首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Bacterial surface layer (S-layer) proteins are excellent candidates for in vivo and in vitro nanobiotechnological applications because of their ability to self-assemble into two-dimensional lattices that form the outermost layer of many Eubacteria and most Archaea species. Despite this potential, knowledge about their molecular architecture is limited. In this study, we investigated SlpA, the S-layer protein of the potentially probiotic bacterium Lactobacillus brevis ATCC 8287 by cysteine-scanning mutagenesis and chemical modification. We generated a series of 46 mutant proteins by replacing single amino acids with cysteine, which is not present in the wild-type protein. Most of the replaced amino acids were located in the self-assembly domain (residues 179 to 435) that likely faces the outer surface of the lattice. As revealed by electron microscopy, all the mutant proteins were able to form self-assembly products identical to that of the wild type, proving that this replacement does not dramatically alter the protein conformation. The surface accessibility of the sulfhydryl groups introduced was studied with two maleimide-containing marker molecules, TMM(PEG)12 (molecular weight [MW], 2,360) and AlexaFluor488-maleimide (MW = 720), using both monomeric proteins in solution and proteins allowed to self-assemble on cell wall fragments. Using the acquired data and available domain information, we assigned the mutated residues into four groups according to their location in the protein monomer and lattice structure: outer surface of the lattice (9 residues), inner surface of the lattice (9), protein interior (12), and protein-protein interface/pore regions (16). This information is essential, e.g., in the development of therapeutic and other health-related applications of Lactobacillus S-layers.Bacterial surface layers (S-layers) are cell envelope structures ubiquitously found in gram-positive and gram-negative bacteria as well as in Archaea. S-layers are composed of identical (glyco)protein subunits with a molecular mass in the range of 40 to 200 kDa. The proteins self-assemble into two-dimensional crystalline structures with oblique (p1, p2), square (p4), or hexagonal (p3, p6) symmetry, covering the entire cell surface. The subunits are held together and attached to the underlying cell wall by noncovalent interactions and they have an intrinsic ability to spontaneously form regular layers in solution and on solid supports (24). S-layers have been shown to have roles in the determination and maintenance of cell shape as virulence factors, as mediators of cell adhesion, and as regulators of immature dendritic and T cells. Moreover, they can also function as a protective coat, molecular sieve, murein hydrolase, and ion trap (4, 8, 13, 17, 19, 25, 29).S-layer proteins have several properties that make them an attractive target for the development of nanobiotechnological applications both in vivo and in vitro. In particular, a high number of protein subunits are displayed at the bacterial cell surface. Moreover, the protein subunits are able to spontaneously self-assemble into a regularly arranged lattice structure both in solution and on solid supports (1, 27, 30, 31). However, despite the high prevalence of S-layers in nature, their molecular structure remains poorly elucidated. In particular, knowledge about the spatial organization of amino acid residues in S-layer proteins or the interactions between these residues and other subunits is limited. The poor solubility of protein assemblies and the absence of stoichiometrically defined oligomers have hindered attempts to apply nuclear magnetic resonance or hydrogen/deuterium exchange mass spectroscopy. In addition, the intrinsic property of S-layer proteins to form two-dimensional lattices has hampered efforts to obtain three-dimensional crystals required for X-ray crystallography (12, 31). To our knowledge, only part of the structure of one S-layer protein, SbsC of Geobacillus stearothermophilus, has been determined by X-ray crystallography (18). Since high-resolution, three-dimensional structural data are mostly lacking, traditional mutation-based techniques are presently the methods of choice. In cysteine-scanning mutagenesis (CSM), a series of mutant proteins is generated by replacing single residues with cysteine, which contains a sulfhydryl group amenable to further chemical modification. The spatial locations of amino acid residues within the S-layer protein SbsB of gram-positive thermophile G. stearothermophilus PV72/p2 have been analyzed by CSM. A total of 75 residues out of 920 were studied, identifying 23 residues located at the surface of protein monomers, five of those located on the outer surface of the protein lattice (10). These mutant proteins were subsequently analyzed by a cross-linking screen to assess residues accessible in monomeric form to the protein/protein interface and the inner surface of the lattice (12).In the genus Lactobacillus, S-layers have been found in several species. S-layer protein genes have been sequenced from L. brevis, L. helveticus, and L. acidophilus group organisms. Sequence similarity between Lactobacillus S-layer protein genes can be found only between closely related Lactobacillus species. Therefore, the primary sequences of Lactobacillus S-layer proteins show extensive variability, with the number of identical amino acids varying from 7 to 100% between different proteins. As a group, Lactobacillus S-layer proteins differ from those of most other bacteria in their smaller sizes (25 to 71 kDa) and higher calculated isoelectric point (pI) values (9.4 to 10.4) (1). The presence of two or more S-layer protein genes in the same strain is common in lactobacilli (5, 6, 11, 28, 35); however, only one S-layer protein gene, slpA, has so far been described to be present in the genome of L. brevis ATCC 8287. SlpA is a 435-amino-acid, 46-kDa S-layer protein that assembles into a lattice of oblique symmetry on the bacterial surface (2, 36). L. brevis ATCC 8287 has GRAS (generally recognized as safe) status and has been shown to possess probiotic properties (21), which make SlpA a very attractive subject, e.g., in the development of live oral vaccines. Moreover, a recent report using differential scanning calorimetry suggests that in comparison with other S-layer proteins, SlpA is resistant to high temperatures (21). This thermal stability could prove potentially useful in a variety of in vitro S-layer applications currently being planned or under development (27, 30, 31). Recently, SlpA was characterized to consist of an N-terminal cell wall binding domain (residues 1 to 178) and a C-terminal self-assembly domain (179 to 435) (3). For the development of applications that take advantage of these characteristics, further investigation of SlpA at the molecular level is essential.Herein, we use CSM and targeted chemical modification to assign 46 amino acid residues of SlpA to spatial locations in the protein monomer and in the lattice according to their surface accessibility. We focused mainly on the self-assembly domain, the region facing the outer surface of the protein lattice and thus most amenable to insertions and chemical modification. Two different marker molecules were used to modify cysteine-containing mutant proteins that were either in solution or attached to the cell wall. The results were subsequently evaluated taking advantage of the recent new information on SlpA domain boundaries (3). We were able to distinguish residues located in the outer and inner surfaces of the lattice, protein interior, and interface/pore regions. The information gathered here can be used in the development of further biotechnological and nanobiological applications, both in vitro and in vivo, that benefit from a thermostable S-layer protein from a GRAS bacterium with health-beneficial properties.  相似文献   

3.
