首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of the study was to evaluate the effect of different relative loading levels on the EMG activity of Vastus Medialis Oblique (VMO) and Vastus Laterialis (VL). Previous research into the EMG temporal and spatial relationship between VMO and VL has increased the controversy surrounding the topic, due to the majority of studies failing to be consistent in electrode placement, level of loading and subject selection. It is generally believed that the nature of the loading task will significantly affect results; despite this few studies have controlled relative load level between subjects. EMG activity of VMO and VL was measured at four load levels (MIVC, 75%, 50% and 25% of MIVC) in 10 asymptomatic male subjects. No difference in onset of activity was found between VMO and VL (p > 0.05) and onset of activity was not affected by level of load (p > 0.05). The relative level of load had a significant effect both on overall activity of VMO and VL, and the ratio of their activity. The study has shown that relative level of load can have significant effects on the parameters measured and if this variable is not controlled for within the study design it becomes a potential confounding effect.  相似文献   

2.
The purpose of this study was to determine whether surface electromyography (EMG) assessment of myoelectric manifestations of muscle fatigue is capable of detecting differences between the vastus lateralis and medialis muscles which are consistent with the results of previous biopsy studies. Surface EMG signals were recorded from the vastus medialis longus (VML), vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles during isometric knee extension contractions at 60% and 80% of the maximum voluntary contraction (MVC) for 10 s and 60 s, respectively. Initial values and rate of change of mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) of the EMG signal were calculated. Comparisons between the two force levels revealed that the initial values of MNF for the VL muscle were greater at 80% MVC compared to 60% MVC (P < 0.01). Comparisons between the vasti muscles demonstrated lower initial values of CV for VMO compared to VL at 60% MVC (P < 0.01) and lower than VML and VL at 80% MVC (P < 0.01). In addition, initial values of MNF were higher for VL with respect to both VML and VMO at 80% MVC (P < 0.01) and initial estimates of ARV were higher for VMO compared to VML at both force levels (P < 0.01 at 60% MVC and P < 0.05 at 80% MVC). For the sustained contraction at 80% MVC, VL demonstrated a greater decrease in CV over time compared to VMO (P < 0.05).These findings suggest that surface EMG signals and their time course during sustained isometric contractions may be useful to non-invasively describe functional differences between the vasti muscles.  相似文献   

3.
The aim of the current study was to analyze the activation characteristics and potential compartmentalization of the latissimus dorsi (LD) muscle during common maximal voluntary isometric contractions (MVICs) and functional dynamic tasks. Surface electromyography (sEMG) was used to measure activation magnitudes from four electrode sites (referenced to the T10, T12, L1 & L4 LD vertebral origins) across the fanning muscle belly of the LD. In addition, EMG waveforms were cross-correlated to study temporal activation timing between electrode sites (T10-T12, T12-L1, L1-L4 & T10-L4). The MVICs that were tested included a humeral adduction, humeral adduction with internal rotation, a chest-supported row and a humeral extension. Dynamic movements included sagittal lift/lowers from the floor to knee, knee to hip and hip to shoulder. No magnitude-based (p = 0.6116) or temporal-based differences were observed between electrode sites during the MVIC trials. During dynamic movements no temporal-based, but some magnitude-based differences between electrode sites were observed to be present; these differences were small in magnitude and were observed for both the maximum (p = 0.0002) and mean (p = 0.0002) EMG magnitudes. No clear pattern of compartmentalization was uncovered in the contractions studied here. In addition to these findings, it was determined that the most effective MVIC technique for LD EMG normalization purposes was a chest-supported row MVIC, paired with a T12 electrode site.  相似文献   

4.
The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (p < 0.05). Bilateral IO, EO, and left RA muscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (p < 0.05). These findings suggest that additional isometric hip adduction during the plank exercise could be a useful method to enhance abdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction.  相似文献   

