首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
* Leguminous trees are very common in the tropical rainforests of Guyana. Here, species-specific differences in N(2) fixation capability among nodulating legumes growing on different soils and a possible limitation of N(2) fixation by a relatively high nitrogen (N) and low phosphorus (P) availability in the forest were investigated. * Leaves of 17 nodulating species and 17 non-nodulating reference trees were sampled and their delta(15)N values measured. Estimates of N(2) fixation rates were calculated using the (15)N natural abundance method. Pot experiments were conducted on the effect of N and P availability on N(2) fixation using the (15)N-enriched isotope dilution method. * Nine species showed estimates of > 33% leaf N derived from N(2) fixation, while the others had low or undetectable N(2) fixation rates. High N and low P availability reduced N(2) fixation substantially. * The results suggest that a high N and low P availability in the forest limit N(2) fixation. At the forest ecosystem level, N(2) fixation was estimated at c. 6% of total N uptake by the tree community. We conclude that symbiotic N(2) fixation plays an important role in maintaining high amounts of soil available N in undisturbed forest.  相似文献   

2.
Schmidt S  Stewart GR 《Oecologia》2003,134(4):569-577
A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N(2)-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6 per thousand ), AM species had mostly intermediate delta(15)N values (average +0.6 per thousand ), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1 per thousand ). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2 per thousand ) and non-mycorrhizal (average +0.8 and +0.3 per thousand ) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N(2) fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4 per thousand ). Soil nitrification and plant NO(3)(-) use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO(3)(-) using taxa associated with NO(3)(-) rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna species. Plants from annually burnt savanna had significantly higher delta(15)N values compared to plants from less frequently burnt savanna, suggesting that foliar (15)N natural abundance could be used as marker for assessing historic fire regimes. Australian woodland and savanna species had low leaf delta(15)N and N content compared to species from equivalent African communities indicating that Australian biota are the more N depauperate. The largest differences in leaf delta(15)N occurred between the dominant ECM Australian and African savanna (miombo) species, which were depleted and enriched in (15)N, respectively. While the depleted delta(15)N of Australian ECM species are similar to those of previous reports on ECM species in natural plant communities, the (15)N-enriched delta(15)N of African ECM species represent an anomaly.  相似文献   

3.
We screened actinomycete strains for dinitrogen (N(2))-producing activity and discovered that Streptomyces antibioticus B-546 evolves N(2) and some nitrous oxide (N(2)O) from nitrate (NO(3)(-)). Most of the N(2) that evolved from the heavy isotope ([(15)N]NO(3)(-)) was (15)N(14)N, indicating that this nitrogen species consists of two atoms, one arising from NO(3)(-) and the other from different sources. This phenomenon is similar to codenitrification in fungi. The strain also evolved less, but significant, amounts of (15)N(15)N from [(15)N]NO(3)(-) in addition to (15)N(15)NO with concomitant cell growth. Prior to the production of N(2) and N(2)O, NO(3)(-) was rapidly reduced to nitrite (NO(2)(-)) accompanied by distinct cell growth, showing that the actinomycete strain is a facultative anaerobe that depends on denitrification and nitrate respiration for anoxic growth. The cell-free activities of denitrifying enzymes could be reconstituted, supporting the notion that the (15)N(15)N and (15)N(15)NO species are produced by denitrification from NO(3)(-) via NO(2)(-). We therefore demonstrated a unique system in an actinomycete that produces gaseous nitrogen (N(2) and N(2)O) through both denitrification and codenitrification. The predominance of codenitrification over denitrification along with oxygen tolerance is the key feature of nitrate metabolism in this actinomycete.  相似文献   

