共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Brianna J Klein Marie-Eve Lalonde Jacques C?té Xiang-Jiao Yang Tatiana G Kutateladze 《Epigenetics》2014,9(2):186-193
The MOZ/MORF complexes represent an example of a chromatin-binding assembly whose recruitment to specific genomic regions and activity can be fine-tuned by posttranslational modifications of histones. Here we detail the structures and biological functions of epigenetic readers present in the four core subunits of the MOZ/MORF complexes, highlight the imperative role of combinatorial readout by the multiple readers, and discuss new research directions to advance our understanding of histone acetylation. 相似文献
3.
《Epigenetics》2013,8(2):186-193
The MOZ/MORF complexes represent an example of a chromatin-binding assembly whose recruitment to specific genomic regions and activity can be fine-tuned by posttranslational modifications of histones. Here we detail the structures and biological functions of epigenetic readers present in the four core subunits of the MOZ/MORF complexes, highlight the imperative role of combinatorial readout by the multiple readers, and discuss new research directions to advance our understanding of histone acetylation. 相似文献
4.
5.
6.
7.
8.
Xi Lu Yushuang Deng Daohai Yu Huiming Cao Li Wang Li Liu Caijia Yu Yuping Zhang Xiuming Guo Gang Yu 《PloS one》2014,9(7)
Epigenetic modifications, particularly histone acetylation, have been implicated in Alzheimer''s disease (AD). While previous studies have suggested that histone hypoacetylation may regulate the expression of genes associated with memory and learning in AD, little is known about histone regulation of AD-related genes such as Presenilin 1(PS1) and beta-site amyloid precursor protein cleaving enzyme 1(BACE1). By utilizing neuroblastoma N2a cells transfected with Swedish mutated human amyloid precursor protein (APP) (N2a/APPswe) and wild-type APP (N2a/APPwt) as cellular models of AD, we examined the alterations of histone acetylation at the promoter regions of PS1 and BACE1 in these cells. Our results revealed that histone H3 acetylation in PS1 and BACE1 promoters is markedly increased in N2a/APPswe cells when compared to N2a/APPwt cells and control cells (vector-transfected), respectively, causing the elevated expression of PS1 and BACE1. In addition, expression of histone acetyltransferase (HAT) adenoviral E1A-associated 300-kDa protein (p300) is dramatically enhanced in N2a/APPswe cells compared to N2a/APPwt and control cells. We have further demonstrated the direct binding of p300 protein to the PS1 and BACE1 promoters in N2a/APPswe cells. The expression levels of H3 acetylation of the PS1 and BACE1 promoters and p300 protein, however, were found to be not significantly different in N2a/APPwt cells when compared to controls in our studies. Furthermore, curcumin, a natural selective inhibitor of p300 in HATs, significantly suppressed the expression of PS1 and BACE1 through inhibition of H3 acetylation in their promoter regions in N2a/APPswe cells. These findings indicated that histone acetyltransferase p300 plays a critical role in controlling the expression of AD-related genes through regulating the acetylation of their promoter regions, suggesting that p300 may represent a novel potential therapeutic target for AD. 相似文献
9.
10.
α-氨基乙酰基转移酶11(Nat11)催化组蛋白H4和H2A氨基端乙酰化修饰,发挥着重要的表观遗传调控功能。将人Nat11基因构建到原核表达载体p SUMO中,转化入大肠杆菌BL21(DE3)进行重组表达。通过镍柱亲和层析等一系列体外纯化步骤,获得高纯度Nat11。利用等温滴定量热法(ITC),测得Nat11与底物多肽微摩尔量级结合常数。利用质谱技术,发现纯化后的Nat11结合有大肠杆菌内源产生的乙酰辅酶A或辅酶A,在ITC滴定过程中可以产生对多肽底物的乙酰化修饰,表明纯化获得的Nat11在溶液中具有酶活力。随后,对Nat11进行晶体生长研究,通过初筛优化获得蛋白截短体及底物-酶融合蛋白单晶。 相似文献
11.
12.
13.
Argyris Politis Ah Young Park Suk-Joon Hyung Daniel Barsky Brandon T. Ruotolo Carol V. Robinson 《PloS one》2010,5(8)
Current challenges in the field of structural genomics point to the need for new tools and technologies for obtaining structures of macromolecular protein complexes. Here, we present an integrative computational method that uses molecular modelling, ion mobility-mass spectrometry (IM-MS) and incomplete atomic structures, usually from X-ray crystallography, to generate models of the subunit architecture of protein complexes. We begin by analyzing protein complexes using IM-MS, and by taking measurements of both intact complexes and sub-complexes that are generated in solution. We then examine available high resolution structural data and use a suite of computational methods to account for missing residues at the subunit and/or domain level. High-order complexes and sub-complexes are then constructed that conform to distance and connectivity constraints imposed by IM-MS data. We illustrate our method by applying it to multimeric protein complexes within the Escherichia coli replisome: the sliding clamp, (β2), the γ complex (γ3δδ′), the DnaB helicase (DnaB6) and the Single-Stranded Binding Protein (SSB4). 相似文献
14.
