首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many of the open-ocean isolates of the marine unicellular cyanobacterium Synechococcus spp. are capable of swimming motility, whereas coastal isolates are nonmotile. Surprisingly, the motile strains do not display phototactic or photophobic responses to light, but they do demonstrate positive chemoresponses to several nitrogenous compounds. The chemotactic responses of Synechococcus strain WH8113 were investigated using blind-well chemotaxis chambers fitted with 3.0-mum-pore-size Nuclepore filters. One well of each chamber contained cells suspended in aged Sargasso Sea water, and the other well contained the potential chemoattractant in seawater. The number of cells that crossed the filter into the attractant-seawater mixture was measured by direct cell counts and compared with values obtained in chambers lacking gradients. Twenty-two compounds were tested, including sugars, amino acids, and simple nitrogenous substrates, at concentrations ranging from 10 to 10 M. Strain WH8113 responded positively only to ammonia, nitrate, beta-alanine, glycine, and urea. Typically, there was a 1.5- to 2-fold increase in cell concentrations above control levels in chambers containing these compounds, which is comparable to results from similar experiments using enteric and photoheterotrophic bacteria. However, the threshold levels of 10 to 10 M found for Synechococcus spp. chemoresponses were lower by several orders of magnitude than those reported for other bacteria and fell within a range that could be ecologically significant in the oligotrophic oceans. The presence of chemotaxis in motile Synechococcus spp. supports the notion that regions of nutrient enrichment, such as the proposed microzones and patches, may play an important role in picoplankton nutrient dynamics.  相似文献   

2.
Thirty-two strains of phycoerythrin-containing marine picocyanobacteria were screened for the capacity to produce cyanophycin, a nitrogen storage compound synthesized by some, but not all, cyanobacteria. We found that one of these strains, Synechococcus sp. strain G2.1 from the Arabian Sea, was able to synthesize cyanophycin. The cyanophycin extracted from the cells was composed of roughly equimolar amounts of arginine and aspartate (29 and 35 mol%, respectively), as well as a small amount of glutamate (15 mol%). Phylogenetic analysis, based on partial 16S ribosomal DNA (rDNA) sequence data, showed that Synechococcus sp. strain G2.1 formed a well-supported clade with several strains of filamentous cyanobacteria. It was not closely related to several other well-studied marine picocyanobacteria, including Synechococcus strains PCC7002, WH7805, and WH8018 and Prochlorococcus sp. strain MIT9312. This is the first report of cyanophycin production in a phycoerythrin-containing strain of marine or halotolerant Synechococcus, and its discovery highlights the diversity of this ecologically important functional group.  相似文献   

3.
4.
Ni accumulation and utilization were studied in two strains of marine Synechococcus, isolated from both coastal (CC9311; clade I) and open-ocean (WH8102; clade III) environments, for which complete genome sequences are available. Both strains have genes encoding an Ni-containing urease and when grown on urea without Ni become Ni-N colimited. The Ni requirements of these strains also depend upon the genomic complement of genes encoding superoxide dismutase (SOD). WH8102, with a gene encoding only an Ni-SOD, has a novel obligate requirement for Ni, regardless of the N source. Reduced SOD activity in Ni-depleted cultures of WH8102 supports the link of this strain's Ni requirement to Ni-SOD. The genome of CC9311 contains a gene for a Cu/Zn-SOD in addition to a predicted pair of Ni-SODs, yet this strain cannot grow without Ni on NO3 and can grow only slowly on NH4+ without Ni, implying that the Cu/Zn-SOD cannot completely replace Ni-SOD in marine cyanobacteria. CC9311 does have a greater tolerance for Ni starvation. Both strains increase their Ni uptake capabilities and actively bioconcentrate Ni in response to decreasing extracellular and intracellular Ni. The changes in Ni uptake rates were more pronounced in WH8102 than in CC9311 and for growth on urea or nitrate than for growth on ammonia. These results, combined with an analysis of fully sequenced marine cyanobacterial genomes, suggest that the growth of many marine Synechococcus and all Prochlorococcus strains is dependent upon Ni.  相似文献   

