首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肿瘤目前成为人类健康和生命的重要危胁,肿瘤基因诊断是对肿瘤的各种原癌基因、抑癌基因进行检测,聚合酶链反应(polymerase chain reaction,PCR)技术是目前临床基因诊断应用最广泛的诊断技术,具有普及率高、特异性好、简便快捷等特点。肿瘤基因PCR诊断技术可以用于已知基因突变的检测,快速了解突变状态,有效制定治疗方案,为肿瘤患者带来福音。本研究主要基于专利数据,对肿瘤基因PCR诊断技术进行分析,探讨了全球与中国在肿瘤基因PCR诊断技术领域的发展现状与趋势。在Innography数据库共检索到PCR技术相关专利16,939件,专利家族6,285件。在肿瘤基因PCR诊断技术领域中,荧光定量PCR技术占比较大,约占肿瘤基因PCR诊断技术总量的三分之一。从技术技术生命周期来看,肿瘤基因PCR诊断技术目前仍处在高速发展阶段。美国是肿瘤基因PCR诊断技术的发展领先国家。该技术的主要来源国为美国,全球42.09%的专利来自美国,同时美国也是同族专利的主要分布地区。在肿瘤基因PCR诊断技术领域,排名前15位的顶尖机构中,来自美国的机构有7所。中国在肿瘤基因PCR诊断技术领域起步较晚,但发展迅速,在该技术领域申请的专利数量仅次于美国。中国申请的肿瘤基因PCR诊断技术的专利绝大多数都只在中国进行专利保护,并没有布局全球市场的意愿。  相似文献   

2.
A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180?µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography–mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.  相似文献   

3.
Bjørn Hofmann 《Bioethics》2020,34(3):252-263
How should we handle ethical issues related to emerging science and technology in a rational way? This is a crucial issue in our time. On the one hand, there is great optimism with respect to technology. On the other, there is pessimism. As both perspectives are based on scarce evidence, they may appear speculative and irrational. Against the pessimistic perspective to emerging technology, it has been forcefully argued that there is a status quo bias (SQB) fuelling irrational attitudes to emergent science and technology and greatly hampering useful development and implementation. Therefore, this article starts by analysing the SQB using human enhancement as a case study. It reveals that SQB may not be as prominent in restricting the implementation of emergent technologies as claimed in the ethics literature, because SQB (a) is fuelled by other and weaker drivers than those addressed in the literature, (b) is at best one amongst many drivers of attitudes towards emergent science and technology, and (c) may not be a particularly prominent driver of irrational decision-making. While recognizing that SQB can be one driver behind pessimism, this article investigates other and counteracting forces that may be as strong as SQB. Progress bias is suggested as a generic term for the various drivers of unwarranted science and technology optimism. Based on this analysis, a test for avoiding or reducing this progress bias is proposed. Accordingly, we should recognize and avoid a broad range of biases in the assessment of emerging and existing science and technology in order to promote an open and transparent deliberation.  相似文献   

4.
城市生活垃圾量的日益增多严重威胁着城市的环境及人们的健康,垃圾处理成为现代社会面临的重要问题之一,因此城市生活垃圾处理技术对于城市的可持续发展起着非常重要的作用。微生物在自然界中种类繁多,在城市生活垃圾生物处理应用中占有重要地位。本文对微生物在城市生活垃圾的卫生填埋技术、生物反应器填埋技术、好氧堆肥技术、发酵降解技术及生物干燥器技术中的应用进行了综述,并对城市生活垃圾的综合处理提出建议,以期为城市生活垃圾的微生物处理技术的应用提供参考。  相似文献   

5.
蛋白质组研究中分离新技术与新方法   总被引:6,自引:0,他引:6  
对于蛋白质组的研究离不开分析技术的支撑。由于样品及其基质的复杂性,为了实现蛋白质的高通量、高灵敏度、快速分析鉴定,必须发展与之匹配的新技术与新方法。多维高效液相色谱/毛细管电泳技术,部分弥补了传统2D PAGE的不足,近年来,在蛋白质分离鉴定方面取得了最令人瞩目的成绩。本文分别从多维液相色谱分离技术、多维毛细管电泳蛋白质分离平台、微柱液相-毛细管电泳联用技术、极端pH蛋白质的分离分析和蛋白质的在线富集技术等方面对蛋白质组学研究中在新技术与新方法方面近期取得的成果加以系统阐述。  相似文献   

6.
Liu WJ  Zeng FX  Jiang H  Zhang XS  Yu HQ 《Bioresource technology》2011,102(10):6260-6265
An integrated biosorption-pyrolysis technology was employed to recover Pb from aqueous solution. A series of biosorption, fast pyrolysis and leaching experiments were carried out. The optimum pH and adsorbent dose for Pb adsorption from aqueous solution are 6.0 and 3.0 g L−1, respectively. The temperature is a key factor influencing the yields of pyrolysis products, and the maximum yield of bio-oil is 45.7% at 773 K. The pyrolysis technology can effectively recover Pb from Pb polluted Typha angustifolia biomass (Pb-TAB) and its recovery efficiency is not notably influenced by temperature. According to the economic evaluation, the biosorption-pyrolysis technology has great techno-economic advantages over the conventional biosorption-leaching technology.  相似文献   

