首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
No normative data are available for the latencies of the EMG signals from the ankle muscles in response to sudden sagittal tilt (toes-UP or toes-DOWN) or shift (shift-FOR or shift-BACK) of the support surface during standing. In this study the postural evoked response (PER) paradigm on the EquiTest™ force platform was applied to 31 healthy adults (18 women and 13 men; mean age 29 years). The EMG latencies (PEREMG) were computed both through the standard manual procedure and through a specially designed automated algorithm. The manually computed PEREMG onset yielded a 95% tolerance interval between 82 ms and 148 ms after toes-UP perturbation, between 93 ms and 182 ms after toes-DOWN perturbation, between 67 ms and 107 ms after shift-BACK perturbation, and between 73 ms and 113 ms after shift-FOR perturbation. When comparing the two methods, paired t-tests showed no significant mean difference (Bonferroni-adjusted p-values ranged from 0.440 to 1.000) and all Bland–Altman plots included zero difference within the limits of agreement. Therefore, the manual and the automated methods appear to be sufficiently consistent. These results foster the clinical application of PEREMG testing on the EquiTest platform.  相似文献   

2.
Poor posture control has been associated with an increased risk of falls and mobility disability among older adults. This study was conducted to assess the test–retest reliability and sensitivity to group differences regarding the time-limit (TLimit) of one-leg standing and selected balance parameters obtained with a force platform in older and young adults. A secondary purpose was to assess the relationship between TLimit and these balance parameters. Twenty-eight healthy older adults (age: 69 ± 5 years) and thirty young adults (age: 21 ± 4 years) participated in this study. Two one-leg stance tasks were performed: (1) three trials of 30 s maximum and (2) one TLimit trial. The following balance parameters were computed: center of pressure area, RMS sway amplitude, and mean velocity and mean frequency in both the anterio-posterior and medio-lateral directions. All balance parameters obtained with the force platform as well as the TLimit variable were sensitive to differences in balance performance between older and young adults. The test–retest reliability of these measures was found to be acceptable (ICC: 0.40–0.85), with better ICC scores observed for mean velocity and mean frequency in the older group. Pearson correlations coefficients (r) between balance parameters and TLimit ranged from ?0.16 to ?0.54. These results add to the current literature that can be used in the development of measurement tools for evaluating balance in older and young adults.  相似文献   

3.
The aim was to assess the effects of sex and age on fatigability and recovery from sustained maximal voluntary contraction (MVC) of the knee extensor muscles. The central (central activation ratio (CAR) and electrical activity amplitude) and peripheral (electrically evoked torque and muscle contractile properties) factors contributing to fatigue and recovery of 24 young adults (12 males) aged 23.2 ± 3.6 years and 20 older adults (12 males) aged 70.6 ± 4.4 years were compared. The increase in central and peripheral fatigue was greater (p  0.01) in the young adults vs the older adults. Sex differences (p = 0.002) regarding MVC were attributed to the greater (p < 0.01) peripheral fatigue of males vs females. The recovery rate of MVC was greater (p < 0.001) in the young adults vs the older adults, with no sex effect. The recovery of MVC was correlated with the CAR in older adults (p = 0.001). Thus, the greater endurance observed with age is caused by differences in central and peripheral mechanisms, whereas the greater endurance in females is caused by a difference in a mechanism located within the muscle. The impaired recovery from fatigue in older adults relied more on the recovery of central factors.  相似文献   

4.
Previous studies have identified differences in gait kinetics between healthy older and young adults. However, the underlying factors that cause these changes are not well understood. The objective of this study was to assess the effects of age and speed on the activation of lower-extremity muscles during human walking. We recorded electromyography (EMG) signals of the soleus, gastrocnemius, biceps femoris, medial hamstrings, tibialis anterior, vastus lateralis, and rectus femoris as healthy young and older adults walked over ground at slow, preferred and fast walking speeds. Nineteen healthy older adults (age, 73 ± 5 years) and 18 healthy young adults (age, 26 ± 3 years) participated. Rectified EMG signals were normalized to mean activities over a gait cycle at the preferred speed, allowing for an assessment of how the activity was distributed over the gait cycle and modulated with speed. Compared to the young adults, the older adults exhibited greater activation of the tibialis anterior and soleus during mid-stance at all walking speeds and greater activation of the vastus lateralis and medial hamstrings during loading and mid-stance at the fast walking speed, suggesting increased coactivation across the ankle and knee. In addition, older adults depend less on soleus muscle activation to push off at faster walking speeds. We conclude that age-related changes in neuromuscular activity reflect a strategy of stiffening the limb during single support and likely contribute to reduced push off power at fast walking speeds.  相似文献   