5.
In chicken embryo fibroblasts (CEFs), β-actin mRNA localizes near an actin-rich region of cytoplasm specialized for motility, the lamellipodia. This localization is mediated by isoform-specific 3′-untranslated sequences (zipcodes) and can be inhibited by antizipcode oligodeoxynucleotides (ODNs) (Kislauskis, E.H., X.-C. Zhu, and R.H. Singer. 1994. J. Cell Biol. 127: 441–451). This inhibition of β-actin mRNA localization resulted in the disruption of fibroblast polarity and, presumably, cell motility. To investigate the role of β-actin mRNA in motility, we correlated time-lapse images of moving CEFs with the distribution of β-actin mRNA in these cells. CEFs with localized β-actin mRNA moved significantly further over the same time period than did CEFs with nonlocalized mRNA. Antizipcode ODN treatment reduced this cell translocation while control ODN treatments showed no effect. The temporal relationship of β-actin mRNA localization to cell translocation was investigated using serum addition to serum-deprived cultures. β-actin mRNA was not localized in serum-deprived cells but became localized within minutes after serum addition (Latham, V.M., E.H. Kislauskis, R.H. Singer, and A.F. Ross. 1994. J. Cell Biol. 126:1211–1219). Cell translocation increased over the next 90 min, and actin synthesis likewise increased. Puromycin reduced this cell translocation and blocked this induction in cytosolic actin content. The serum induction of cell movement was also inhibited by antizipcode ODNs. These observations support the hypothesis that β-actin mRNA localization and consequent protein synthesis augment cell motility.  相似文献   

6.
Biodispersan is an extracellular anionic polysaccharide produced by Acinetobacter calcoaceticus A2 that changes the surface properties of limestone and acts both as a dispersant and as a grinding aid (E. Rosenberg, C. Rubinovitz, A. Gottlieb, S. Rosenhak, and E. Z. Ron, Appl. Environ. Microbiol. 54:317-322, 1988; E. Rosenberg, C. Rubinovitz, R. Legmann, and E. Z. Ron, Appl. Environ. Microbiol. 54:323-326, 1988; E. Rosenberg, Z. Schwartz, A. Tenenbaum, C. Rubinovitz, R. Legmann, and E. Z. Ron, J. Dispersion Sci. Technol. 10:241-250, 1989). Extracellular fluid also contains a high concentration of secreted proteins that create problems in the purification and application of biodispersan. In order to obtain preparations of biodispersan that contained smaller amounts of protein, we selected mutants of strain A2 that were defective in protein secretion. These mutants produced equal, or even higher, levels of total biodispersan compared with those of the parental strain. Moreover, although there was a significant drop in the concentration of extracellular proteins in the medium, the secretion of biodispersan was unaffected. These results suggest that secretion mutants are potentially useful for the production of extracellular polysaccharides.  相似文献   

7.
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5′ end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA31-1068). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA31-1068. Labeling of the square S-layer lattice formed by recrystallization of rSbpA31-1068/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices.  相似文献   

8.
Marine viruses are an important component of the microbial food web, influencing microbial diversity and contributing to bacterial mortality rates. Resistance to cooccurring cyanophages has been reported for natural communities of Synechococcus spp.; however, little is known about the nature of this resistance. This study examined the patterns of infectivity among cyanophage isolates and unicellular marine cyanobacteria (Synechococcus spp.). We selected for phage-resistant Synechococcus mutants, examined the mechanisms of phage resistance, and determined the extent of cross-resistance to other phages. Four strains of Synechococcus spp. (WH7803, WH8018, WH8012, and WH8101) and 32 previously isolated cyanomyophages were used to select for phage resistance. Phage-resistant Synechococcus mutants were recovered from 50 of the 101 susceptible phage-host pairs, and 23 of these strains were further characterized. Adsorption kinetic assays indicate that resistance is likely due to changes in host receptor sites that limit viral attachment. Our results also suggest that receptor mutations conferring this resistance are diverse. Nevertheless, selection for resistance to one phage frequently resulted in cross-resistance to other phages. On average, phage-resistant Synechococcus strains became resistant to eight other cyanophages; however, there was no significant correlation between the genetic similarity of the phages (based on g20 sequences) and cross-resistance. Likewise, host Synechococcus DNA-dependent RNA polymerase (rpoC1) genotypes could not be used to predict sensitivities to phages. The potential for the rapid evolution of multiple phage resistance may influence the population dynamics and diversity of both Synechococcus and cyanophages in marine waters.  相似文献   