7.
Although viable Rhizobium inoculation technology for cultivated legumes has long been available, there has been little sustained adoption of this technology in tropical regions. Reasons contributing to this include inadequate demonstration of the technology, presence of adequate native rhizobia, high soil mineral nitrogen levels which suppress nitrogen fixation, inadequate quality control of Rhizobium inoculum and difficulties of inoculating under tropical conditions. In order to ensure a better adoption rate of existing or emerging biological nitrogen fixation (BNF) technologies, it is proposed that future research and development efforts better focus on the research-adoption-impact continuum. The salient features of this approach are described in this paper, using the example of recently developed nodulation variants in chickpea as a potential means of increasing BNF in this crop. It is suggested that previous experience with Rhizobium inoculation technology is amenable to ex-post impact analysis to analyze bottlenecks, and that ex-ante impact analysis should be built into on-going or planned BNF research, to better ensure that technology adoption occurs.  相似文献   

8.
随着科学技术的进步,激光技术正以惊人的速度向前发展。激光具有许多优异的性能,已被应用到人类生活的各个领域。伴随激光医学的进展,近来在口腔医学方面的研究已逐步开展起来,除了应用于口腔软组织处理外,激光用于牙体硬组织也得到了越来越多的关注。其中Er-YAG激光在口腔领域的实用性和安全性已得到多方面的认证。该文就激光在口腔医学特别是牙体硬组织中的应用作一综述。  相似文献   

9.

Objectives

To investigate (1) the degree of digital technology adoption among general dental practitioners, and to assess (2) which personal and practice factors are associated with technology use.

Methods

A questionnaire was distributed among a stratified sample of 1000 general dental practitioners in the Netherlands, to measure the use of fifteen administrative, communicative, clinical and diagnostic technologies, as well as personal factors and dental practice characteristics.

Results

The response rate was 31.3%; 65.1% replied to the questionnaire on paper and 34.9% online. Each specific digital technology was used by between 93.2% and 6.8% of the dentists. Administrative technologies were generally used by more dentists than clinical technologies. Dentists had adopted an average number of 6.3±2.3 technologies. 22.5% were low technology users (0 to 4 technologies), 46.2% were intermediate technology users (5 to 7 technologies) and 31.3% were high technology users (8 to12 technologies). High technology users more frequently had a specialization (p<0.001), were younger on average (p=0.024), and worked more hours per week (p=0.003) than low technology users, and invested more hours per year in professional activities (p=0.026) than intermediate technology users. High technology use was also more common for dentists working in practices with a higher average number of patients per year (p<0.001), with more dentists working in the practice (p<0.001) and with more staff (p<0.001).

Conclusion

With few exceptions, all dentists use some or a substantial number of digital technologies. Technology use is associated with various patterns of person-specific factors, and is higher when working in larger dental practices. The findings provide insight into the current state of digital technology adoption in dental practices. Further exploration why some dentists are more reluctant to adopt technologies than others is valuable for the dental profession’s agility in adjusting to technological developments.  相似文献   

10.

Background  

Phage display technology is a powerful new tool for making antibodies outside the immune system, thus avoiding the use of experimental animals. In the early days, it was postulated that this technique would eventually replace hybridoma technology and animal immunisations. However, since this technology emerged more than 20 years ago, there have only been a handful reports on the construction and application of phage display antibody libraries world-wide.  相似文献   

11.
We have previously described the development and implementation of a strategy for production of recombinant polyclonal antibodies (rpAb) in single batches employing CHO cells generated by site-specific integration, the SympressTM I technology. The SympressTM I technology is implemented at industrial scale, supporting a phase II clinical development program. Production of recombinant proteins by site-specific integration, which is based on incorporation of a single copy of the gene of interest, makes the SympressTM I technology best suited to support niche indications. To improve titers while maintaining a cost-efficient, highly reproducible single-batch manufacturing mode, we have evaluated a number of different approaches. The most successful results were obtained using random integration in a new producer cell termed ECHO, a CHO DG44 cell derivative engineered for improved productivity at Symphogen. This new expression process is termed the SympressTM II technology. Here we describe proof-of-principle data demonstrating the feasibility of the SympressTM II technology for single-batch rpAb manufacturing using two model systems each composed of six target-specific antibodies. The compositional stability and the batch-to-batch reproducibility of rpAb produced by the ECHO cells were at least as good as observed previously using site-specific integration technology. Furthermore, the new process had a significant titer increase.  相似文献   