5.
In response to a balance disturbance, older individuals often require multiple steps to prevent a fall. Reliance on multiple steps to recover balance is predictive of a future fall, so studies should determine the mechanisms underlying differences between older adults who can and cannot recover balance with a single step. This study compared neural activation parameters of the major leg muscles during balance recovery from a sudden forward loss of balance in older individuals capable of recovering with a single step and those who required multiple steps to regain balance. Eighty-one healthy, community dwelling adults aged 70 ± 3 participated. Loss of balance was induced by releasing participants from a static forward lean. Participants performed four trials at three initial lean magnitudes and were subsequently classified as single or multiple steppers. Although step length was shorter in multiple compared to single steppers (F = 9.64; p = 0.02), no significant differences were found between groups in EMG onset time in the step limb muscles (F = 0.033–0.769; p = 0.478–0.967). However, peak EMG normalised to values obtained during maximal voluntary contraction was significantly higher in single steppers in 6 of the 7 stepping limb muscles (F = 1.054–4.167; p = 0.045–0.024). These data suggest that compared to multiple steppers, single steppers recruit a larger proportion of the available motor unit pool during balance recovery. Thus, modulation of EMG amplitude plays a larger role in balance recovery than EMG timing in this context.  相似文献   

6.
Treadmill has been broadly used in laboratory and rehabilitation settings for the purpose of facilitating human locomotion analysis and gait training. The objective of this study was to determine whether dynamic gait stability differs or resembles between the two walking conditions (overground vs. treadmill) among young adults. Fifty-four healthy young adults (age: 23.9 ± 4.7 years) participated in this study. Each participant completed five trials of overground walking followed by five trials of treadmill walking at a self-selected speed while their full body kinematics were gathered by a motion capture system. The spatiotemporal gait parameters and dynamic gait stability were compared between the two walking conditions. The results revealed that participants adopted a “cautious gait” on the treadmill compared with over ground in response to the possible inherent challenges to balance imposed by treadmill walking. The cautious gait, which was achieved by walking slower with a shorter step length, less backward leaning trunk, shortened single stance phase, prolonged double stance phase, and more flatfoot landing, ensures the comparable dynamic stability between the two walking conditions. This study could provide insightful information about dynamic gait stability control during treadmill ambulation in young adults.  相似文献   

7.
Compared to intact limbs, running-specific prostheses have high resonance non-biologic materials and lack active tissues to damp high frequencies. These differences may lead to ground reaction forces (GRFs) with high frequency content. If so, ubiquitously applying low-pass filters to prosthetic and intact limb GRFs may attenuate veridical high frequency content and mask important and ecologically valid data from prostheses. To explore differences in frequency content between prosthetic and intact limbs we divided signal power from transtibial unilateral amputees and controls running at 2.5, 3.0, and 3.5 m/s into Low (<10 Hz), High (10–25 Hz), and Non-biologic (>25 Hz) frequency bandwidths. Faster speeds tended to reduce the proportion of signal power in the Low bandwidth while increasing it in the High and Non-biologic bandwidths. Further, prostheses had lower proportions of signal power at the High frequency bandwidth but greater proportions at the Non-biologic bandwidth. To evaluate whether these differences in frequency content interact with filter cut-offs and alter results, we filtered GRFs with cut-offs from 1 to 100 Hz and calculated vertical impact peak (VIP). Changing cut-off had inconsistent effects on VIP across speeds and limbs: Faster speeds had significantly larger changes in VIP per change in cut-off while, compared to controls, prosthetic limbs had significantly smaller changes in VIP per change in cut-off. These findings reveal differences in GRF frequency content between prosthetic and intact limbs and suggest that a cut-off frequency that is appropriate for one limb or speed may be inappropriate for another.  相似文献   