9.
10.
A proteomic analysis of a soil-dwelling, plant growth-promoting Azotobacter vinelandii strain showed the presence of a protein encoded by the hypothetical Avin_16040 gene when the bacterial cells were attached to the Oryza sativa root surface. An Avin_16040 deletion mutant demonstrated reduced cellular adherence to the root surface, surface hydrophobicity, and biofilm formation compared to those of the wild type. By atomic force microscopy (AFM) analysis of the cell surface topography, the deletion mutant displayed a cell surface architectural pattern that was different from that of the wild type. Escherichia coli transformed with the wild-type Avin_16040 gene displayed on its cell surface organized motifs which looked like the S-layer monomers of A. vinelandii. The recombinant E. coli also demonstrated enhanced adhesion to the root surface.  相似文献   

11.
A. Gysler-Junker  Z. Bodi    J. Kohli 《Genetics》1991,128(3):495-504
A haploid Schizosaccharomyces pombe strain carrying a heteroallelic duplication of the ade6 gene was used to isolate mitotic recombination-deficient mutants. Recombination between the different copies of the ade6 gene can lead to Ade+ segregants. These are observed as growing papillae when colonies of a suitable size are replicated onto selective medium. We isolated mutants which show an altered papillation phenotype. With two exceptions, they exhibit a decrease in the frequency of mitotic recombination between the heteroalleles of the duplication. The two other mutants display a hyper-recombination phenotype. The 12 mutations were allocated to at least nine distinct loci by recombination tests. Of the eight rec mutants analyzed further, six were also affected in mitotic intergenic recombination in the intervals cen2-mat or cen3-arg 1. No effect on mitotic intragenic recombination was observed. These data suggest that mitotic gene conversion and crossing over can be separated mutationally. Meiotic recombination occurs at the wild-type frequency in all mutants investigated.  相似文献   

12.
目的:构建炭疽芽胞杆菌假想S-层蛋白SLP缺失突变体,以进行后续SLP的功能研究,为炭疽芽孢杆菌重要基因功能的研究建立技术平台。方法:利用PCR技术,分别扩增得到目的基因的上游同源臂(slp-F)和下游同源臂(slp-R),将抗性基因(S)和上、下游同源臂先后连入穿梭质粒pKSV7,构建打靶载体pKSV7-FSR,经去甲基化后,电转化入炭疽芽胞杆菌A16R,通过同源重组敲除slp基因,并通过DNA测序和Western blot实验验证;对野生株和突变株37℃时的生长曲线及生化反应进行比较研究。结果:分别从DNA水平和蛋白质水平证实slp基因被成功敲除;突变株对数期生长较快,衰退较慢,与野生株的生化反应差异不明显。结论:获得了炭疽芽胞杆菌假想S-层蛋白SLP缺失突变体。  相似文献   

13.
Surface layer (S-layer) proteins self-assemble into two-dimensional crystalline lattices that cover the cell wall of all archaea and many bacteria. We have generated assembly-negative protein variants of high solubility that will facilitate high-resolution structure determination. Assembly-negative versions of the S-layer protein SbsB from Geobacillus stearothermophilus PV72/p2 were obtained using an insertion mutagenesis screen. The haemagglutinin epitope tag was inserted at 23 amino acid positions known to be located on the monomer protein surface from a previous cysteine accessibility screen. Limited proteolysis, circular dichroism, and fluorescence were used to probe whether the epitope insertion affected the secondary and tertiary structures of the monomer, while electron microscopy and size-exclusion chromatography were employed to examine proteins' ability to self-assemble. The screen not only identified assembly-compromised mutants with native fold but also yielded correctly folded, self-assembling mutants suitable for displaying epitopes for biomedical and biophysical applications, as well as cryo-electron microscopy imaging. Our study marks an important step in the analysis of the S-layer structure. In addition, the approach of concerted insertion and cysteine mutagenesis can likely be applied for other supramolecular assemblies.  相似文献   

14.
The marine cyanobacterium, Synechococcus sp. Nägeli (strain RRIMP N1) changes its affinity for external inorganic carbon used in photosynthesis, depending on the concentration of CO2 provided during growth. The high affinity for CO2 + HCO3 of air-grown cells (K½ < 80 nanomoles [pH 8.2]) would seem to be the result of the presence of an inducible mechanism which concentrates inorganic carbon (and thus CO2) within the cells. Silicone-oil centrifugation experiments indicate that the inorganic carbon concentration inside suitably induced cells may be in excess of 1,000-fold greater than that in the surrounding medium, and that this accumulation is dependent upon light energy. The quantum requirements for O2 evolution appear to be some 2-fold greater for low CO2-grown cells, compared with high CO2-grown cells. This presumably is due to the diversion of greater amounts of light energy into inorganic carbon transport in these cells.