4.
5.
The binding affinities and specificities of six truncated S-layer homology domain (SLH) polypeptides of mosquitocidal Bacillus sphaericus strain C3-41 with the purified cell wall sacculi have been assayed. The results indicated that the SLH polypeptide comprised of amino acids 31 to 210 was responsible for anchoring the S-layer subunits to the rigid cell wall layer via a distinct type of secondary cell wall polymer and that a motif of the recombinant SLH polypeptide comprising amino acids 152 to 210 (rSLH152-210) was essential for the stable binding of the S-layer with the bacterial cell walls. The quantitative assays revealed that the KD (equilibrium dissociation constant) values of rSLH152-210 and rSLH31-210 with purified cell wall sacculi were 1.11 × 10−6 M and 1.40 × 10−6 M, respectively. The qualitative assays demonstrated that the SLH domain of strain C3-41 could bind only to the cell walls or the cells treated with 5 M guanidinium hydrochloride of both toxic and nontoxic B. sphaericus strains but not to those from other bacteria, indicating the species-specific binding of the SLH polypeptide of B. sphaericus with bacterial cell walls.Crystalline bacterial cell surface layers (S-layers) cover the cell surfaces of many bacteria and archaea during all stages of growth and division. S-layers are composed of identical protein or glycoprotein subunits, which can assemble into two-dimensional crystalline arrays and exhibit oblique, square, or hexagonal symmetry (27, 28, 30). S-layers play key roles in the interaction between bacterial cells and environment as protective coats, molecular sieves, ion traps, cell adhesion mediators, and attachment structures (4, 21, 26, 29). Many S-layer proteins possess an N-terminal region with highly conserved amino acid sequences, which is called an S-layer homology (SLH) domain. An SLH domain contains one, two, or three repeating SLH motifs (6, 16). Each SLH motif is composed of about 55 amino acids containing 10 to 15 conserved residues (6, 17). It is suggested that the SLH domain of S-layer proteins is responsible for the binding of the S-layer subunits to the rigid cell wall layer (6, 15, 17, 19, 25), while the middle and C-terminal parts include the domains which are involved in the self-assembly process (27). In the case of Bacillaceae, secondary cell wall polymers (SCWP) are responsible for binding with SLH domains (13, 18, 19), but the SLH domains of some other bacteria have an affinity for peptidoglycan (33).Bacillus sphaericus is a gram-positive soil bacterium that represents a strictly aerobic group of mesophilic endospore-forming bacteria. Due to its specific toxicity to target mosquito larvae and the limited environment impact, some strains of this bacterium have been successfully used worldwide in integrated mosquito control programs. Previous studies revealed that some nontoxic strains of B. sphaericus contained S-layer proteins, and the S-layer proteins of B. sphaericus NCTC 9602, JG-A12, P1, and CCM 2177 have been studied in detail elsewhere (3, 7-9, 12, 22).B. sphaericus C3-41, a highly active strain isolated from a mosquito-breeding site in China in 1987, has different levels of toxicity against Culex spp., Anopheles spp., and Aedes spp. This strain belongs to the flagella serotype H5a5b, like strains 2362 and 1593 (32), and it has been developed as a commercial larvicide (JianBao) for mosquito larva control in China during the last decade (31). The genomic analysis of strain C3-41 revealed that an S-layer protein gene (slpC) (GenBank accession no. EF535606) exists on the chromosomal genome and its sequence is identical to the S-layer protein of B. sphaericus 2362 (1, 10), composed of 3,531 bp encoding a protein of 1,176 amino acids with a molecular size of 125 kDa. Although the binding function of S-layers has been identified in some nontoxic B. sphaericus strains (6, 11), it is not well documented in mosquitocidal B. sphaericus strains, and there are few reports on the binding function of each SLH motif and the binding specificity.In this study, the binding affinities and specificities of each SLH motif of S-layer protein from mosquitocidal B. sphaericus C3-41 alone and in combination with the different cell wall preparations have been investigated, and the species-specific binding of SLH polypeptide with bacterial cell walls has been demonstrated.  相似文献   

6.
Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the “histone code” at imprinted genes.Imprinted genes are defined by the characteristic monoallelic silencing of either the paternally or maternally inherited allele. Most imprinted genes exist in imprinted gene clusters (10), and these clusters are usually associated with one or more differentially methylated regions (DMRs) (27, 65). DNA methylation at DMRs is essential for the allele-specific expression of most imprinted genes (31). Maternal or paternal allele-specific DNA methylation of a subset of DMRs (germ line DMRs) is gamete specific (27, 39). These maternal or paternal methylation differences are established during oogenesis or spermatogenesis, respectively, by the de novo DNA methyltransferases Dnmt3a and Dnmt3b together with Dnmt3L (5, 26, 48). The gamete-specific methylation differences set the stage for the parental allele-specific action of germ line DMRs, some of which have been shown to control the monoallelic expression of the associated genes in the respective domains (11, 34, 36, 53, 66, 71-73, 77). These DMRs are called imprinting control regions (ICRs).Two recurring themes have been reported for ICR action. ICRs can function as DNA methylation-regulated promoters of a noncoding RNA or as methylation-regulated insulators. Recent evidence suggests that both of these mechanisms involve chromatin organization by either the noncoding RNA (45, 50) or the CTCF insulator protein (17, 32) along the respective imprinted domains. The CTCF insulator binds in the unmethylated maternal allele of the H19/Igf2 ICR and blocks the access of the Igf2 promoters to the shared downstream enhancers. CTCF cannot bind in the methylated paternal ICR allele; hence, here the Igf2 promoters have access to the enhancers (4, 18, 24, 25, 62). When CTCF binding is abolished in the ICR of the maternal allele, Igf2 expression becomes biallelic, and H19 expression is missing from both alleles (17, 52, 58, 63). Importantly, CTCF is the single major organizer of the allele-specific chromatin along the H19/Igf2 imprinted domain (17). Significantly, CTCF recruits, at a distance, Polycomb-mediated H3K27me3 repressive marks at the Igf2 promoter and at the Igf2 DMRs (17, 32).A role for chromatin composition is suggested in the parental allele-specific expression of imprinted genes. Repressive histone tail covalent modifications, such as H3K9me2 H3K9me3, H4K20me3, H3K27me3, and the symmetrically methylated H4R3me2 marks, are generally associated with the methylated DMR alleles, while activating histone tail covalent modifications, such as acetylated histone tails and also H3K4me2 and H3K4me3, are characteristic of the unmethylated alleles (7-9, 12-15, 17, 21, 33, 35, 43, 44, 51, 55, 56, 67, 69, 74, 75). Importantly, the maintenance of imprinted gene expression depends on the allele-specific chromatin differences. ICR-dependent H3K9me2 and H3K27me3 enrichment in the paternal allele (67) is required for paternal repression of a set of imprinted genes along the Kcnq1 imprinted domain in the placenta (30). Imprinted Cdkn1c and Cd81 expression depends on H3K27 methyltransferase Ezh2 activity in the extraembryonic ectoderm (64). Similarly, H3K9 methyltransferase Ehmt2 is required for parental allele-specific expression of a number of imprinted genes, including Osbpl5, Cd81, Ascl2, Tfpi2, and Slc22a3 in the placenta (44, 45, 70).There is increasing evidence that covalent modifications, not only in the histone tails but also in the histone globular domains, carry essential information for development and gene regulation. The H3K79 methyltransferase gene is essential for development in Drosophila (60) and in mice (22). H3K79 methylation is required for telomeric heterochromatin silencing in Drosophila (60), Saccharomyces cerevisiae (47, 68), and mice (22). The H4K91 residue regulates nucleosome assembly (76). Whereas mutations at single acetylation sites in the histone tails have only minor consequences, mutation of the H4K91 site in the histone H4 globular domain causes severe defects in silent chromatin formation and DNA repair in yeast (37, 42, 76).Contrary to the abundant information that exists regarding the allele-specific chromatin composition at DMRs of imprinted genes, no information is available about the parental allele-specific marking in the histone globular domains at the DMRs. We hypothesized that chromatin marks in the globular domains of histones also distinguish the parental alleles of germ line DMRs. In order to demonstrate this, we measured the allele-specific enrichment of H3K79me1, H3K79me2, H3K79me3, and H4K91ac at 11 mouse DMRs using quantitative multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays. In general, H3K79me3 was associated with the methylated allele at most DMRs, whereas the unmethylated allele showed enrichment for H3K79me1, H3K79me2, and H4K91ac. These results are consistent with the possibility that allele-specific differences in the globular domains of histones contribute to the “histone code” at DMRs.  相似文献   

7.