8.
Sixteen subjects (aged 54.2 ± 14.1 years) with hemiparesis (7.9 ± 7.1 years since diagnosis) demonstrating a foot-drop and hamstrings muscle weakness were fitted with a dual-channel functional electrical stimulation (FES) system activating the dorsiflexors and hamstrings muscles. Measurements of gait performance were collected after a conditioning period of 6 weeks, during which the subjects used the system throughout the day. Gait was assessed with and without the dual-channel FES system, as well as with peroneal stimulation alone. Outcomes included lower limb kinematics and the step length taken with the non-paretic leg. Results with the dual-channel FES indicate that in the subgroup of subjects who demonstrated reduced hip extension but no knee hyperextension (n = 9), hamstrings FES increased hip extension during terminal stance without affecting the knee. Similarly, in the subgroup of subjects who demonstrated knee hyperextension but no limitation in hip extension (n = 7), FES restrained knee hyperextension without having an impact on hip movement. Additionally, step length was increased in all subjects. The peroneal FES had a positive effect only on the ankle. The results suggest that dual-channel FES for the dorsiflexors and hamstrings muscles may affect lower limb control beyond that which can be attributed to peroneal stimulation alone.  相似文献   

9.
Technical advancements in instrumentation and analytical methods have improved the ability of assessing balance control. This study investigated the effects of early stages of aging on postural sway using traditional and contemporary postural indices from different domains. Eleven healthy young adults and fourteen healthy non-faller older adults performed two postural tasks: (a) functional limits of stability and (b) unperturbed bipedal stance for 120 s. Postural indices from spatial, temporal, frequency, and structural domains were extracted from the body’s center of pressure (COP) signals and its Rambling and Trembling components. Results revealed a preservation of functional limits of upright stability in older adults accompanied by larger, faster, and shakier body sway in both anterior-posterior and medio-lateral directions; increased medio-lateral sway frequency; increased irregularity of body sway pattern in time in both directions; and increased area, variability, velocity, and jerkiness of both rambling and trembling components of the COP displacement in the anterior-posterior direction (p < 0.02). Such changes might be interpreted as compensatory adjustments to the age-related decline of sensory, neural, and motor functions. In conclusion, balance assessment using postural indices from different domains extracted from the COP displacement was able to capture subtle effects of the natural process of aging on the mechanisms of postural control. Our findings suggest the use of such indices as potential markers for postural instability and fall risk in older adults.  相似文献   

10.
It is believed that force feedback can modulate lower extremity extensor activity during gait. The purpose of this research was to determine the role of limb loading on knee extensor excitability during the late stance/early swing phase of gait in persons post-stroke. Ten subjects with chronic hemiparesis post-stroke participated in (1) seated isolated quadriceps reflex testing with ankle loads of 0–0.4N m/kg and (2) gait analysis on a treadmill with 0%, 20% or 40% body weight support. Muscle reflex responses were recorded from vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) during seated testing. Knee kinematics and quadriceps activity during late stance/early swing phase of gait were compared across loading conditions. Although isolated loading of the ankle plantarflexors at 0.2 N m/kg reduced VM prolonged response (p = 0.04), loading did not alter any other measure of quadriceps excitability (all p > 0.08). During gait, the use of BWS did not influence knee kinematics (p = 0.18) or muscle activity (all p > 0.17) during late stance/early swing phase. This information suggests that load sensed at the ankle has minimal effect on the ipsilateral quadriceps of individuals post-stroke during late stance. It appears that adjusting limb loading during rehabilitation may not be an effective tool to address stiff-knee gait following stroke.  相似文献   

11.
The purpose of this study was to compare lower limb muscle activity during whole-body vibration (WBV) exercise between a young and an older study population. Thirty young (25.9±4.3 yrs) and thirty older (64.2±5.3 yrs) individuals stood on a side-alternating WBV platform while surface electromyography (sEMG) was measured for the tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SOL), vastus lateralis (VL), vastus medialis (VM), and biceps femoris (BF). The WBV protocol included nine vibration settings consisting of three frequencies (6, 11, 16 Hz) x three amplitudes (0.9, 2.5, 4.0 mm), and three control trials without vibration (narrow, medium, wide stance). The vertical platform acceleration (peak values of maximal displacement from equilibrium) was quantified during each vibration exercise using an accelerometer. The outcomes of this study showed that WBV significantly increased muscle activity in both groups for most vibration conditions in the TA (averaged absolute increase: young: +3.9%, older: +18.4%), GM (young: +4.1%, older: +9.5%), VL (young: +6.3%, older: +12.6%) and VM (young: +5.4%, older: +8.0%), and for the high frequency-amplitude combinations in the SOL (young: +7.5%, older: +12.6%) and BF (young: +1.9%, older: +7.5%). The increases in sEMG activity were significantly higher in the older than the young adults for all muscles, i.e., TA (absolute difference: 13.8%, P<0.001), GM (4.6%, P=0.034), VL (7.6%, P=0.001), VM (6.7%, P=0.042), BF (6.4%, P<0.001), except for the SOL (0.3%, P=0.248). Finally, the vertical platform acceleration was a significant predictor of the averaged lower limb muscle activity in the young (r=0.917, P<0.001) and older adults (r=0.931, P<0.001). In conclusion, the older population showed greater increases in lower limb muscle activity during WBV exercise than their young counterparts, meaning that they might benefit more from WBV exercises. Additionally, training intensity can be increased by increasing the vertical acceleration load.  相似文献   