4.
Quantification of harmful nitrous oxide (N(2)O) emissions from soils is essential for mitigation measures. An important N(2)O producing and reducing process in soils is denitrification, which shows deceased rates at low pH. No clear relationship between N(2)O emissions and soil pH has yet been established because also the relative contribution of N(2)O as the denitrification end product decreases with pH. Our aim was to show the net effect of soil pH on N(2)O production and emission. Therefore, experiments were designed to investigate the effects of pH on NO(3)(-) reduction, N(2)O production and reduction and N(2) production in incubations with pH values set between 4 and 7. Furthermore, field measurements of soil pH and N(2)O emissions were carried out. In incubations, NO(3)(-) reduction and N(2) production rates increased with pH and net N(2)O production rate was highest at pH 5. N(2)O reduction to N(2) was halted until NO(3)(-) was depleted at low pH values, resulting in a built up of N(2)O. As a consequence, N(2)O:N(2) production ratio decreased exponentially with pH. N(2)O reduction appeared therefore more important than N(2)O production in explaining net N(2)O production rates. In the field, a negative exponential relationship for soil pH against N(2)O emissions was observed. Soil pH could therefore be used as a predictive tool for average N(2)O emissions in the studied ecosystem. The occurrence of low pH spots may explain N(2)O emission hotspot occurrence. Future studies should focus on the mechanism behind small scale soil pH variability and the effect of manipulating the pH of soils.  相似文献   

5.
To evaluate the denitrification abilities of many Bradyrhizobium field isolates, we developed a new (15)N-labeled N(2) detection methodology, which is free from interference from atmospheric N(2) contamination. (30)N(2) ((15)N(15)N) and (29)N(2) ((15)N(14)N) were detected as an apparent peak by a gas chromatograph equipped with a thermal conductivity detector with N(2) gas having natural abundance of (15)N (0.366 atom%) as a carrier gas. The detection limit was 0.04% (30)N(2), and the linearity extended at least to 40% (30)N(2). When Bradyrhizobium japonicum USDA110 was grown in cultures anaerobically with (15)NO(3)(-), denitrification product ((30)N(2)) was detected stoichiometrically. A total of 65 isolates of soybean bradyrhizobia from two field sites in Japan were assayed by this method. The denitrification abilities were partly correlated with filed sites, Bradyrhizobium species, and the hup genotype.  相似文献   

6.
We examined whether neuromuscular reflexes were altered with anterior loads applied to the tibio-femoral joint. A ligament testing device was modified by attaching a reflex hammer to a steel mounted frame to illicit a patellar tendon tap, while anterior directed loads displaced the tibia on the femur. Five trials were acquired while anterior-directed loads (20, 50, 100 N; counterbalanced) were applied to the posterior tibia between 20 N pre (20 N(Pre)) and post (20 N(Post)) baseline conditions on two different days. Surface electromyography (sEMG) recorded mean quadriceps (Q) and hamstring (H) reflex time (R(Time)=ms) and reflex amplitude (R(Amp)=%MVIC). A load cell on the anterior tibia measured the timing (KE(Time)=ms) and amplitude (KE(Amp)=N) of the knee extension force, and was used to calculate electromechanical delay (EMD=ms) and peak knee extension moment (KE(Mom)=Nm/kg). Data from 19 recreationally active subjects revealed good to excellent response consistency between test days and between baseline conditions for R(Time), R(Amp), KE(Time) and KE(Amp). With anterior tibial loading, R(Time) was faster at 50 N vs. 20 N(Post), and R(Amp) was greater at 20 N(Pre) vs. 20 N(Post) (Q and H) and at 50 N vs. 100 N (Q only). KE(Mom) was greater at 20 N(Pre) and 50 N vs. 20 N(Post), and EMD was shorter at 50 N vs. 20 N, 20 N(Pre) and 20 N(Post). These results suggest that knee extensor reflex responses are enhanced with low (50 N) but not moderate (100 N) anterior loading of the knee.  相似文献   

7.
Symbiotic N(2) fixation has a variable effect on the (15)N abundance of different parts of legumes. Increases in fixation result in (15)N enrichment of nodules, while decreases, in combination with an increased uptake of mineral N, result in (15)N depletion of the root system. The difference between soybean shoot and below-ground delta(15)N (Deltadelta(15)N=delta(15)N(shoot)-delta(15)N(belowground)) was assessed in hydroponic culture over a range of rates of supply of mineral N. The fractional contribution of N(2) fixation to N uptake (%Ndfa) was determined using the natural abundance (NA) technique with ryegrass as a reference plant. Deltadelta(15)N and %Ndfa were highly correlated, and the relationship was tested using the same soybean cultivar grown in pots in N-rich soil. Estimates of %Ndfa derived from the NA method and from the Deltadelta(15)N approach yielded near-identical values. A literature survey showed similar relationships between %Ndfa and Deltadelta(15)N with different growth stages of soybeans grown under glasshouse and field conditions, different cowpea (Vigna unguiculata) cultivars in the field, and tagasaste (Chamaecytisus proliferus) in hydroponic culture. Possible confounding and species-specific (either plant or Rhizobium spp.) influences are discussed. The difference in delta(15)N signatures between nodulated roots and shoots is confirmed as a robust means of quantifying %Ndfa: it is independent of reference plants and offers the possibility of estimating %Ndfa in soils where the isotope composition of mineral N closely matches that of atmospheric N(2).  相似文献   