8.
HtrA1 belongs to a family of serine proteases found in organisms ranging from bacteria to humans. Bacterial HtrA1 (DegP) is a heat shock-induced protein that behaves as a chaperone at low temperature and as a protease at high temperature to help remove unfolded proteins during heat shock. In contrast to bacterial HtrA1, little is known about the function of human HtrA1. Here, we report the first evidence that human HtrA1 is a microtubule-associated protein and modulates microtubule stability and cell motility. Intracellular HtrA1 is localized to microtubules in a PDZ (PSD95, Dlg, ZO1) domain-dependent, nocodazole-sensitive manner. During microtubule assembly, intracellular HtrA associates with centrosomes and newly polymerized microtubules. In vitro, purified HtrA1 promotes microtubule assembly. Moreover, HtrA1 cosediments and copurifies with microtubules. Purified HtrA1 associates with purified α- and β-tubulins, and immunoprecipitation of endogenous HtrA1 results in coprecipitation of α-, β-, and γ-tubulins. Finally, downregulation of HtrA1 promotes cell motility, whereas enhanced expression of HtrA1 attenuates cell motility. These results offer an original identification of HtrA1 as a microtubule-associated protein and provide initial mechanistic insights into the role of HtrA1 in theregulation of cell motility by modulating microtubule stability.HtrA1 (for high temperature requirement) belongs to a family of serine proteases and is so named because of its essential role in thermal tolerance in Escherichia coli, which requires HtrA (also known as DegP) for survival at elevated temperatures (14). This survival is attributed to the ability of HtrA proteins to switch from chaperones to proteases that reduce the amount of unfolded and aggregated protein upon heat stress (46). Human, as well as bacterial, HtrA proteins contain trypsin and PDZ (PSD95, Dlg, ZO1) domains that display a high degree of sequence conservation from bacteria to human (14). Of the four human HtrA proteins, HtrA1, HtrA3, and HtrA4 also contain a signal peptide, insulin-like growth factor binding protein (IGFBP), and Kazal-type trypsin inhibitor domains, while HtrA2 lacks these domains. Although HtrA1 contains signal peptide, an intracellular form of HtrA1 has been reported as well (15, 17). The mitochondrial protein HtrA2 is well characterized and has been shown to be involved in apoptosis (27, 37, 39, 47, 52, 53) and neurodegenerative disease (35). However, HtrA1 is the first in the family to be implicated as a tumor suppressor in ovarian cancer and melanoma (3, 5, 13). In addition, HtrA1 is implicated in various pathogenic and developmental processes, including osteoarthritis, Alzheimer''s disease, neuronal maturation and development, age-related macular degeneration, and tumor progression (11, 23, 24, 33, 36, 50, 56). Specific to its role in tumor progression, HtrA1 is downregulated in various cancers, and its downregulation is associated with resistance to chemotherapy and a metastatic phenotype (4, 11, 19). Recently, we developed a mixture-based peptide library to determine the specificities of cleavage site motifs for HtrA1 serine protease. The results identified tubulins as potential substrates of HtrA1. Furthermore, we showed that exogenously expressed HtrA1 disrupts microtubules (MTs) and targets tubulins for degradation (data not shown). These results suggest a potential role for HtrA1 as an MT-associated protein (MAP) and its potential to regulate MT and tubulin stability and MT-associated cellular functions.MTs are highly dynamic noncovalent polymers of α- and β-tubulins that undergo cyclical shrinking (catastrophe) and growing (rescue) (18, 31, 43). The dynamic instability of MTs is central to their diverse biological functions, including the coordination of cell division (40, 55), morphogenesis (25), cell polarity (42), and motility (48). MT instability is, in part, modulated by MAPs (2, 29). Many tumor suppressors, such as adenomatous polyposis coli (APC) (20), RASSF1A (45), and Dlg (6), associate with MTs and impose tumor suppressor activities by regulating their functions related to cell division, polarity, and motility. Deregulation of these processes, as a consequence of loss of function of these tumor suppressors, contributes to unchecked proliferation; cytoarchitecture disruption; and the ability to migrate, invade, and metastasize distant organs (6, 7, 26). Therefore, the regulation of MT stability and dynamics or the lack of it has dire consequences for normal cell functions.Given the fact that HtrA1 is downregulated in various cancers, particularly in metastatic cancer, it is possible that HtrA1 may regulate certain aspects of cancer, namely, the motility of cancer cells, by modulating MT stability and dynamics. Therefore, to better characterize the interaction between HtrA1 and MTs and to gain mechanistic insights into the functional consequences of HtrA1 downregulation in cancer, we investigated the biochemical interaction between HtrA1 and tubulin, the domain within HtrA1 required for localization to MTs, and the effect on cell migration. Here, we describe the identification of HtrA1 as an MT-associated serine protease and a novel role of HtrA1 in the regulation of cell motility.  相似文献   

9.
10.
11.
12.