5.
Electromyographic (EMG) studies into gluteus medius (GMed) typically involve surface EMG electrodes. Previous comparisons of surface and fine wire electrode recordings in other muscles during high load isometric tasks suggest that recordings between electrodes are comparable when the muscle is contracting at a high intensity, however, surface electrodes record additional activity when the muscle is contracting at a low intensity. The purpose of this study was to compare surface and fine wire recordings of GMed at high and low intensities of muscle contractions, under high load conditions (maximum voluntary isometric contractions, MVICs). Mann–Whitney U tests compared median electrode recordings during three MVIC hip actions; abduction, internal rotation and external rotation, in nine healthy adults. There were no significant differences between electrode recordings in positions that evoked a high intensity contraction (internal rotation and abduction, fine wire activity >77% MVIC; effect size, ES < 0.42; p > 0.277). During external rotation, the intensity of muscle activity was low (4.2% MVIC), and surface electrodes recorded additional myoelectric activity (ES = 0.67, p = 0.002). At low levels of muscle activity during high load isometric tasks, the use of surface electrodes may result in additional myoelectric recordings of GMed, potentially reflective of cross-talk from surrounding muscles.  相似文献   

6.
The effect of greater trochanteric pain syndrome (GTPS) on gluteus medius (GMed) and minimus (GMin) activation in post-menopausal women is unknown. The aim of this study was to compare segmental muscle activation and variability of the GMed, GMin and tensor fascia latae (TFL) during gait in post-menopausal women with and without GTPS.Intramuscular electrodes were inserted into segments of GMin (x2) and GMed (x3) and a surface electrode placed on TFL. Ten control participants and 8 with GTPS completed six walking trials. Peak amplitude, average amplitude and time to peak from each phase of the gait cycle (0–30%, 30%- toe off (TO), total stance and swing) were compared between groups using independent t-tests and effect-size (ES) calculations. Variability of muscle activation was calculated using the mean coefficient of variation (CV). Reversal of anterior GMin electromyographic burst pattern and greater average muscle activity was found in the GTPS group compared to controls: 0-TO for anterior GMin (p < 0.05), anterior and middle GMed (p < 0.01); 0–30% for posterior GMin (p < 0.01) and GMed (p < 0.05). No significant differences were identified in TFL. Overall, this study found increased segmental gluteal muscle activation, decreased hip abduction strength, and reduced variability in muscle activation in post-menopausal women with GTPS, compared with controls.  相似文献   

7.
PurposeThis study attempted to assess if the resisted contraction of medial rotators of the tibia increases the ratio between the activity of vastus medialis (VM) and vastus lateralis (VL) during maximal isometric contractions (MIC) of the quadriceps femoral (QF) muscle at 90° of knee flexion.MethodsAbout 24 female subjects participated in this study, performing four series MIC of the QF. In the first series subjects performed only MIC of the QF muscle, whereas in the other three there was MIC of the QF with resisted contraction of medial rotators of the tibia, with the tibia positioned in medial, neutral and lateral rotation. During each contraction, VM and VL electromyographic signal (EMGs) and QF force were collected, being the EMGs root mean square (RMS) used to access the activity level of these muscles.ResultsThe use of the General Linear Model (GLM) test showed that for α = 0.05 there was a significant increase in the VM:VL ratio when the resisted contraction of medial rotators of the tibia was performed with the tibia in medial (p = <0.0001), neutral (p = <0.0001) and lateral rotation (p = 0.001). The same test showed that during MIC of the QF associated to resisted contraction of medial rotators of the tibia there were no significant differences in the VM:VL ratio between the three tibial rotation positions adopted (p = 0.866 [medial–neutral]; p = 0.106 [medial–lateral]; p = 0.068 [neutral–lateral]).ConclusionsThe resisted contraction of medial rotators of the tibia increases the VM:VL ratio during MIC of the QF and the tibial rotation position does not influence the VM:VL ratio during MIC associated to resisted contraction of medial rotators of the tibia.  相似文献   

8.
Low back pain (LBP) is one of the most common symptoms reported in adults. However, the contribution of postural control on the lumbar spine and hips during squatting has not been carefully investigated in individuals with LBP. The aim of this study was to compare three-dimensional kinematic changes of the lumbar spine and hips between subjects with and without idiopathic chronic LBP during squatting activities. In total, 30 subjects enrolled in the study (15 control subjects and 15 subjects with idiopathic chronic LBP). All participants were asked to perform squatting activities five times repeatedly while holding a load of 2 kg in a basket. The outcome measures included the Oswestry Disability Index (ODI) and kinematic angular displacement for the hips and lumbar spine. The LBP group demonstrated increased range of motion (ROM) in flexion of the dominant (T = ?2.14, p = 0.03) and non-dominant (T = ?2.11, p = 0.03) hips during squatting. The lumbar spine flexion ROM significantly decreased (T = 2.20, p = 0.03). The kinematic changes demonstrated interactions with region × group (F = 5.56, p = 0.02), plane × group (F = 4.36, p = 0.04), and region × plane (F = 2292.47, p = 0.001). The ODI level demonstrated significant interaction on combined effects of body region and plane (F = 4.91, p = 0.03). Therefore, the LBP group utilized a compensation strategy to increase hip flexion with a stiffened lumbar spine in the sagittal plane during squatting. This compensatory kinematic strategy could apply to clinical management used to enhance lumbar spine flexibility in subjects with idiopathic chronic LBP.  相似文献   