12.
13.
The purpose of this study was to investigate changes in motor unit firing behavior during prolonged contractions in young and older adults. Motor unit activity was recorded from the tibialis anterior of 16 subjects (8 young and 8 older), while they performed isometric dorsiflexion at 50% MVC until task failure. Mean motor unit firing rate, the standard deviation (SD), and coefficient of variation (CV) of the interspike intervals, and number of doublet discharges were calculated for a total of 52 motor units, tracked for an average of 92.9 ± 68.6 s. There was no age-related difference in the time to task failure. A modest decline in firing rate was observed in 71% of the motor units, with no significant age-related difference. The SD and CV of the interspike interval had a positive slope in 65% and 69% of the motor units, respectively, with no significant age-related differences. The number of doublet discharges remained stable throughout the contraction. Both groups exhibited motor unit dropout (discharge cessation) during the contraction. Thus, a fatiguing task producing modest changes in firing rate in young and older adults is accompanied by an appreciable increase in firing rate variability. The incidence of doublet discharges is not increased during fatiguing contractions.  相似文献   

14.
The goal of this investigation was to investigate how walking patterns are affected following muscle-damaging exercise by quantifying both lower limb kinematics and kinetics. Fifteen young women conducted a maximal isokinetic eccentric exercise (EE) muscle damage protocol (5 × 15) of the knee extensors and flexors of both legs at 60°/s. Three-dimensional motion data and ground reaction forces (GRFs) were collected 24 h pre-EE while the participants walked at their preferred self-selected walking speed (SWS). Participants were asked to perform two gait conditions 48 h post-EE. The first condition (COND1) was to walk at their own speed and the second condition (COND2) to maintain the SWS (±5%) they had 24 h pre-EE. Walking speed during COND1 was significantly lower compared to pre-exercise values. When walking speed was controlled during COND2, significant effects of muscle damage were noticed, among other variables, for stride frequency, loading rate, lateral and vertical GRFs, as well as for specific knee kinematics and kinetics. These findings provide new insights into how walking patterns are adapted to compensate for the impaired function of the knee musculature following muscle damage. The importance to distinguish the findings caused by muscle damage from those exhibited in response to changes in stride frequency is highlighted.  相似文献   

15.
16.
In humans the cross sectional area of spinal motor neurons at L3 is larger in males than in females. Since these contribute to the control of the quadriceps femoris muscle group and are involved in the patellar reflex (PR), gender differences in the PR are expected. We have investigated this possibility using a group of 28 young subjects (14 male and 14 female) aged 20–22 years. The PR was quantified by the muscle compound action potential (MCAP) from the surface electromyogram (sEMG) of the vastus lateralis muscle. We found that the PR latency in females (17 ± 0.19 ms), was significantly (p < 0.001) faster than in males (21 ± 0.37 ms). This 4 ms difference in latency could not be ascribed to differences in stature or thigh length. In conclusion, for the age range tested females posses a significantly faster patellar reflex than males. We suggest that the slower PR latency of male subjects may arise in part from their larger α-motorneurons: such that longer integration times are required for the summation of postsynaptic excitation to be sufficient to excite α-motorneurons.  相似文献   