8.
Escherichia coli pH 2.5 acid phosphatase gene (appA) and three mutants were expressed in Pichia pastoris to assess the effect of strategic mutations or deletion on the enzyme (EcAP) biochemical properties. Mutants A131N/ V134N/D207N/S211N, C200N/D207N/S211N, and A131N/ V134N/C200N/D207N/S211N had four, two, and four additional potential N-glycosylation sites, respectively. Extracellular phytase and acid phosphatase activities were produced by these mutants and the intact enzyme r-AppA. The N-glycosylation level was higher in mutants A131N/V134N/D207N/S211N (48%) and A131N/V134N/ C200N/D207N/S211N (89%) than that in r-AppA (14%). Despite no enhancement of glycosylation, mutant C200N/ D207N/S211N was different from r-AppA in the following properties. First, it was more active at pH 3.5-5.5. Second, it retained more (P < 0.01) phytase activity than that of r-AppA. Third, its specific activity of phytase was 54% higher. Lastly, its apparent catalytic efficiency kcat/Km for either p-nitrophenyl phosphate (5.8 x 10(5) vs 2.0 x 10(5) min(-1) M(-1)) or sodium phytate (6.9 x 10(6) vs 1.1 x 10(6) min(-1) M(-1)) was improved by factors of 1.9- and 5.3-fold, respectively. Based on the recently published E. coli phytase crystal structure, substitution of C200N in mutant C200N/D207N/S211N seems to eliminate the disulfide bond between the G helix and the GH loop in the alpha-domain of the protein. This change may modulate the domain flexibility and thereby the catalytic efficiency and thermostability of the enzyme.  相似文献   

9.
Ten N(epsilon)-glycylornithineamide derivatives have been synthesized containing various N(alpha)-linked pyrimidine-1-ylacetyl groups which can undergo (2pi + 2pi) photodimerization on irradiation with UV light at 254 nm. The dimerization efficiency of the free and bound pyrimidine groups was compared in aqueous solution: it was dependent on the substitution of the pyrimidine ring. N(alpha),N(alpha')-bis-(uracil-1-ylacetyl)-(N(epsilon)-glycylornithineamide) and N(alpha),N(alpha')-bis-(5-bromouracil-1-ylacetyl)-(N(epsilon)-glycylornithineamide) were identified as possible candidates for optical data storage.  相似文献   

10.
DNA polymerase (pol) iota has been proposed to be involved in translesion synthesis past minor groove DNA adducts via Hoogsteen base pairing. The N2 position of G, located in minor groove side of duplex DNA, is a major site for DNA modification by various carcinogens. Oligonucleotides with varying adduct size at G N2 were analyzed for bypass ability and fidelity with human pol iota. Pol iota effectively bypassed N2-methyl (Me)G and N2-ethyl(Et)G, partially bypassed N2-isobutyl(Ib)G and N2-benzylG, and was blocked at N2-CH2(2-naphthyl)G (N2-NaphG), N2-CH2(9-anthracenyl)G (N2-AnthG), and N2-CH2(6-benzo[a]pyrenyl)G. Steady-state kinetic analysis showed decreases of kcat/Km for dCTP insertion opposite N2-G adducts according to size, with a maximal decrease opposite N2-AnthG (61-fold). dTTP misinsertion frequency opposite template G was increased 3-11-fold opposite adducts (highest with N2-NaphG), indicating the additive effect of bulk (or possibly hydrophobicity) on T misincorporation. N2-IbG, N2-NaphG, and N2-AnthG also decreased the pre-steady-state kinetic burst rate compared with unmodified G. High kinetic thio effects (S(p)-2'-deoxycytidine 5'-O-(1-thiotriphosphate)) opposite N2-EtG and N2-AnthG (but not G) suggest that the chemistry step is largely interfered with by adducts. Severe inhibition of polymerization opposite N2,N2-diMeG compared with N2-EtG by pol eta but not by pol iota is consistent with Hoogsteen base pairing by pol iota. Thus, polymerization by pol iota is severely inhibited by a bulky group at G N2 despite an advantageous mode of Hoogsteen base pairing; pol iota may play a limited role in translesion synthesis on bulky N2-G adducts in cells.  相似文献   