9.
Metal-on-metal hip resurfacing patients demonstrate hip biomechanics closer to normal in comparison to total hip arthroplasty during gait. However, it is not clear how symmetric is the gait of hip resurfacing patients. Biomechanical data of 12 unilateral metal-on-metal hip resurfacing participants were collected during gait at a mean time of 45 months (SD 24) after surgery. Ankle, knee, hip, pelvis and trunk kinematics and kinetics of both sides were measured with a motion and force-capture system. Principal component analysis and mean hypothesis’ tests were used to compare the operated and healthy sides. The operated side had prolonged ankle eversion angle during late stance and delayed increased ankle inversion angle during early swing (p = 0.008; effect size = 0.70), increased ankle inversion moment during late stance (p = 0.001; effect size = 0.78), increased knee adduction angle during swing (p = 0.044; effect size = 0.57), decreased knee abduction moment during stance (p = 0.05; effect size = 0.40), decreased hip range of motion in the sagittal plane (p = 0.046; effect size = 0.56), decreased range of hip abduction moment during stance (p = 0.02; effect size = 0.63), increased hip range of motion in the transverse plane (p = 0.02; effect size = 0.62), decreased hip internal rotation moment during the transition from loading response to midstance (p = 0.001; effect size = 0.81) and increased trunk ipsilateral lean (p = 0.03; effect size = 0.60). Therefore, hip resurfacing patients have some degree of asymmetry in long term, which may be related to hip weakness and decreased range of motion, to foot misalignments and to strategies implemented to reduce loading on the operated hip. Interventions such as muscle strengthening and stretching, insoles and gait feedback training may help improving symmetry following hip resurfacing.  相似文献   

10.
The purpose of this study was to determine whether a differential suction electrode (DSE) probe is less prone to recording crosstalk from the hip adductors or external rotators than the Femiscan? probe when recording electromyography (EMG) data from the pelvic floor muscles (PFMs). Twenty nulliparous, continent women performed hip adduction and hip external rotation contractions at 25%, 50% and 100% of maximal voluntary effort both while keeping their PFMs relaxed and while contracting their PFMs as strongly as possible. All tasks were performed while DSEs were adhered to the vaginal wall at the level of the pubococcygeus group bilaterally, and also with the Femiscan? probe in situ. The order of the probes was randomized. For each task, the peak smoothed PFM EMG amplitude was compared between hip forces and probes using a two-way repeated measures analysis of variance (ANOVA) including the interaction between contraction level and probe (α = 0.05). There was a significant contraction level by probe interaction for each task. In most cases the Femiscan? probe recorded significantly higher PFM EMG activity during hip adduction and external rotation tasks at 25% and 50% MVC compared to what it recorded when the hip musculature remained relaxed, whereas the DSE probe did not. As such, the DSE probe appears to be less susceptible to crosstalk from the hip adductors and external rotators than the Femiscan? probe at these hip muscle contraction levels. Both probes recorded significantly higher EMG activity when maximal contractions of the hip adductors and external rotators were performed therefore, no conclusion can be made regarding whether the activity recorded from the PFMs during maximal hip adduction and external rotation is the result of crosstalk or co-activation.  相似文献   

