共查询到20条相似文献,搜索用时 0 毫秒
1.
Therapeutic anti-inflammatory effects of myeloid cell adenosine receptor A2a stimulation in lipopolysaccharide-induced lung injury 总被引:3,自引:0,他引:3
Reutershan J Cagnina RE Chang D Linden J Ley K 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(2):1254-1263
To determine the role of the adenosine receptor A2a in a murine model of LPS-induced lung injury, migration of polymorphonuclear leukocytes (PMNs) into the different compartments of the lung was determined by flow cytometry, microvascular permeability was assessed by the extravasation of Evans blue, and the release of chemotactic cytokines into the alveolar airspace was determined by ELISA. Measurements were performed in wild-type and A2a gene-deficient mice (A2a(-/-)). To differentiate the role of A2a on hemopoietic and nonhemopoietic cells, we created chimeric mice by transfer of bone marrow (BM) between wild-type and A2a(-/-) mice and used mice that lacked A2a expression selectively on myeloid cells (A2a(flox/flox) x LysM-cre). A specific A2a receptor agonist (ATL202) was used to evaluate its potential to reduce lung injury in vivo. In wild-type mice, therapeutic treatment with ATL202 reduced LPS-induced PMN recruitment, and release of cytokines. Pretreatment, but not posttreatment, also reduced Evans blue extravasation. In the BM chimeric mice lacking A2a on BM-derived cells, PMN migration into the alveolar space was increased by approximately 50%. These findings were confirmed in A2a(flox/flox) x LysM-cre mice. ATL202 was only effective when A2a was present on BM-derived cells. A2a agonists may be effective at curbing inflammatory lung tissue damage. 相似文献
2.
The aim of this work was to study the antioxidant activity and the protective effect of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC), the main compound from the buds of Cleistocalyx operculatus, on human umbilical vein endothelial cells against cytotoxicity induced by H2O2. The antioxidant activities of DMC were measured by ABTS assay, ferric reducing antioxidant power (FRAP) and hydroxyl radical scavenging activity, and protective effects of DMC on human umbilical vein endothelial cells against cytotoxicity induced by H2O2 were tested. DMC was found to have high ABTS radical scavenging activity (176.5 ± 5.2 μmol trolox equivalents/500 μmol DMC) and strong ferric reducing antioxidant power (213.3 ± 5.8 μmol trolox equivalents/500 μmol DMC). In addition, DMC scavenged the hydroxyl radicals, with IC50 values of 243.7 ± 6.3 μM, slightly lower than the reference antioxidant ascorbic acid (ASC). Moreover, DMC could protect the human umbilical vein endothelial cells against H2O2-induced cytotoxicity by decrease intracellular and extracellular ROS levels, reduction in catalase (CAT) activity and increment in malondialdehyde (MDA) level. These results suggested that DMC has the potential to be used in the therapy of oxidative damage. 相似文献
3.
Accumulating evidence suggests that c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in renal ischemia/reperfusion injury. However, the downstream mechanism that accounts for the proapoptotic actions of JNK during renal ischemia/reperfusion has not been elucidated. We report that SP600125, a potent, cell-permeable, selective, and reversible inhibitor of c-Jun N-terminal kinase (JNK), potently decreased renal epithelial tubular cell apoptosis induced by renal ischemia/reperfusion via suppression of the extrinsic pathway. This corresponds to the decrease in JNK phosphorylation at 20 min and c-Jun phosphorylation (Ser63/73) at 3 h after renal ischemia. Additionally, SP600125 attenuated the increased expression of FasL induced by ischemia/reperfusion at 3 h. The administration of SP600125 prior to ischemia was also protective. Thus, our findings imply that SP600125 can inhibit the activation of the JNK-c-Jun-FasL pathway and protect renal tubular epithelial cells against ischemia/reperfusion-induced apoptosis. Taken together, these results indicate that targeting the JNK pathway provides a promising therapeutic approach for renal ischemia/reperfusion injury. 相似文献
4.
5.
6.