A number of experimental approaches to the question of whether CO2 or HCO3 is primarily utilized by the inorganic carbon transport system in these cells show that in fact both species are capable of acting as substrate. CO2, however, is more readily taken up when provided at an equivalent concentration to HCO3. This discovery suggests that the mechanistic basis for the inorganic carbon concentrating system may not be a simple HCO3 pump as has been suggested. It is clear, however, that during steady-state photosynthesis in seawater equilibrated with air, HCO3 uptake into the cell is the primary source of internal inorganic carbon.

  相似文献   

15.
In this study, we develop a mechanistic understanding of how temperature affects growth and photosynthesis in 10 geographically and physiologically diverse strains of Synechococcus spp. We found that Synechococcus spp. are able to regulate photochemistry over a range of temperatures by using state transitions and altering the abundance of photosynthetic proteins. These strategies minimize photosystem II (PSII) photodamage by keeping the photosynthetic electron transport chain (ETC), and hence PSII reaction centers, more oxidized. At temperatures that approach the optimal growth temperature of each strain when cellular demand for reduced nicotinamide adenine dinucleotide phosphate (NADPH) is greatest, the phycobilisome (PBS) antenna associates with PSII, increasing the flux of electrons into the ETC. By contrast, under low temperature, when slow growth lowers the demand for NADPH and linear ETC declines, the PBS associates with photosystem I. This favors oxidation of PSII and potential increase in cyclic electron flow. For Synechococcus sp. WH8102, growth at higher temperatures led to an increase in the abundance of PBS pigment proteins, as well as higher abundance of subunits of the PSII, photosystem I, and cytochrome b6f complexes. This would allow cells to increase photosynthetic electron flux to meet the metabolic requirement for NADPH during rapid growth. These PBS-based temperature acclimation strategies may underlie the larger geographic range of this group relative to Prochlorococcus spp., which lack a PBS.Marine picocyanobacteria are the most abundant phytoplankton, inhabiting nearly every area of the surface ocean and dominating in tropical and subtropical waters. The smallest and most abundant marine picocyanobacteria belong to the genera Synechococcus and Prochlorococcus, which together account for one-third of the total primary production on Earth (Partensky et al., 1999b). Marine Synechococcus spp. are genetically diverse (Scanlan et al., 2009; Mazard et al., 2012), play an important role in the biogeochemical cycling of carbon (Grob et al., 2007), and are found from the equator to the polar circle, though they are less abundant at higher latitudes (Agusti, 2004; Scanlan et al., 2009; Huang et al., 2012). Temperature is a major factor that controls photosynthetic rates, and the biogeography of Synechococcus spp. strains in the modern ocean has been linked to temperature (Zwirglmaier et al., 2008). In this study, we explore the effect of temperature on growth and photosynthesis in several Synechococcus spp. strains.Photosynthetic electron transport in cyanobacteria, including Synechococcus spp., shares similarities with that of plants and green algae (Fig. 1). Photosynthetic organisms are commonly able to perform photosynthesis efficiently over a range of temperatures bracketing the optimal growth temperature (Topt). However, decreased metabolic rates at temperatures too far below Topt can cause an imbalance between photochemistry and metabolism, leading to photodamage (Huner et al., 1996). By contrast, elevated temperatures may affect membrane fluidity and denature proteins, which can also lead to a decline in photosynthetic efficiency (Falk et al., 1996). A range of diverse acclimation strategies have evolved among algae and plants to balance electron flow through the electron transport chain (ETC) during temperature fluctuations (Maxwell et al., 1994; Krol et al., 1997; Gray et al., 1998; Miśkiewicz et al., 2000).Open in a separate windowFigure 1.PBS structure and linear photosynthetic electron flow in cyanobacteria. In this schematic, the PBS is in “state 1,” indicating it is associated with a PSII dimer. Photosynthetic electron flow pathways are indicated by black arrows, and chemical reactions are indicated by blue arrows. Major ETC components include PSII, PSI, PQ/plastoquinol (PQH2), cytochrome b6f (Cyt b6f), plastocyanin (PLC), ferredoxin (FX), flavodoxin (FL), and ferredoxin/flavodoxin NADP reductase (FNR). Other proteins depicted include the phycobiliproteins APC, PC, two forms of PE (PE I and PE II), PSII chlorophyll-binding proteins CP47 and CP43, the PSII core polypeptides D1 and D2, the PSI chlorophyll-binding core proteins PsaA and PsaB, and the PSI reaction center subunit PsaD. [See online article for color version of this figure.]Less is known about mechanisms marine cyanobacteria use to acclimate to temperature. Cyanobacteria differ from plants and green algae in that photosynthesis and respiration occur in the same membrane. In addition, the ratios of PSII:PSI are more variable in cyanobacteria (Campbell et al., 1998; Bailey et al., 2008), which can impact the flow of electrons through the ETC. Cells must prevent overreduction of the ETC because this can lead to damage of the D1 polypeptide of PSII in a process called photoinhibition; to sustain PSII activity, replacement of the damaged D1 by de novo protein synthesis is required (Aro et al., 1993). Cyanobacteria have evolved a suite of strategies to balance electron flow in the thylakoid membrane when the cells are exposed to high light; important strategies include nonphotochemical quenching (El Bissati et al., 2000; Bailey and Grossman, 2008) and alternative electron flow pathways (Asada, 