11.
Aging is related to multiple changes in muscle physiology and function. Previous findings concerning the effects of aging on motor unit discharge rate (DR) and fluctuations in DR and force are somewhat contradictory. Eight YOUNG and nine OLD physically active males performed isometric ramp (RECR) and isotonic (ISO) plantar flexions at 10 and 20% of surface EMG at MVC. Motor unit (MU) action potentials were recorded with intramuscular fine-wire electrodes and decomposed with custom build software “Daisy”. DR was lower in OLD in RECR-10% (17.9%, p < 0.001), RECR-20% (15.8%, p < 0.05), ISO-10% (17.7%, p < 0.01) and ISO-20% (14%, n.s.). In YOUNG force fluctuations were smaller at ISO-10% (72.1%, p < 0.001) and ISO-20% (55.2%, p < 0.05) which were accompanied with a slight increase in DR variation (n.s.). The observed lower DR in OLD is in line with earlier findings in small distal muscles. Also the larger force fluctuation in OLD was in line with previous studies with smaller hand muscles. These findings suggest that the age-related changes in MU control do exist also in large leg extensors that play an important role in human locomotion and balance control.  相似文献   

12.
IntroductionWe aimed to determine whether the changes in muscle activity (in terms of both gross electromyography (EMG) and motor unit (MU) discharge characteristics) observed during pain are spatially organized with respect to pain location within a muscle which is the main contributor of the task.MethodsSurface and fine-wire EMG was recorded during matched low-force isometric plantarflexion from soleus (from four quadrants with fine-wire EMG and from the medial/lateral sides with surface EMG), both gastrocnemii heads, peroneus longus, and tibialis anterior. Four conditions were tested: two control conditions that each preceded contractions with pain induced in either the lateral (PainL) or medial (PainM) side of soleus.ResultsNeither the presence (p = 0.28) nor location (p = 0.19) of pain significantly altered gross muscle activity of any location (lateral/medial side of soleus, gastrocnemii, peroneus longus and tibialis anterior). Group data from 196 MUs show redistribution of MU activity throughout the four quadrants of soleus, irrespective of pain location. The significant decrease of MU discharge rate during pain (p < 0.0001; PainL: 7.3 ± 0.9–6.9 ± 1.1 Hz, PainM: 7.0 ± 1.1 to 6.6 ± 1.1 Hz) was similar for all quadrants of the soleus (p = 0.43), regardless of the pain location (p = 0.98). There was large inter-participant variation in respect to the characteristics of the altered MU discharge with pain.ConclusionResults from both surface and fine-wire EMG recordings do not support the hypothesis that muscle activity is reorganized in a simple systematic manner with respect to pain location.  相似文献   

13.
Exercise is recommended as a non-pharmacological, non-invasive intervention for osteoarthritis (OA) of the knee. Physiological data concerning the duration and intensity of muscle activity or physical activity profiles during normal daily activity for this population is lacking. Our aim was to explore this using surface Electromyography (EMG) and accelerometer-based activity monitoring. Thirty-four patients with knee OA, mean (SD) age 63.2 (9.8) years and 30 aged-matched asymptomatic controls 64.1 (10.9) years participated. The duration of recording was similar in knee OA and control groups – median (IRQ range) 12:34 (10:11–14:17) h and 13:10 (12:02–14:56) h, respectively (p = 0.514). VM and VL were quiescent for 81.8 (75.3–91.0) to 89.2 (81.5–94.7)% of the time. VM was active for significantly longer durations than VL in the highest intensity band for those with knee OA (p = 0.00), and for longer durations in those with knee OA compared to controls (p = 0.027). The median (IRQ range) percentage of the total recording time spent in an upright posture was 32.4 (28.3–43.9)% and 38.8 (33.6–45.8)%, and time spent stepping or walking was 12.7 (9.7–16.4)% and 16.0 (11.9–19.6)% for those with knee OA and controls respectively. These novel data may prove useful for designing therapeutic exercise programmes and lifestyle changes for those with knee OA.  相似文献   

14.
ObjectiveInvestigate the influence of apprehensive gait on activation and cocontraction of lower limb muscles of younger and older female adults.MethodsData of 17 younger (21.47 ± 2.06 yr) and 18 older women (65.33 ± 3.14 yr) were considered for this study. Participants walked on the treadmill at two different conditions: normal gait and apprehensive gait. The surface electromyographic signals (EMG) were recorded during both conditions on: rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), gastrocnemius lateralis (GL), and soleus (SO).ResultsApprehensive gait promoted greater activation of thigh muscles than normal gait (F = 5.34 and p = 0.007, for significant main effect of condition; RF, p = 0.002; VM, p < 0.001; VL, p = 0.003; and BF, p = 0.001). Older adults had greater cocontraction of knee and ankle stabilizer muscles than younger women (F = 4.05 and p = 0.019, for significant main effect of groups; VM/BF, p = 0.010; TA/GL, p = 0.007; and TA/SO, p = 0.002).ConclusionApprehensive gait promoted greater activation of thigh muscles and older adults had greater cocontraction of knee and ankle stabilizer muscles. Thus, apprehensive gait may leads to increased percentage of neuromuscular capacity, which is associated with greater cocontraction and contribute to the onset of fatigue and increased risk of falling in older people.  相似文献   