11.
Recovery of ectomycorrhiza after 'nitrogen saturation' of a conifer forest   总被引:1,自引:0,他引:1  
Trees reduce their carbon (C) allocation to roots and mycorrhizal fungi in response to high nitrogen (N) additions, which should reduce the N retention capacity of forests. The time needed for recovery of mycorrhizas after termination of N loading remains unknown. Here, we report the long-term impact of N loading and the recovery of ectomycorrhiza after high N loading on a Pinus sylvestris forest. We analysed the N% and abundance of the stable isotope (15) N in tree needles and soil, soil microbial fatty acid biomarkers and fungal DNA. Needles in N-loaded plots became enriched in (15) N, reflecting decreased N retention by mycorrhizal fungi and isotopic discrimination against (15) N during loss of N. Meanwhile, needles in N-limited (control) plots became depleted in (15) N, reflecting high retention of (15) N by mycorrhizal fungi. N loading was terminated after 20yr. The δ(15) N and N% of the needles decreased 6yr after N loading had been terminated, and approached values in control plots after 15yr. This decrease, and the larger contributions compared with N-loaded plots of a fungal fatty acid biomarker and ectomycorrhizal sequences, suggest recovery of ectomycorrhiza. High N loading rapidly decreased the functional role of ectomycorrhiza in the forest N cycle, but significant recovery occurred within 6-15yr after termination of N loading.  相似文献   

12.
Xylophagous termites possess symbiotic bacteria that fix atmospheric nitrogen (N(2)). Although symbiotic N(2) fixation is central to termite nutrition and ecologically important, it is energetically costly. Using stable isotopes, we tested the hypothesis that symbiotic N(2) fixation would decrease in workers of the eastern subterranean termite, Reticulitermes flavipes Kollar, which were exposed to high nitrogen diets. To calculate the isotope discrimination factor occurring as a result of digestion, Δ(dig), and which occurs as the result of N(2) fixation, Δ(fix), symbiotic N(2) fixation was inhibited via force feeding termites the antibiotic kanamycin. Antibiotic-treated termites and control (N(2)-fixing) termites were exposed to different concentrations of dietary N (0, 0.21, and 0.94% N), their (15)N signatures were obtained, and the percent nitrogen derived from the atmosphere within termite samples was calculated. As we hypothesized, symbiotic N(2) fixation rates were negatively correlated with dietary N, suggesting that high concentrations of dietary N suppressed symbiotic N(2) fixation in R. flavipes. A comparison of the (15)N isotope signatures of antibiotic-treated termites with their food sources demonstrated that Δ(dig) = 2.284‰, and a comparison of the (15)N isotope signatures of antibiotic-treated termites with control termites indicated that Δ(fix) = -1.238‰. These are the first estimates of Δ(dig) for R. flavipes, and the first estimate of Δ(fix) for any N(2)-fixing termite species.  相似文献   