A polysaccharide isolated from Cordyceps sinensis,a traditional Chinese medicine,protects PC12 cells against hydrogen peroxide-induced injury 总被引:12,自引:0,他引:12
Li SP Zhao KJ Ji ZN Song ZH Dong TT Lo CK Cheung JK Zhu SQ Tsim KW 《Life sciences》2003,73(19):2503-2513
Cordyceps sinensis, a well-known traditional Chinese medicine, possesses activities in anti-tumour, anti-oxidation and stimulating the immune system; however, the identity of active component(s) is not determined. By using anti-oxidation activity-guided fractionation, a polysaccharide of molecular weight approximately 210 kDa was isolated from cultured Cordyceps mycelia by ion-exchange and sizing chromatography. The isolated polysaccharide, having strong anti-oxidation activity, contains glucose, mannose and galactose in a ratio of 1 : 0.6 : 0.75. The pre-treatment of isolated polysaccharide on the cultured rat pheochromocytoma PC12 cells shows strong protective effect against hydrogen peroxide (H(2)O(2))-induced insult. Treatment of the cells with the isolated polysaccharide at 100 microg/ml prior to H(2)O(2) exposure significantly elevated the survival of PC12 cells in culture by over 60%. In parallel, the H(2)O(2)-induced production of malondialdehyde in cultured cells was markedly reduced by the polysaccharide treatment. Moreover, the pre-treatment of the isolated polysaccharide significantly attenuated the changes of glutathione peroxidase and superoxide dismutase activities in H(2)O(2)-treated cells in a dose-dependent manner. This is the first report in identifying a polysaccharide from Cordyceps, which protects against the free radical-induced neuronal cell toxicity. 相似文献
7.
8.
Stranzl GR Gruber K Steinkellner G Zangger K Schwab H Kratky C 《The Journal of biological chemistry》2004,279(5):3699-3707
The hydroxynitrile lyase from Hevea brasiliensis (HbHNL) uses a catalytic triad consisting of Ser(80)-His(235)-Asp(207) to enhance the basicity of Ser(80)-O gamma for abstracting a proton from the OH group of the substrate cyanohydrin. Following the observation of a relatively short distance between a carboxyl oxygen of Asp(207) and the N delta(1)(His(235)) in a 1.1 A crystal structure of HbHNL, we here show by (1)H and (15)N-NMR spectroscopy that a short, strong hydrogen bond (SSHB) is formed between the two residues upon binding of the competitive inhibitor thiocyanate to HbHNL: the proton resonance of H-N delta 1(His(235)) moves from 15.41 ppm in the free enzyme to 19.35 ppm in the complex, the largest downfield shift observed so far upon inhibitor binding. Simultaneously, the D/H fractionation factor decreases from 0.98 to 0.35. In the observable pH range, i.e. between pH 4 and 10, no significant changes in chemical shifts (and therefore hydrogen bond strength) were observed for free HbHNL. For the complex with thiocyanate, the 19.35 ppm signal returned to 15.41 ppm at approximately pH 8, which indicates a pK(a) near this value for the H-N epsilon(2)(His(235)). These NMR results were analyzed on the basis of finite difference Poisson-Boltzmann calculations, which yielded the relative free energies of four protonation states of the His(235)-Asp(207) pair in solution as well as in the protein environment with and without bound inhibitor. The calculations explain all the NMR features, i.e. they suggest why a short, strong hydrogen bond is formed upon inhibitor binding and why this short, strong hydrogen bond reverts back to a normal one at approximately pH 8. Importantly, the computations also yield a shift of the free energy of the anionic state relative to the zwitterionic reference state by about 10.6 kcal/mol, equivalent to a shift in the apparent pK(a) of His(235) from 2.5 to 10. This huge inhibitor-induced increase in basicity is a prerequisite for His(235) to act as general base in the HbHNL-catalyzed cyanohydrin reaction. 相似文献
9.
10.
de Jesus Ferreira MC Crouzin N Barbanel G Cohen-Solal C Récasens M Vignes M Guiramand J 《Free radical biology & medicine》2005,39(8):1009-1020
Neuroprotection exerted by alpha-tocopherol against oxidative stress was investigated in cultured rat hippocampal neurons. In addition to its direct action as a radical scavenger revealed at concentrations above 10 microM, a transient application of 1 microM alpha-tocopherol phosphate (alpha-TP) to neurons induced a complete delayed long-lasting protection against oxidative insult elicited by exposure to Fe2+ ions, but not against excitotoxicity. A minimal 16-h application of alpha-TP was required to observe the protection against subsequent oxidative stress. This delayed protection could last up to a week after the application of alpha-TP, even when medium was changed after the alpha-TP treatment. Cycloheximide, added either 2 h before or together with alpha-TP, prevented the delayed neuroprotection, but not the acute. However, cycloheximide applied after the 16-h alpha-TP pretreatment did not alter the delayed neuroprotection. Neither Trolox, a cell-permeant analogue of alpha-tocopherol, nor other antioxidants, such as epigallocatechin-gallate and N-acetyl-L-cysteine, elicited a similar long-lasting protection. Only tert-butylhydroquinone could mimic the alpha-TP effect. Depletion of glutathione (GSH) by L-buthionine sulfoximine did not affect the delayed alpha-TP protection. Thus, in addition to its acute anti-radical action, alpha-TP induces a long-lasting protection of neurons against oxidative damage, via a genomic action on antioxidant defenses apparently unrelated to GSH biosynthesis. 相似文献
11.