FlhF proteins are putative GTPases that are often necessary for one or more steps in flagellar organelle development in polarly flagellated bacteria. In Campylobacter jejuni, FlhF is required for σ54-dependent flagellar gene expression and flagellar biosynthesis, but how FlhF influences these processes is unknown. Furthermore, the GTPase activity of any FlhF protein and the requirement of this speculated activity for steps in flagellar biosynthesis remain uncharacterized. We show here that C. jejuni FlhF hydrolyzes GTP, indicating that these proteins are GTPases. C. jejuni mutants producing FlhF proteins with reduced GTPase activity were not severely defective for σ54-dependent flagellar gene expression, unlike a mutant lacking FlhF. Instead, these mutants had a propensity to lack flagella or produce flagella in improper numbers or at nonpolar locations, indicating that GTP hydrolysis by FlhF is required for proper flagellar biosynthesis. Additional studies focused on elucidating a possible role for FlhF in σ54-dependent flagellar gene expression were conducted. These studies revealed that FlhF does not influence production of or signaling between the flagellar export apparatus and the FlgSR two-component regulatory system to activate σ54. Instead, our data suggest that FlhF functions in an independent pathway that converges with or works downstream of the flagellar export apparatus-FlgSR pathway to influence σ54-dependent gene expression. This study provides corroborative biochemical and genetic analyses suggesting that different activities of the C. jejuni FlhF GTPase are required for distinct steps in flagellar gene expression and biosynthesis. Our findings are likely applicable to many polarly flagellated bacteria that utilize FlhF in flagellar biosynthesis processes.Flagellar biosynthesis in bacteria is a complex process that requires expression of more than 50 genes in a sequential manner to ensure that the encoded proteins are secreted and interact in a proper order to construct a flagellar organelle (8). Formation of a flagellum to impart swimming motility is often an essential determinant for many bacteria to infect hosts or reside in an environmental niche. As such, flagella and flagellar motility are required for Campylobacter jejuni to initiate and maintain a harmless intestinal colonization in many wild and agriculturally important animals (16, 17, 19, 35, 47, 49), which leads to large reservoirs of the bacterium in the environment and the human food supply (13). In addition, flagellar motility is essential for the bacterium to infect human hosts to cause a diarrheal disease, which can range from a mild, watery enteritis to a severe, bloody diarrheal syndrome (4). Due to its prevalence in nature and in the food supply, C. jejuni is a leading cause of enteritis in humans throughout the world (7).C. jejuni belongs to a subset of motile bacteria that produce polarly localized flagella, which includes important pathogens of humans, such as Helicobacter, Vibrio, and Pseudomonas species. These bacteria have some commonalities in mechanisms for flagellar gene expression and biosynthesis, such as using both alternative σ factors, σ28 and σ54, for expression of distinct sets of flagellar genes (1, 6, 9, 11, 18, 20-22, 26, 36, 40, 44, 45, 49). In addition, these bacteria produce the putative FlhF GTPase, which is required in each bacterium for at least one of the following: expression of a subset of flagellar genes, biosynthesis of flagella, or the polar placement of the flagella. For instance, FlhF is required for expression of some σ54- and σ28-dependent flagellar genes and for production of flagella in the classical biotype of Vibrio cholerae (10). However, V. cholerae flhF mutants of another biotype can produce a flagellum in a minority of cells, but the flagellum is at a lateral site (14). Similar lateral flagella were found in flhF mutants of Pseudomonas aeruginosa and Pseudomonas putida (34, 37). FlhF of Vibrio alginolyticus may also be involved in the polar formation of flagella and may possibly influence the number of flagella produced (28, 29). Demonstration that FlhF is polarly localized in some of these species and the fact that FlhF has been observed to assist the early flagellar MS ring protein, FliF, in localizing to the old pole in one biotype of V. cholerae give credence that FlhF may be involved in the polar placement of flagella in the respective organisms (14, 29, 34).Bioinformatic analysis indicates that the FlhF proteins belong to the SIMIBI class of NTP-binding proteins (30). More specifically, the GTPase domains of FlhF proteins are most similar to those of the signal recognition particle (SRP) pathway GTPases, such as Ffh and FtsY. Because of the homology of the GTPase domains, these three proteins may form a unique subset within the SIMIBI proteins. Whereas the GTPase activities of the interacting Ffh and FtsY proteins have been extensively characterized (32, 38, 39, 42), little is known about the GTP hydrolysis activity of FlhF. Structural determination of FlhF of Bacillus subtilis indicates that the potential GTPase activity of FlhF is likely varied relative to those of Ffh and FtsY (2). However, no biochemical analysis has been performed to verify or characterize the ability of an FlhF protein to hydrolyze GTP. As such, no studies have correlated the biochemical activity of FlhF in relation to GTP hydrolysis with the role that FlhF performs in flagellar gene expression or biosynthesis.Through previous work, we have delineated the regulatory cascades governing flagellar gene expression in C. jejuni. We have found that formation of the flagellar export apparatus (FEA), a multiprotein inner membrane complex (consisting of the proteins FlhA, FlhB, FliF, FliO, FliP, FliQ, and FliR) that secretes most of the flagellar proteins out of the cytoplasm to form the flagellum, is required to activate the FlgS sensor kinase to begin a phosphorelay to the cognate FlgR response regulator (23, 24). Once activated by phosphorylation, FlgR likely interacts with σ54 in RNA polymerase to initiate expression of many flagellar genes encoding components of the flagellar basal body, rod, and hook (20, 24). After formation of the hook, flaA, encoding the major flagellin, is expressed via σ28 and RNA polymerase to generate the flagellar filament and complete flagellar biosynthesis (6, 18, 20, 21, 49). In two separate genetic analyses, we