13.
Ecosystem nitrous oxide (N(2) O) emissions respond to changes in climate and CO(2) concentration as well as anthropogenic nitrogen (N) enhancements. Here, we aimed to quantify the responses of natural ecosystem N(2) O emissions to multiple environmental drivers using a process-based global vegetation model (DyN-LPJ). We checked that modelled annual N(2) O emissions from nonagricultural ecosystems could reproduce field measurements worldwide, and experimentally observed responses to step changes in environmental factors. We then simulated global N(2) O emissions throughout the 20th century and analysed the effects of environmental changes. The model reproduced well the global pattern of N(2) O emissions and the observed responses of N cycle components to changes in environmental factors. Simulated 20th century global decadal-average soil emissions were c. 8.2-9.5?Tg?N?yr(-1) (or 8.3-10.3?Tg?N?yr(-1) with N deposition). Warming and N deposition contributed 0.85?±?0.41 and 0.80?±?0.14?Tg?N?yr(-1) , respectively, to an overall upward trend. Rising CO(2) also contributed, in part, through a positive interaction with warming. The modelled temperature dependence of N(2) O emission (c. 1?Tg?N?yr(-1) K(-1) ) implies a positive climate feedback which, over the lifetime of N(2) O (114?yr), could become as important as the climate-carbon cycle feedback caused by soil CO(2) release.  相似文献   

14.
Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis   总被引:6,自引:0,他引:6  
Lu M  Yang Y  Luo Y  Fang C  Zhou X  Chen J  Yang X  Li B 《The New phytologist》2011,189(4):1040-1050
? Anthropogenic nitrogen (N) addition may substantially alter the terrestrial N cycle. However, a comprehensive understanding of how the ecosystem N cycle responds to external N input remains elusive. ? Here, we evaluated the central tendencies of the responses of 15 variables associated with the ecosystem N cycle to N addition, using data extracted from 206 peer-reviewed papers. ? Our results showed that the largest changes in the ecosystem N cycle caused by N addition were increases in soil inorganic N leaching (461%), soil NO?? concentration (429%), nitrification (154%), nitrous oxide emission (134%), and denitrification (84%). N addition also substantially increased soil NH?+ concentration (47%), and the N content in belowground (53%) and aboveground (44%) plant pools, leaves (24%), litter (24%) and dissolved organic N (21%). Total N content in the organic horizon (6.1%) and mineral soil (6.2%) slightly increased in response to N addition. However, N addition induced a decrease in microbial biomass N by 5.8%. ? The increases in N effluxes caused by N addition were much greater than those in plant and soil pools except soil NO??, suggesting a leaky terrestrial N system.  相似文献   

15.
16.
We investigated the interaction of rhizospheric nitric oxide (NO) concentration (i.e. low, ambient or high) and soil nitrogen (N) availability (i.e. low or high) with organic and inorganic N uptake by fine roots of Pinus sylvestris L. seedlings by 15N feeding experiments under controlled conditions. N metabolites in fine roots were analysed to link N uptake to N nutrition. NO affected N uptake depending on N source and soil N availability. The suppression of nitrate uptake in the presence of ammonium and glutamine was overruled by high NO. The effects of NO on N uptake with increasing N availability showed different patterns: (1) increasing N uptake regardless of NO concentration (i.e. ammonium); (2) increasing N uptake only with high NO concentration (i.e. nitrate and arginine); and (3) decreasing N uptake (i.e. glutamine). At low N availability and high NO nitrate accumulated in the roots indicating insufficient substrates for nitrate reduction or its storage in root vacuoles. Individual amino acid concentrations were negatively affected with increasing NO (i.e. asparagine and glutamine with low N availability, serine and proline with high N availability). In conclusion, this study provides first evidence that NO affects N uptake and metabolism in a conifer.  相似文献   