A number of studies indicate that free radicals are involved in the neurodegeneration in Alzheimer's disease (AD). The role of superoxide anion (O2*-) in neuronal cell injury induced by reactive oxygen species (ROS) was examined in PC12 cells using pyrogallol (1,2,3-benzenetrior), a donor to release O2*-. Pyrogallol induced PC12 cell death at concentrations, which evidently increased intracellular O2*-, as assessed by O2*- sensitive fluorescent precursor hydroethidine (HEt). A water extract of Curcuma longa L. (Zingiberaceae) (CLE), having O2*- scavenging activity rescued PC12 cells from pyrogallol-induced cell death. Hypoxia/reoxygenation injury of PC12 cells was also blocked by CLE. The present study was also conducted to examine the effect of CLE on H2O2 -induced toxicity in rat pheochromocytoma line PC12 by measuring cell lesion, level of lipid peroxidation and antioxidant enzyme activities. Following a 30 min exposure of the cells to H2O2 (150 microM), a marked decrease in cell survival, activities of glutathione peroxidase and catalase as well as increased production of malondialdehyde (MDA) were found. Pretreatment of the cells with CLE (0.5-10 microg/ml) prior to H2O2 exposure significantly elevated the cell survival, antioxidant enzyme activities and decreased the level of MDA. The above-mentioned neuroprotective effects are also observed with tacrine (THA, 1 microM), suggesting that the neuroprotective effects of cholinesterase inhibitor might partly contribute to the clinical efficacy in AD treatment. Further understanding of the underlying mechanism of the protective effects of these radical scavengers reducing intracellular O2*- on neuronal cell death may lead to development of new therapeutic treatments for hypoxic/ischemic brain injury. 相似文献
12.
13.
This study characterized the effects of diabetes and/or ischemia on epidermal growth factor receptor, EGFR, and/or erbB2 signaling pathways on cardiac function. Isolated heart perfusion model of global ischemia was used to study the effect of chronic inhibition or acute activation of EGFR/erbB2 signaling on cardiac function in a rat model of type-1 diabetes. Induction of diabetes with streptozotocin impaired recovery of cardiac function (cardiac contractility and hemodynamics) following 40 minutes of global ischemia in isolated hearts. Chronic treatment with AG825 or AG1478, selective inhibitors of erbB2 and EGFR respectively, did not affect hyperglycemia but led to an exacerbation whereas acute administration of the EGFR ligand, epidermal growth factor (EGF), led to an improvement in cardiac recovery in diabetic hearts. Diabetes led to attenuated dimerization and phosphorylation of cardiac erbB2 and EGFR receptors that was associated with reduced signaling via extracellular-signal-regulated kinase 1/2 (ERK1/2), p38 mitogen activated protein (MAP) kinase and AKT (protein kinase B). Ischemia was also associated with reduced cardiac signaling via these molecules whereas EGF-treatment opposed diabetes and/or ischemia induced changes in ERK1/2, p38 MAP kinase, and AKT-FOXO signaling. Losartan treatment improved cardiac function in diabetes but also impaired EGFR phosphorylation in diabetic heart. Co-administration of EGF rescued Losartan-mediated reduction in EGFR phosphorylation and significantly improved cardiac recovery more than with either agent alone. EGFR/erbB2 signaling is an important cardiac survival pathway whose activation, particularly in diabetes, ischemia or following treatment with drugs that inhibit this cascade, significantly improves cardiac function. These findings may have clinical relevance particularly in the treatment of diabetes-induced cardiac dysfunction. 相似文献
14.