found that flhF mutants of C. jejuni are nonmotile and show a more than 10-fold reduction in expression of σ54-dependent flagellar genes, indicating that FlhF is required for both flagellar gene expression and biosynthesis (20). However, it is unclear how FlhF influences expression of σ54-dependent flagellar genes. Furthermore, it is unknown if the GTPase activity of FlhF is required for flagellar gene expression or biosynthesis in C. jejuni.We have performed experiments to determine that C. jejuni FlhF specifically hydrolyzes GTP, confirming that FlhF is a GTPase. Whereas the FlhF protein is required for motility, flagellar biosynthesis, and expression of σ54-dependent flagellar genes, the GTPase activity of the protein significantly influences only proper biosynthesis of flagella. These results suggest that multiple biochemical activities of FlhF (including GTPase activity and likely other, as yet uncharacterized activities mediated by other domains) are required at distinct steps in flagellar gene expression and biosynthesis. In addition, we provide biochemical and genetic evidence that FlhF likely functions in a pathway separate from the FEA-FlgSR pathway in C. jejuni to influence expression of σ54-dependent flagellar genes. This study provides corroborative genetic and biochemical analysis of FlhF to indicate that FlhF has multiple inherent activities that function at different steps in development of the flagellar organelle, which may be applicable to many polarly flagellated bacteria.  相似文献   

13.
14.
15.
16.
The sequestration of iron by mammalian hosts represents a significant obstacle to the establishment of a bacterial infection. In response, pathogenic bacteria have evolved mechanisms to acquire iron from host heme. Bacillus anthracis, the causative agent of anthrax, utilizes secreted hemophores to scavenge heme from host hemoglobin, thereby facilitating iron acquisition from extracellular heme pools and delivery to iron-regulated surface determinant (Isd) proteins covalently attached to the cell wall. However, several Gram-positive pathogens, including B. anthracis, contain genes that encode near iron transporter (NEAT) proteins that are genomically distant from the genetically linked Isd locus. NEAT domains are protein modules that partake in several functions related to heme transport, including binding heme and hemoglobin. This finding raises interesting questions concerning the relative role of these NEAT proteins, relative to hemophores and the Isd system, in iron uptake. Here, we present evidence that a B. anthracis S-layer homology (SLH) protein harboring a NEAT domain binds and directionally transfers heme to the Isd system via the cell wall protein IsdC. This finding suggests that the Isd system can receive heme from multiple inputs and may reflect an adaptation of B. anthracis to changing iron reservoirs during an infection. Understanding the mechanism of heme uptake in pathogenic bacteria is important for the development of novel therapeutics to prevent and treat bacterial infections.Pathogenic bacteria need to acquire iron to survive in mammalian hosts (12). However, the host sequesters most iron in the porphyrin heme, and heme itself is often bound to proteins such as hemoglobin (14, 28, 85). Circulating hemoglobin can serve as a source of heme-iron for replicating bacteria in infected hosts, but the precise mechanisms of heme extraction, transport, and assimilation remain unclear (25, 46, 79, 86). An understanding of how bacterial pathogens import heme will lead to the development of new anti-infectives that inhibit heme uptake, thereby preventing or treating infections caused by these bacteria (47, 68).The mechanisms of transport of biological molecules into a bacterial cell are influenced by the compositional, structural, and topological makeup of the cell envelope. Gram-negative bacteria utilize specific proteins to transport heme through the outer membrane, periplasm, and inner membrane (83, 84). Instead of an outer membrane and periplasm, Gram-positive bacteria contain a thick cell wall (59, 60). Proteins covalently anchored to the cell wall provide a functional link between extracellular heme reservoirs and intracellular iron utilization pathways (46). In addition, several Gram-positive and Gram-negative bacterial genera also contain an outermost structure termed the S (surface)-layer (75). The S-layer is a crystalline array of protein that surrounds the bacterial cell and may serve a multitude of functions, including maintenance of cell architecture and protection from host immune components (6, 7, 18, 19, 56). In bacterial pathogens that manifest an S-layer, the “force field” function of this structure raises questions concerning how small molecules such as heme can be successfully passed from the extracellular milieu to cell wall proteins for delivery into the cell cytoplasm.Bacillus anthracis is a Gram-positive, spore-forming bacterium that is the etiological agent of anthrax disease (30, 33). The life cycle of B. anthracis begins after a phagocytosed spore germinates into a vegetative cell inside a mammalian host (2, 40, 69, 78). Virulence determinants produced by the vegetative cells facilitate bacterial growth, dissemination to major organ systems, and eventually host death (76-78). The release of aerosolized spores into areas with large concentrations of people is a serious public health concern (30).Heme acquisition in B. anthracis is mediated by the action of IsdX1 and IsdX2, two extracellular hemophores that extract heme from host hemoglobin and deliver the iron-porphyrin to cell wall-localized IsdC (21, 45). Both IsdX1 and IsdX2 harbor near iron transporter domains (NEATs), a conserved protein module found in Gram-positive bacteria that mediates heme uptake from hemoglobin and contributes to bacterial pathogenesis upon infection (3, 8, 21, 31, 44, 46, 49, 50, 67, 81, 86). Hypothesizing that B. anthracis may contain additional mechanisms for heme transport, we provide evidence that B. anthracis S-layer protein K (BslK), an S-layer homology (SLH) and NEAT protein (32, 43), is surface localized and binds and transfers heme to IsdC in a rapid, contact-dependent manner. These results suggest that the Isd system is not a self-contained conduit for heme trafficking and imply that there is functional cross talk between differentially localized NEAT proteins to promote heme uptake during infection.  相似文献   

17.