17.
The N2 position of guanine (G) is one of the major sites for DNA modification by various carcinogens. Eight oligonucleotides with varying adduct bulk at guanine N2 were analyzed for catalytic efficiency and fidelity with human DNA polymerase (pol) eta, which is involved in translesion synthesis (TLS). Pol eta effectively bypassed N2-methyl(Me)G, N2-ethyl(Et)G, N2-isobutyl(Ib)G, N2-benzyl(Bz)G, and N2-CH2(2-naphthyl)G but was severely blocked at N2-CH2(9-anthracenyl)G (N2-AnthG) and N2-CH2(6-benzo[a]pyrenyl)G (N2-BPG). Steady-state kinetic analysis showed proportional decreases of kcat/Km in dCTP insertion opposite N2-AnthG and N2-BPG (73 and 320-fold) and also kcat/Km in next-base extension from a C paired with each adduct (15 and 51-fold relative to G). Frequencies of dATP misinsertion and extension beyond mispairs were also proportionally increased (70 and 450-fold; 12 and 44-fold) with N2-AnthG and N2-BPG, indicating the effect of adduct bulk on blocking and misincorporation in TLS by pol eta. N2-AnthG and N2-BPG also greatly decreased the pre-steady-state kinetic burst rate (25 and 125-fold) compared to unmodified G. N2-AnthG decreased dCTP binding affinity (2.6-fold) and increased DNA substrate binding affinity. These results and the small kinetic thio effects (S(p)-dCTPalphaS) suggest that the early steps, possibly conformational change, are interfered with by the bulky adducts. In contrast, human pol delta bypassed adducts effectively up to N2-EtG but was strongly blocked by N2-IbG and larger adducts. We conclude that TLS DNA polymerases may be required for the efficient bypass of pol delta-blocking N2-G adducts bulkier than N2-EtG in human cells, and the bulk size can be a major factor for efficient and error-free bypass at these adducts by TLS DNA polymerases.  相似文献   

18.
Gel-based oligonucleotide microarray approach was developed for quantitative profiling of binding affinity of a protein to single-stranded DNA (ssDNA). To demonstrate additional capabilities of this method, we analyzed the binding specificity of ribonuclease (RNase) binase from Bacillus intermedius (EC 3.1.27.3) to ssDNA using generic hexamer oligodeoxyribonucleotide microchip. Single-stranded octamer oligonucleotides were immobilized within 3D hemispherical gel pads. The octanucleotides in individual pads 5'-{N}N(1)N(2)N(3)N(4)N(5)N(6){N}-3' consisted of a fixed hexamer motif N(1)N(2)N(3)N(4)N(5)N(6) in the middle and variable parts {N} at the ends, where {N} represent A, C, G and T in equal proportions. The chip has 4096 pads with a complete set of hexamer sequences. The affinity was determined by measuring dissociation of the RNase-ssDNA complexes with the temperature increasing from 0 degrees C to 50 degrees C in quasi-equilibrium conditions. RNase binase showed the highest sequence-specificity of binding to motifs 5'-NNG(A/T/C)GNN-3' with the order of preference: GAG > GTG > GCG. High specificity towards G(A/T/C)G triplets was also confirmed by measuring fluorescent anisotropy of complexes of binase with selected oligodeoxyribonucleotides in solution. The affinity of RNase binase to other 3-nt sequences was also ranked. These results demonstrate the applicability of the method and provide the ground for further investigations of nonenzymatic functions of RNases.  相似文献   

19.
20.
Surface wood samples obtained from a Douglas fir log (Pseudotsuga menziesii) in a Pacific Northwest stream were incubated in vitro with [C]lignocellulose in a defined mineral salts medium supplemented with 10 mg of N liter of N-labeled NO(3) (50 atom% N). Evolution of CO(2), distribution and isotopic dilution of N, filtrate N concentrations, and the rates of denitrification, N(2) fixation, and respiration were measured at 6, 12, and 18 days of incubation. The organic N content of the lignocellulose-wood sample mixture had increased from 132 mug of N to a maximum of 231 mug of N per treatment after 6 days of incubation. Rates of [C]lignocellulose decomposition were greatest during the first 6 days and then began to decline over the remaining 12 days. Total CO(2) evolution was also highest at day 6 and declined steadily over the remaining duration of the incubation. Filtrate NH(4)-N increased from background levels to a final value of 57 mug of N per treatment. Filtrate NO(3) N completely disappeared by day 6, and organic N showed a slight decline between days 12 and 18. The majority of the N that could be recovered appeared in the particulate organic fraction by day 6 (41 mug of N), and the filtrate NH(4) N fraction contained 11 mug of N by day 18. The N enrichment values of the filtrate NH(4) and the inorganic N associated with the particulate fraction had increased to approximately 20 atom% N by 18 days of incubation, whereas the particulate organic fraction reached its highest enrichment by day 6. Measurements of N(2) fixation and denitrification indicated an insignificant gain or loss of N from the experimental system by these processes. The data show that woody debris in stream ecosystems might function as a rapid and efficient sink for exogenous N, resulting in stimulation of wood decomposition and subsequent activation of other N cycling processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号