MPH1, a yeast gene encoding a DEAH protein, plays a role in protection of the genome from spontaneous and chemically induced damage 总被引:1,自引:0,他引:1
We have characterized the MPH1 gene from Saccharomyces cerevisiae. mph1 mutants display a spontaneous mutator phenotype. Homologs were found in archaea and in the EST libraries of Drosophila, mouse, and man. Mph1 carries the signature motifs of the DEAH family of helicases. Selected motifs were shown to be necessary for MPH1 function by introducing missense mutations. Possible indirect effects on translation and splicing were excluded by demonstrating nuclear localization of the protein and splicing proficiency of the mutant. A mutation spectrum did not show any conspicuous deviations from wild type except for an underrepresentation of frameshift mutations. The mutator phenotype was dependent on REV3 and RAD6. The mutant was sensitive to MMS, EMS, 4-NQO, and camptothecin, but not to UV light and X rays. Epistasis analyses were carried out with representative mutants from various repair pathways (msh6, mag1, apn1, rad14, rad52, rad6, mms2, and rev3). No epistatic interactions were found, either for the spontaneous mutator phenotype or for MMS, EMS, and 4-NQO sensitivity. mph1 slightly increased the UV sensitivity of mms2, rad6, and rad14 mutants, but no effect on X-ray sensitivity was observed. These data suggest that MPH1 is not part of a hitherto known repair pathway. Possible functions are discussed. 相似文献
15.
16.
《生物化学与生物物理学报:生物膜》2015,1848(2):510-517
The interactions between proteins/peptides and lipid bilayers are fundamental in a variety of key biological processes, and among these, the membrane fusion process operated by viral glycoproteins is one of the most important, being a fundamental step of the infectious event. In the case of the feline immunodeficiency virus (FIV), a small region of the membrane proximal external region (MPER) of the glycoprotein gp36 has been demonstrated to be necessary for the infection to occur, being able to destabilize the membranes to be fused. In this study, we report a physicochemical characterization of the interaction process between an eight-residue peptide, named C8, modeled on that gp36 region and some biological membrane models (liposomes) by using calorimetric and spectroscopic measurements. CD studies have shown that the peptide conformation changes upon binding to the liposomes. Interestingly, the peptide folds from a disordered structure (in the absence of liposomes) to a more ordered structure with a low but significant helix content. Isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) results show that C8 binds with high affinity the lipid bilayers and induces a significant perturbation/reorganization of the lipid membrane structure. The type and the extent of such membrane reorganization depend on the membrane composition. These findings provide interesting insights into the role of this short peptide fragment in the mechanism of virus-cell fusion, demonstrating its ability to induce lipid segregation in biomembranes. 相似文献
17.
Growth defects induced by perturbation of beta1-integrin function in the mammary gland epithelium result from a lack of MAPK activation via the Shc and Akt pathways 下载免费PDF全文
Adhesion to extracellular matrix (ECM) induces intracellular signals that modulate cell proliferation, survival and differentiation. To study signalling events triggered by cell–ECM interactions in vivo we used transgenic mice exhibiting reduced mammary epithelial cell proliferation and increased apoptosis rates during the growth phase in pregnancy and lactation due to expression of a β1-integrin dominant-negative mutant in the mammary gland epithelium. Here we show that ERK and JNK MAPKs were markedly less activated in lactating transgenic glands thereby accounting for the growth defects. The FAK pathway was not affected suggesting a mechanism of activation additional to the ECM signal. On the contrary, the significant decrease of Shc phosphorylation, Grb2 recruitment and the reduced phosphorylation level of Akt Thr308 and Akt substrates FKHR and Bad detected in transgenic glands show that activation of the Shc and the Akt pathways require intact cell–ECM interactions. These results provide an insight into the mechanisms of growth control by integrin-mediated adhesion that operate in vivo. 相似文献
18.
19.
20.
A number of studies indicate that free radicals are involved in the neurodegeneration in Parkinson's and Alzheimer's diseases. EPS2, an exopolysaccharide with a mean molecular weight of 1.3 x 10(5) Da, was isolated by ion-exchange and sizing chromatography from the culture of Keissleriella sp. YS4108, a marine filamentous fungus. Compositionally, it is composed of galactose, glucose, rhamnose, mannose and glucuronic acid in an approximate proportion of 50:8:1:1:0.4. The protective effects of EPS2 on peroxide hydrogen (H2O2)-induced cell lesion, level of lipid peroxidation, antioxidant enzyme activities were investigated in the rat pheochromocytoma line PC12 cells. Following a 1-h exposure of the cells to H2O2, a significant reduction in cell survival and activities of glutathione peroxidase (GSH-Px) and catalase (CAT), as well as increased levels in malondialdehyde (MDA) production and lactate dehydrogenase (LDH) release were observed. However, preincubation of the cells with EPS2 prior to H2O2 exposure elevated the cell survival and GSH-Px and CAT activities, and decreased the level of MDA and LDH activity in a dose-dependent manner. In conclusion, EPS2 possesses pronounced protective effects against H2O2-induced cell toxicity. The finding is of a higher value in searching for new therapeutic agent for treating oxidative damage-derived neurodegenerative disorders. 相似文献