1999; Bailey et al., 2008; Mackey et al., 2008). Cyanobacteria may also selectively funnel light energy to PSII or PSI to regulate the amount of electrons entering and exiting the ETC (Campbell et al., 1998).In cyanobacteria, including Synechococcus spp., the main light-harvesting antennae are water-soluble pigment-protein complexes called phycobilisomes (PBSs; Grossman et al., 1993; Six et al., 2007). Unlike the antenna of plants and algae that are embedded within the thylakoid membrane, PBSs are located on the cytoplasmic surface of the membrane (Fig. 1). Structurally, the PBS consists of phycobiliproteins, including the PBS core allophycocyanin (APC) and lateral rods of phycocyanin (PC) and phycoerythrin (PE; Fig. 1). The PBS core has evolved together with the core genome of Synechococcus spp., whereas the rod components appear to have evolved separately through gene duplication, DNA exchange between cells, and possibly virally mediated lateral gene transfer (Six et al., 2007). Each phycobiliprotein binds chromophores called phycobilins (linear tetrapyrroles) that selectively absorb different wavelengths of green-red light, thereby extending the range of photosynthetically active radiation the cell can use beyond that of chlorophyll (Campbell et al., 1998). The PBS is capable of rapid diffusion over the thylakoid membrane surface (Mullineaux et al., 1997), where it can associate with either PSI or PSII. The PBS is a mobile antenna element that does not bind chlorophyll and that likely associates with reaction centers by weak interactions with lipid head groups (Sarcina et al., 2001).State transitions, the movements of PBS or other antenna pigments between reaction centers, allow the cells to avoid PSII photodamage by balancing electron flow such that electrons do not accumulate within the ETC. Whether the PBS associates with PSI or PSII is determined by the redox poise of the plastoquinone (PQ) pool (Fig. 1), which serves as an indicator of electron flow through the ETC. When the PQ pool is oxidized, the PBS becomes associated with PSII (state 1) such that the rate of linear electron flow increases. By contrast, a reduced PQ pool elicits affiliation of the PBS with PSI (state 2), which could increase the withdrawal of electrons from the ETC. In the dark, the PQ pool tends to be reduced due to respiratory electron flow, and the PBS affiliates primarily with PSI.Recent ocean basin scale research has shed light on the role of temperature on the global distributions of Synechococcus spp. in the ocean. Collectively, these studies have shown that marine Synechococcus spp. tolerate a broad range of temperatures, likely due to high genetic diversity among strains. For example, of the four clades that dominate in natural communities, clades I and IV typically inhabit cooler waters north of 30°N and south of 30°S (Brown et al., 2005; Zwirglmaier et al., 2007, 2008), while clades II and III generally inhabit warmer tropical and subtropical waters (Fuller et al., 2006; Zwirglmaier et al., 2008). Other Synechococcus spp. sequences have been recently identified from colder waters in the northern Bering Sea and Chukchi Sea, suggesting that a possible cold adaptation could exist in some strains present at high latitudes (Huang et al., 2012). Still, other studies have found no relationship between Synechococcus spp. abundance and temperature (Zinser et al., 2007), suggesting that additional factors (e.g. nutrient availability) may be responsible for shaping Synechococcus spp. community structure (Palenik et al., 2003, 2006; Scanlan et al., 2009).While field surveys have made great strides in understanding the role of temperature in controlling picocyanobacteria distributions, much remains to be learned about the range of growth responses to temperature that can occur in marine Synechococcus spp. To date, characterization of individual Synechococcus spp. strains includes work with two isolates from the Sargasso Sea, showing variable responses to temperature (Moore et al., 1995; Fu et al., 2007). These studies demonstrate the potential for changing sea surface temperature (SST) to influence the biogeochemical role of Synechococcus spp. in the Sargasso Sea; however, little is known about whether these responses can be generalized to other strains or environments. Changes in growth rate and photosynthetic efficiency, if they occur, could alter global Synechococcus spp. distributions, affect ecosystem structure, and ultimately impact marine biogeochemical cycles and Earth’s climate, and thus could have important implications for the earth system.A mechanistic understanding of how temperature affects growth and photosynthesis in geographically and physiologically diverse strains of Synechococcus spp. is needed to clarify how temperature influences Synechococcus spp. biogeography, as well as to provide insights into how populations are likely to respond to increased SST in the future. The goal of this study is to characterize the growth, photosynthetic efficiency, and light-harvesting characteristics of 10 diverse Synechococcus spp. isolates over a range of temperatures. Using chlorophyll fluorescence analysis, we show that regulation of light harvesting via state transitions is an important acclimation process that allows cells to increase photosynthetic electron flow under high temperature conditions. This effect is enhanced for strains with higher proportions of phycoerythrobilin and phycouribilin. We use global proteome data from Synechococcus sp. WH8102 to show that this temperature-dependent enhancement is brought about in part by an increase in the abundance of PBS proteins, as well as proteins from PSII, PSI, and other ETC components. The results are discussed in the context of Synechococcus spp. biogeography in the modern ocean, and potential implications for how cells could respond to future increases in SST are considered.  相似文献   