17.
The aim of the study was to examine how individuals of different ages react to forward balance perturbations. Thirty-six volunteers, divided into four groups [young (YA), middle-age (MA40 and MA50), and old (OA) adults], stood on a platform that was either kept stationary, moved backward, or moved forward. EMG onset, EMG time-to-peak, iEMG, and agonist–antagonist co-activation, as well as cumulative angular excursion, maximum center of mass (CM) backward displacement, and CM time-to-reversal were assessed after forward translations. Postural synergies were assessed using principal component analysis (PCA). The results showed that OA activated their muscles later than YA [TA = 25 ms, RF = 17 ms] and OA and MA50 reached the peak of activation later than YA [MA50:TA = 23 ms, RF = 32 ms, OA:TA = 28 ms, RF = 21 ms]. Moreover, OA kept a higher level of activation longer than all younger groups. No differences among groups were observed in co-activation, kinematic, and PCA variables. We conclude that changes in temporal EMG patterns can be seen in the fifth decade. However, such changes have no effect on the CM horizontal displacement and CM time-to-reversal after perturbation, which cannot be justified by the use of different postural synergies, suggesting that temporal aspects of muscle activation could play a minor role in controlling excessive CM displacements after perturbations.  相似文献   

18.
We investigated the muscle fiber conduction velocity (MFCV) during gait phases of the lower limb muscles in individuals with various degrees of diabetic peripheral neuropathy (DPN). Forty-five patients were classified into severity degrees of DPN by a fuzzy model. The stages were absent (n = 11), mild (n = 14), moderate (n = 11) and severe (n = 9), with 10 matched healthy controls. While walking, all subjects had their sEMG (4 linear electrode arrays) recorded for tibialis anterior (TA), gastrocnemius medialis (GM), vastus lateralis (VL) and biceps femoris (BF). MFCV was calculated using a maximum likelihood algorithm with 30 ms standard deviation Gaussian windows. In general, individuals in the earlier stages of DPN showed lower MFCV of TA, GM and BF, whilst individuals with severe DPN presented higher MFCV of the same muscles. We observed that mild patients already showed lower MFCV of TA at early stance and swing, and lower MFCV of BF at swing. All diabetic groups showed a markedly reduction in MFCV of VL, irrespective of DPN. Severe patients presented higher MFCV mainly in distal muscles, TA at early and swing phases and GM at propulsion and midstance. The absent group already showed MFCV of VL and GM reductions at the propulsion phase and of VL at early stance. Although MFCV changes were not as progressive as the DPN was, we clearly distinguished diabetic patients from controls, and severe patients from all others.  相似文献   

19.
There exists extensive evidence supporting the presence of reflex modulation in humans during a variety of motor tasks. The soleus H-reflex has been shown to be modulated during static and dynamic balance conditions as well as during various motor tasks. The purpose of this study was to examine the effects of two different stance positions and visual conditions on soleus H-reflex gain in 15 apparently healthy adults (mean age = 30.27 ± 6.92 yrs). The soleus H-reflexes were examined in two experimental stance conditions: two-legged (stable) and one-leg (unstable), and two visual conditions: eyes open and eyes closed. To assess the reflex gain, subjects performed ten trials under each of the four conditions and a soleus H-reflex was elicited during the performance of each trial. For each condition the peak-to-peak amplitude of the H-reflex and the EMG activity 50 ms prior to the stimulus was recorded. Differences in the peak-to-peak amplitudes of the soleus H-reflex for the experimental conditions were compared with a 2 × 2 (Stance × Vision) repeated measures ANOVA. The level of significance was p < 0.05. Results demonstrated significant differences in reflex gain for both the vision (Fl,15 = 4.87, p < 0.05) and the stance condition (Fl,15 = 14.86, p < 0.05). Although both the stance condition and vision significantly affected the H-reflex gain, there was no interaction between these two variables (Fl,15 = 0.17). From these results, we conclude that H-reflex gain was decreased both as stance complexity increased and as visual inputs were removed. Consistent with previous reports, it may be speculated that changes in presynaptic inhibition to the soleus Ia fibers regulate these gain changes. We propose that vision and stability of stance affect soleus H-reflex gain, but do so without any interactive effects.  相似文献   

20.
The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task – and in resting conditions – age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p < 0.001), longer braking time (32.4%, p < 0.01), lower push-off force (18.0%, p < 0.05) and longer push-off time (31.0% p < 0.01). H jump/M jump correlated with the average push-off force (r = 0.833, p < 0.05) and with push-off time (r = ?0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号