecules and induce immune responses such as phagocytosis, nodulation, encapsulation, melanization and production of antimicrobial peptides. Some of these responses are mediated by extracellular serine proteinase pathways. The proteolytic activation of prophenoloxidase (proPO) yields active phenoloxidase (PO) which catalyzes the formation of quinones and melanin for wound healing and microbe killing. M. sexta hemolymph proteinase 14 (HP 14) precursor interacts with peptidoglycan or β-1,3-glucan, autoactivates, and leads to the activation of other HPs including HP21 and proPO-activating proteinases (PAPs). PAP-1, -2 and -3 cut proPO to generate active PO in the presence of two serine proteinase homologs. Inhibition of the proteinases by serpins and association of the proteinase homologs with bacteria ensure a localized defense reaction. M. sexta HP1, HP6, HP8, HP17 and other proteinases may also participate in proPO activation or processing of spatzle and plasmatocyte spreading peptide.  相似文献   

14.
15.
16.
Phenoloxidase (PO)-catalyzed reactions are crucial to the survival of insects after a pathogen or parasite infection. In Manduca sexta, active PO is generated from its precursor by a prophenoloxidase activating proteinase (PAP) in the presence of non-catalytic serine proteinase homologs (SPHs). The PAP and SPHs, located at the ends of a branched proteinase cascade, also require limited proteolysis to become functional. While the processing enzyme of M. sexta proPAP-2 and proPAP-3 is known, we are now investigating the proteolytic activation of proSPH-1 and proSPH-2. Here, we report the development of a series of Bac-to-Bac plasmid vectors for co-expression, secretion, and affinity purification of proSPH-1 and proSPH-2 from insect cells infected by one baculovirus. The purified proteins were characterized and used as substrates in a search for their activating enzymes in plasma of the larvae injected with microorganisms. Proteolytic processing occurred after the proSPHs had been incubated with hydroxyapatite or gel filtration column fractions. The cleaved proteins were active as a cofactor for proPO activation by PAP, and coexistence of SPH-1 and SPH-2 is essential for manifesting the auxiliary effect.  相似文献   

17.
18.
In the tobacco hornworm Manduca sexta, proteolytic activation of prophenoloxidase (proPO) is mediated by three proPO-activating proteinases (PAPs) and two serine proteinase homologs (SPHs) (Proceedings of the National Academy of Sciences, USA 95 (1998) 12220-12225; J. Biol. Chem. 278 (2003a) 3552-3561; Insect Biochem. Mol. Biol. 33 (2003b) 1049-1060). While our current data are consistent with the hypothesis that the SPHs serve as a cofactor/anchor for PAPs (Insect Biochemistry and Molecular Biology 33 (2003) 197-208; Insect Biochemistry and Molecular Biology 34 (2004) 731-742), roles of these clip-domain proteins (i.e. PAPs and SPHs) in proPO activation are poorly defined. To better understand this process, we further characterized the activation reaction using proPO, PAP-1 and SPHs. PAP-1 itself cleaved nearly 1/3 of proPO at Arg51 without generating much phenoloxidase (PO) activity. In the presence of SPHs, the cleavage of proPO became more complete while the increase in PO activity was over 20-fold, indicating that the extent of cleavage does not directly correlate with PO activity. Since SPHs and p-amidinophenyl methanesulfonyl fluoride (APMSF)-treated PAP-1 did not generate active PO by interacting with proPO, proteolytic cleavage is critical for proPO activation. After 1/5 of proPO was processed by PAP-1 alone which was then inactivated by M. sexta serpin-1J or APMSF, further incubation of the reaction mixture with SPHs failed to generate active PO either. Thus, SPHs cannot generate PO activity by simply binding to cleaved proPO. M. sexta proPO activation requires active PAP-1 and SPHs at the same time-one for limited proteolysis and the other as a cofactor, perhaps. Gel filtration chromatography and native gel electrophoresis revealed the PAP-SPH, proPO-PAP, and SPH-proPO associations, essential for generating high Mr, active PO at the site of infection.  相似文献   

19.
20.
Most parasitic wasps inject maternal factors into the host hemocoel to suppress the host immune system and ensure successful development of their progeny. Melanization is one of the insect defence mechanisms against intruding pathogens or parasites. We previously isolated from the venom of Cotesia rubecula a 50 kDa protein that blocked melanization in the hemolymph of its host, Pieris rapae [Insect Biochem. Mol. Biol. 33 (2003) 1017]. This protein, designated Vn50, is a serine proteinase homolog (SPH) containing an amino-terminal clip domain. In this work, we demonstrated that recombinant Vn50 bound P. rapae hemolymph components that were recognized by antisera to Tenebrio molitor prophenoloxidase (proPO) and Manduca sexta proPO-activating proteinase (PAP). Vn50 is stable in the host hemolymph-it remained intact for at least 72 h after parasitization. Using M. sexta as a model system, we found that Vn50 efficiently down-regulated proPO activation mediated by M. sexta PAP-1, SPH-1, and SPH-2. Vn50 did not inhibit active phenoloxidase (PO) or PAP-1, but it significantly reduced the proteolysis of proPO. If recombinant Vn50 binds P. rapae proPO and PAP (as suggested by the antibody reactions), it is likely that the molecular interactions among M. sexta proPO, PAP-1, and SPHs were impaired by this venom protein. A similar strategy might be employed by C. rubecula to negatively impact the proPO activation reaction in its natural host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号