16.
为将不同的生理功能区隔化,植物细胞分化出具有特异性结构特征的细胞器.分化的细胞内膜系统和分子水平的蛋白质转运调控机制为外源蛋白亚细胞定位表达提供了显著的有利条件.当蛋白质被加载适当的定位信号或启动子时,蛋白质的分选途径便确定下来,同时决定蛋白质的表达终点.本文根据相关研究主题分析了蛋白质亚细胞定位机制,重点阐述包括ER腔、质外体、液泡、蛋白体等细胞器和内膜结构在内的蛋白定位因素,同时探讨了目前蛋白定位因素的应用情况.本文确定亚细胞定位因素将成为植物基因工程领域控制亚细胞水平表达的重要技术策略.  相似文献   

17.
18.
Effect of Light on the Cell Cycle of a Marine Synechococcus Strain   总被引:1,自引:1,他引:1       下载免费PDF全文
Light-dependent regulation of cell cycle progression in the marine cyanobacterium Synechococcus strain WH-8101 was demonstrated through the use of flow cytometry. Our results show that, similar to eucaryotic cells, marine Synechococcus spp. display two gaps in DNA synthesis, at the beginning and at the end of the cell cycle. Progression through each of these gaps requires light, and their durations lengthen under light limitation.  相似文献   

19.
  相似文献   

20.
The high-CO2-requiring mutant of Synechococcus sp. PCC 7942, EK6, was obtained after extension of the C terminus of the small subunit of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco). The carboxysomes in EK6 were much larger than in the wild type, but the cellular distribution of the large and small sub-units of Rubisco was not affected. The kinetic parameters of in vitro-activated Rubisco were similar in EK6 and in the wild type. On the other hand, Rubisco appeared to be in a low state of activation in situ in EK6 cells pretreated with an air level of CO2. This was deduced from the appearance of a lag phase when carboxylation was followed with time in cells permeabilized by detergent and subsequently supplied with saturating CO2 and RuBP. Pretreatment of the cells with high CO2 virtually abolished the lag. After low-CO2 treatment, the internal RuBP pool was much higher in mutant cells than in the wild-type cells; pretreatment with high CO2 reduced the pool in mutant cells. We suggest that the high-CO2-requiring phenotype in mutants that possess aberrant carboxysomes arises from the inactivated state of Rubisco when the cells are exposed to low CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号