15.
This study investigated (a) the feasibility and repeatability of intramuscular fine-wire electromyographic (fEMG) recordings from leg muscles during the repetitive, high-velocity cycling movement, (b) the influence of amplitude normalization technique on repeatability and statistical sensitivity, (c) the influence of test-retest interval duration on repeatability, and (d) differences between fEMG and surface EMG (sEMG) recordings of cycling. EMG activity of leg muscles was recorded using surface and fine-wire electrodes during one (n = 12, to investigate statistical sensitivity and compare sEMG and fEMG) or two sessions (T1 and T2, 5–20 days apart, n = 10, to investigate repeatability). fEMG recordings were feasible and there was high repeatability of fEMG recordings normalised to maximum measured EMG amplitude (MAX); mean coefficients of multiple correlation (CMC) ranged from .83 ± .13 to .88 ± .07. Data normalised to maximal (MVC) or submaximal contractions (sMVC) were less repeatable (p < .01). Statistical sensitivity was also greatest for data normalised to MAX (p < .01). Repeatability of fEMG increased with greater test-retest intervals (p < .01). The global pattern of muscle recruitment was consistent between sEMG and fEMG but sEMG recordings were characterized by additional myoelectric content. These findings support and guide the use of fEMG techniques to investigate leg muscle recruitment during cycling.  相似文献   

16.
We investigated the effects of four weeks of training using a knee extension with hip adduction (KEWHA) exercise in asymptomatic participants. In addition, we compared different methods of electromyographic (EMG) onset-time detection. Eighteen participants who achieved earlier activation of the vastus lateralis (VL) muscle compared to that of the vastus medialis obliquus (VMO) muscle performed the isometric KEWHA exercise in the sitting position for four weeks. A 15° hip adduction was added to the existing knee extension in the KEWHA exercise. EMG onset times were detected using a computer-analyzed system and evaluated using two methods in which the thresholds for activity onset were set at two and three standard deviations (SDs) of the mean baseline activity. No significant difference in the EMG onset-time for the VMO muscle was observed compared to that of the VL muscle between the pre- and post-tests (p > 0.05) when data at 2 SDs of the mean baseline activity were analyzed. However, a significant difference in the onset times for the VMO muscle and VL muscle was found between the pre- and post-tests (p < 0.05) when data at 3 SDs of the mean baseline activity were analyzed. In addition, less variation was observed in data analyzed at 3 SDs compared to that of the data at 2 SDs. The normalized VMO:VL muscle ratio was not significantly different between the pre- and post-tests. These findings show that the KEWHA exercise may decrease the difference between the onset times of VMO and VL muscles. In addition, we suggest that task-specific EMG onset-time detection methods are required to minimize variations in the data obtained during the recording of muscle activation.  相似文献   

17.
This study aimed at investigating two aspects of neuromuscular control around the hip and knee joint while executing the roundhouse kick (RK) using two techniques: Impact RK (IRK) at trunk level and No-Impact RK at face level (NIRK). The influence of technical skill level was also investigated by comparing two groups: elite Karateka and Amateurs. Surface electromyographic (sEMG) signals have been recorded from the Vastus Lateralis (VL), Biceps Femoris (BF), Rectus Femoris (RF), Gluteus Maximum (GM) and Gastrocnemious (GA) muscles of the kicking leg in six Karateka and six Amateurs performing the RKs. Hip and knee kinematics were also assessed. EMG data were rectified, filtered and normalized to the maximal value obtained for each muscle over all trials; co-activation (CI) indexes of antagonist vs. overall (agonist and antagonist) activity were computed for hip and knee flexion and extension. Muscle Fiber Conduction Velocity (CV) obtained from VL and BF muscles was assessed as well. The effect of group and kick on angular velocity, CIs, and CVs was tested through a two-way ANOVA (p < 0.05). An effect of group was showed in both kicks. Karateka presented higher knee and hip angular velocity; higher BF-CV (IRK: 5.1 ± 1.0 vs. 3.5 ± 0.5 m/s; NIRK: 5.7 ± 1.3 vs. 4.1 ± 0.5 m/s), higher CIs for hip movements and knee flexion and lower CI for knee extension. The results obtained suggest the presence of a skill-dependent activation strategy in the execution of the two kicks. CV results are suggestive of an improved ability of elite Karateka to recruit fast MUs as a part of training induced neuromuscular adaptation.  相似文献   