18.
Although the genome of Haloferax volcanii contains genes (flgA1-flgA2) that encode flagellins and others that encode proteins involved in flagellar assembly, previous reports have concluded that H. volcanii is nonmotile. Contrary to these reports, we have now identified conditions under which H. volcanii is motile. Moreover, we have determined that an H. volcanii deletion mutant lacking flagellin genes is not motile. However, unlike flagella characterized in other prokaryotes, including other archaea, the H. volcanii flagella do not appear to play a significant role in surface adhesion. While flagella often play similar functional roles in bacteria and archaea, the processes involved in the biosynthesis of archaeal flagella do not resemble those involved in assembling bacterial flagella but, instead, are similar to those involved in producing bacterial type IV pili. Consistent with this observation, we have determined that, in addition to disrupting preflagellin processing, deleting pibD, which encodes the preflagellin peptidase, prevents the maturation of other H. volcanii type IV pilin-like proteins. Moreover, in addition to abolishing swimming motility, and unlike the flgA1-flgA2 deletion, deleting pibD eliminates the ability of H. volcanii to adhere to a glass surface, indicating that a nonflagellar type IV pilus-like structure plays a critical role in H. volcanii surface adhesion.To escape toxic conditions or to acquire new sources of nutrients, prokaryotes often depend on some form of motility. Swimming motility, a common means by which many bacteria move from one place to another, usually depends on flagellar rotation to propel cells through liquid medium (24, 26, 34). These motility structures are also critical for the effective attachment of bacteria to surfaces.As in bacteria, rotating flagella are responsible for swimming motility in archaea, and recent studies suggest that archaea, like bacteria, also require flagella for efficient surface attachment (37, 58). However, in contrast to bacterial flagellar subunits, which are translocated via a specialized type III secretion apparatus, archaeal flagellin secretion and flagellum assembly resemble the processes used to translocate and assemble the subunits of bacterial type IV pili (34, 38, 54).Type IV pili are typically composed of major pilins, the primary structural components of the pilus, and several minor pilin-like proteins that play important roles in pilus assembly or function (15, 17, 46). Pilin precursor proteins are transported across the cytoplasmic membrane via the Sec translocation pathway (7, 20). Most Sec substrates contain either a class I or a class II signal peptide that is cleaved at a recognition site that lies subsequent to the hydrophobic portion of the signal peptide (18, 43). However, the precursors of type IV pilins contain class III signal peptides, which are processed at recognition sites that precede the hydrophobic domain by a prepilin-specific peptidase (SPase III) (38, 43, 45). Similarly, archaeal flagellin precursors contain a class III signal peptide that is processed by a prepilin-specific peptidase homolog (FlaK/PibD) (3, 8, 10, 11). Moreover, flagellar assembly involves homologs of components involved in the biosynthesis of bacterial type IV pili, including FlaI, an ATPase homologous to PilB, and FlaJ, a multispanning membrane protein that may provide a platform for flagellar assembly, similar to the proposed role for PilC in pilus assembly (38, 44, 53, 54). These genes, as well as a number of others that encode proteins often required for either flagellar assembly or function (flaCDEFG and flaH), are frequently coregulated with the flg genes (11, 26, 44, 54).Interestingly, most sequenced archaeal genomes also contain diverse sets of genes that encode type IV pilin-like proteins with little or no homology to archaeal flagellins (3, 39, 52). While often coregulated with pilB and pilC homologs, these genes are never found in clusters containing the motility-specific flaCDEFG and flaH homologs; however, the proteins they encode do contain class III signal peptides (52). Several of these proteins have been shown to be processed by an SPase III (4, 52). Moreover, in Sulfolobus solfataricus and Methanococcus maripaludis, some of these archaeal type IV pilin-like proteins were confirmed to form surface filaments that are distinct from the flagella (21, 22, 56). These findings strongly suggest that the genes encode subunits of pilus-like surface structures that are involved in functions other than swimming motility.In bacteria, type IV pili are multifunctional filamentous protein complexes that, in addition to facilitating twitching motility, mediate adherence to abiotic surfaces and make close intercellular associations possible (15, 17, 46). For instance, mating between Escherichia coli in liquid medium has been shown to require type IV pili (often referred to as thin sex pili), which bring cells into close proximity (29, 30, 57). Recent work has shown that the S. solfataricus pilus, Ups, is required not only for efficient adhesion to surfaces of these crenarchaeal cells but also for UV-induced aggregation (21, 22, 58). Frols et al. postulate that autoaggregation is required for DNA exchange under these highly mutagenic conditions (22). Halobacterium salinarum has also been shown to form Ca2+-induced aggregates (27, 28). Furthermore, conjugation has been observed in H. volcanii, which likely requires that cells be held in close proximity for a sustained period to allow time for the cells to construct the cytoplasmic bridges that facilitate DNA transfer between them (35).To determine the roles played by haloarchaeal flagella and other putative type IV pilus-like structures in swimming and surface motility, surface adhesion, autoaggregation, and conjugation, we constructed and characterized two mutant strains of H. volcanii, one lacking the genes that encode the flagellins and the other lacking pibD. Our analyses indicate that although this archaeon was previously thought to be nonmotile (14, 36), wild-type (wt) H. volcanii can swim in a flagellum-dependent manner. Consistent with the involvement of PibD in processing flagellins, the peptidase mutant is nonmotile. Unlike nonhalophilic archaea, however, the flagellum mutant can adhere to glass as effectively as the wild type. Conversely, the ΔpibD strain fails to adhere to glass surfaces, strongly suggesting that in H. volcanii surface adhesion involves nonflagellar, type IV pilus-like structures.  相似文献   

19.
Mycoplasma mobile binds to solid surfaces and glides smoothly and continuously by a unique mechanism. A huge protein, Gli521 (521 kDa), is involved in the gliding machinery, and it is localized in the cell neck, the base of the membrane protrusion. This protein is thought to have the role of force transmission. In this study, the Gli521 protein was purified from M. mobile cells, and its molecular shape was studied. Gel filtration analysis showed that the isolated Gli521 protein forms mainly a monomer in Tween 80-containing buffer and oligomers in Triton X-100-containing buffer. Rotary shadowing electron microscopy showed that the Gli521 monomer consisted of three parts: an oval, a rod, and a hook. The oval was 15 nm long by 11 nm wide, and the filamentous part composed of the rod and the hook was 106 nm long and 3 nm in diameter. The Gli521 molecules form a trimer, producing a “triskelion” reminiscent of eukaryotic clathrin, through association at the hook end. Image averaging of the central part of the triskelion suggested that there are stable and rigid structures. The binding site of a previously isolated monoclonal antibody on Gli521 images showed that the hook end and oval correspond to the C- and N-terminal regions, respectively. Partial digestion of Gli521 showed that the molecule could be divided into three domains, which we assigned to the oval, rod, and hook of the molecular image. The Gli521 molecule''s role in the gliding mechanism is discussed.Mycoplasmas are commensal and occasionally parasitic bacteria with small genomes that lack a peptidoglycan layer (31). Several mycoplasma species form membrane protrusions, such as the headlike structure in Mycoplasma mobile and the attachment organelle in Mycoplasma pneumoniae (15, 19, 21, 22, 25, 33, 34, 36). On solid surfaces, these species exhibit gliding motility in the direction of the protrusion; this motility is believed to be involved in the pathogenicity of mycoplasmas (12, 13, 16, 20, 21). Interestingly, mycoplasmas have no surface flagella or pili, and their genomes contain no genes related to other known bacterial motility systems. In addition, no homologs of motor proteins that are common in eukaryotic motility have been found (11).M. mobile, which was isolated from the gills of a freshwater fish in the early 1980s, is a fast gliding mycoplasma (14). It glides smoothly and continuously on glass at an average speed of 2.0 to 4.5 μm/s, or three to seven times the length of the cell per second, exerting a force of up to 27 pN (8, 9, 24, 25, 32). Previously, we identified huge proteins involved in this gliding mechanism that are localized at the so-called cell neck, the base of the membrane protrusion (17, 26, 30, 35, 37, 39); we also visualized the putative machinery and the binding protein (1, 18, 23) and identified both the direct energy source used and the direct binding target (10, 27, 38). The force generated by the gliding machinery may be supported from inside the cell by a cytoskeletal “jellyfish” structure (28, 29). On the basis of these results, we proposed a working model, called the centipede or power stroke model, where cells are propelled by “legs” composed of Gli349 that repeatedly catch and release sialic acids fixed on the glass surface (5, 19, 21). These legs are driven by the force exerted by P42 through Gli521 molecules, which is supported by the jellyfish structure, based on energy from ATP hydrolysis.The Gli521 protein, which has an unusually high molecular mass (521 kDa), is suggested to have the role of force transmission, because a monoclonal antibody against this protein stops gliding, keeping the cells on a solid surface (35). About 450 molecules are estimated to be clustered in the gliding machinery with other component proteins, although their alignment has not been clarified (35, 37, 39). In this study, we isolated the Gli521 protein and studied its molecular shape using electron microscopy (EM) and biochemical analyses in order to understand the gliding mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号