Sheila K. Pirooznia Kellie Chiu May T. Chan John E. Zimmerman Felice Elefant 《Genetics》2012,192(4):1327-1345
Tip60 is a histone acetyltransferase (HAT) enzyme that epigenetically regulates genes enriched for neuronal functions through interaction with the amyloid precursor protein (APP) intracellular domain. However, whether Tip60-mediated epigenetic dysregulation affects specific neuronal processes in vivo and contributes to neurodegeneration remains unclear. Here, we show that Tip60 HAT activity mediates axonal growth of the Drosophila pacemaker cells, termed “small ventrolateral neurons” (sLNvs), and their production of the neuropeptide pigment-dispersing factor (PDF) that functions to stabilize Drosophila sleep–wake cycles. Using genetic approaches, we show that loss of Tip60 HAT activity in the presence of the Alzheimer’s disease-associated APP affects PDF expression and causes retraction of the sLNv synaptic arbor required for presynaptic release of PDF. Functional consequence of these effects is evidenced by disruption of the sleep–wake cycle in these flies. Notably, overexpression of Tip60 in conjunction with APP rescues these sleep–wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for dTip60 in sLNv growth and function under APP-induced neurodegenerative conditions. Our findings reveal a novel mechanism for Tip60 mediated sleep–wake regulation via control of axonal growth and PDF levels within the sLNv-encompassing neural network and provide insight into epigenetic-based regulation of sleep disturbances observed in neurodegenerative diseases like Alzheimer’s disease. 相似文献
15.
16.
17.
18.
19.
Allison Haigney M. Daniel Ricketts Ronen Marmorstein 《The Journal of biological chemistry》2015,290(51):30648-30657
The HAT-B enzyme complex is responsible for acetylating newly synthesized histone H4 on lysines K5 and K12. HAT-B is a multisubunit complex composed of the histone acetyltransferase 1 (Hat1) catalytic subunit and the Hat2 (rbap46) histone chaperone. Hat1 is predominantly localized in the nucleus as a member of a trimeric NuB4 complex containing Hat1, Hat2, and a histone H3-H4 specific histone chaperone called Hif1 (NASP). In addition to Hif1 and Hat2, Hat1 interacts with Asf1 (anti-silencing function 1), a histone chaperone that has been reported to be involved in both replication-dependent and -independent chromatin assembly. To elucidate the molecular roles of the Hif1 and Asf1 histone chaperones in HAT-B histone binding and acetyltransferase activity, we have characterized the stoichiometry and binding mode of Hif1 and Asf1 to HAT-B and the effect of this binding on the enzymatic activity of HAT-B. We find that Hif1 and Asf1 bind through different modes and independently to HAT-B, whereby Hif1 binds directly to Hat2, and Asf1 is only capable of interactions with HAT-B through contacts with histones H3-H4. We also demonstrate that HAT-B is significantly more active against an intact H3-H4 heterodimer over a histone H4 peptide, independent of either Hif1 or Asf1 binding. Mutational studies further demonstrate that HAT-B binding to the histone tail regions is not sufficient for this enhanced activity. Based on these data, we propose a model for HAT-B/histone chaperone assembly and acetylation of H3-H4 complexes. 相似文献
20.
Fei Zheng Lawryn H. Kasper David C. Bedford Stephanie Lerach Brett J. W. Teubner Paul K. Brindle 《PloS one》2016,11(1)
Autism spectrum disorders (ASDs) are a group of neurodevelopmental afflictions characterized by repetitive behaviors, deficits in social interaction, and impaired communication skills. For most ASD patients, the underlying causes are unknown. Genetic mutations have been identified in about 25 percent of ASD cases, including mutations in epigenetic regulators, suggesting that dysregulated chromatin or DNA function is a critical component of ASD. Mutations in the histone acetyltransferase CREB binding protein (CBP, CREBBP) cause Rubinstein-Taybi Syndrome (RTS), a developmental disorder that includes ASD-like symptoms. Recently, genomic studies involving large numbers of ASD patient families have theoretically modeled CBP and its paralog p300 (EP300) as critical hubs in ASD-associated protein and gene interaction networks, and have identified de novo missense mutations in highly conserved residues of the CBP acetyltransferase and CH1 domains. Here we provide animal model evidence that supports this notion that CBP and its CH1 domain are relevant to autism. We show that mice with a deletion mutation in the CBP CH1 (TAZ1) domain (CBPΔCH1/ΔCH1) have an RTS-like phenotype that includes ASD-relevant repetitive behaviors, hyperactivity, social interaction deficits, motor dysfunction, impaired recognition memory, and abnormal synaptic plasticity. Our results therefore indicate that loss of CBP CH1 domain function contributes to RTS, and possibly ASD, and that this domain plays an essential role in normal motor function, cognition and social behavior. Although the key physiological functions affected by ASD-associated mutation of epigenetic regulators have been enigmatic, our findings are consistent with theoretical models involving CBP and p300 in ASD, and with a causative role for recently described ASD-associated CBP mutations. 相似文献