18.
We examined the availability and reliability of surface electromyography (EMG) signals from the iliopsoas muscle (IL). Using serial magnetic resonance images from fifty healthy young males, we evaluated whether the superficial region of IL was adequate for attaching surface EMG electrodes. Subsequently, we assessed EMG cross-talk from the sartorius muscle (SA)—the nearest to IL—using a selective cooling method in fourteen subjects. The skin above SA was cooled, and the median frequencies of EMG signals from IL and SA were determined. The maximum voluntary contraction during isometric hip flexion was measured before and after selective cooling, and surface EMG signals from SA and IL were measured. The superficial area of IL was adequately large (13.2 ± 2.7 cm2) for recording surface EMG in all fifty subjects. The maximum perimeter for the medial–lateral skin facing IL was noted at a level 3–5 cm distal to the anterior superior iliac spine. Following cooling, the median frequency for SA decreased significantly (from 70.1 to 51.9 Hz, p < 0.001); however, that for IL did not alter significantly. These results demonstrated that EMG cross-talk from SA was negligible for surface EMG signals from IL during hip flexion.  相似文献   

19.
Cardiopulmonary and skeletal muscle effects of combined aerobic and resistance training vs. aerobic training were studied in men with coronary heart disease. Sixteen men with coronary heart disease underwent a cardiopulmonary exercise testing and a quadriceps skeletal muscle fatigue assessment. Patients were divided into two groups and trained in a combined aerobic and resistance or aerobic training group during 7 weeks. Maximal voluntary contraction and isometric endurance time were measured with electromyographic signals recorded from vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM) during isometric endurance time. Exercise tolerance increased only in the combined group (p < 0.05). Maximal voluntary contraction and isometric endurance time did not change after training in either group but was performed at 5.8% higher force output for the combined group. After training, median frequency values were higher for the VL and VM (p < 0.001) in the aerobic group and also higher for the VL, RF (p < 0.001) and VM (p < 0.05) in the combined group. Combined aerobic and resistance training was more effective to improve exercise tolerance, decrease skeletal muscle fatigue and correct neuromuscular alterations in men with coronary heart disease.  相似文献   

20.
Vaginal probes may induce changes in pelvic floor muscle (PFM) recruitment by the very presence of the probes. Fine-wire electrodes allow us to detect muscle activation parameters without altering the natural position and shape of the PFMs. The purpose of this study was to determine whether PFM activation is altered by changes in sensory feedback, muscle length or tissue position caused by two different vaginal probes used to record surface electromyography (EMG). Twelve continent women (30.1 ± 5.4 years), performed PFM maximal voluntary contractions (MVCs) in supine while fine-wire EMG was recorded bilaterally from the PFMs under three conditions: (a) without any probe inserted into the vagina, (b) while a Femiscan? probe was in situ, and (c) while a Periform? vaginal probe was in situ. The reliability of the fine wire EMG data was assessed using intra-class correlation coefficients (ICCs) and coefficients of variation (CV). A repeated measures analysis of variance (ANOVA) model was used to determine if there were differences in EMG amplitude recorded when the different vaginal probes were in situ. For each condition the between-trial reliability was excellent, ICC(3,1) = 0.93–0.96, (p < 0.001) and CV = 11.2–21.8%. There were no differences in peak EMG amplitude recorded during the MVCs across the three conditions (no probe 63.4 ± 48.4 μV, Femiscan? 55.3 ± 42.4 μV, Periform? 59.4 ± 42.2 μV, p = 0.178). These results suggest that women produce consistent MVCs over multiple contractions, and that PFM muscle activation is not affected by different probes inserted into the vagina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号