12.
Bioenergy as well as bioenergy with carbon capture and storage are key options to embark on cost‐efficient trajectories that realize climate targets. Most studies have not yet assessed the influence on these trajectories of emerging bioeconomy sectors such as biochemicals and renewable jet fuels (RJFs). To support a systems transition, there is also need to demonstrate the impact on the energy system of technology development, biomass and fossil fuel prices. We aim to close this gap by assessing least‐cost pathways to 2030 for a number of scenarios applied to the energy system of the Netherlands, using a cost‐minimization model. The type and magnitude of biomass deployment are highly influenced by technology development, fossil fuel prices and ambitions to mitigate climate change. Across all scenarios, biomass consumption ranges between 180 and 760 PJ and national emissions between 82 and 178 Mt CO2. High technology development leads to additional 100–270 PJ of biomass consumption and 8–20 Mt CO2 emission reduction compared to low technology development counterparts. In high technology development scenarios, additional emission reduction is primarily achieved by bioenergy and carbon capture and storage. Traditional sectors, namely industrial biomass heat and biofuels, supply 61–87% of bioenergy, while wind turbines are the main supplier of renewable electricity. Low technology pathways show lower biochemical output by 50–75%, do not supply RJFs and do not utilize additional biomass compared to high technology development. In most scenarios the emission reduction targets for the Netherlands are not met, as additional reduction of 10–45 Mt CO2 is needed. Stronger climate policy is required, especially in view of fluctuating fossil fuel prices, which are shown to be a key determinant of bioeconomy development. Nonetheless, high technology development is a no‐regrets option to realize deep emission reduction as it also ensures stable growth for the bioeconomy even under unfavourable conditions.  相似文献   

13.
云技术是一门信息资源整合、规模集约的前沿科技,与通信网络、物联网等一起成为新一代的信息技术。作为国家战略性新型产业,云技术以其安全、便捷、资源集约、配置动态、资源池化和透明等特征,不仅促进信息技术领域的深刻变革,同时也给人类社会的科学技术和教育发展带来了深远的影响。云技术因其多方面的优势正引起着教育的变革,同时也引发了人们对其用于医学教育中的兴趣。本文简述了传统的信息技术在医学教学方面中的应用,继而引入对云技术的概念、特点以及相关云服务平台,最后着重分析了云技术与现代教育理念的契合以及将其利用到医学教育中的优势。  相似文献   

14.
With the rapid pace of nucleic acid microarray technology development and a renewed national emphasis on detecting and characterizing microorganisms in environmental samples, there is a rush to operationalize existing microarray technologies and apply them to uncharacterized environmental backgrounds. The purpose of this article is to pause and ask a basic question: what do microarray data actually mean in the face of uncharacterized sample backgrounds? In attempting to answer this question, we draw a clear distinction between hypothesis-driven fundamental science and operational uses of microarray technology; assess microarray technology assumptions in the face of uncharacterized environments; offer an environmental microbiologist's perspective on technology needs and requirements for quantitatively analyzing microbial communities; and hopefully stimulate a scientific and technical dialogue around the concept of analytical environmental microbiology and future technology development.  相似文献   

15.
There is an urgent need for the advancement of agricultural technology (e.g. crop biotechnology or genetic modification (GM) technology), particularly, to address food security problem, to fight against hunger and poverty crisis and to ensure sustainable agricultural production in developing countries. Over the past decade, the adoption of GM technology on a commercial basis has increased steadily around the world with a significant impact in terms of socio-economic, environment and human health benefits. However, GM technology is still surrounded by controversial debates with several factors hindering the adoption of GM crops. This paper reviews current literatures on commercial production of GM crops, and assesses the benefits and constraints associated with adoption of GM crops in developing countries in the last 15 years. This article provides policy implication towards advancing the development and adoption of GM technology in developing countries and concludes with summary of key points discussed.  相似文献   

16.
目的:综述噬菌体抗体库技术的研究进展,介绍该技术的原理,构建,筛选和应用,为抗肿瘤抗体药物研发提供参考。方法:采用文献综述的方法,筛选近5年来噬菌体抗体库技术试验论文,对噬菌体抗体库技术的原理,构建,筛选和应用进行总结。结果:噬菌体抗体库主要分为免疫抗体库和非免疫抗体库两大类;噬菌体抗体库筛选技术包括亲和筛选、细胞筛选和生物体内筛选三种;噬菌体抗体库技术主要应用于肿瘤标志物的识别和肿瘤诊断,抗肿瘤抗体药物的筛选和制备。结论:噬菌体抗体库技术方便、快速、高效,可以在体外环境下培养,这些特点决定了其在肿瘤标志物的发现和肿瘤抗体药物研发中的广泛应用。目前噬菌体抗体库技术还存在一定缺陷,但技术的不断发展和革新必然使噬菌体抗体库技术成为研制抗体药物的新思路,极大促进了肿瘤抗体药物的研发。  相似文献   

17.
在秀丽隐杆线虫中首次发现双链RNA(dsRNA)能特异性地导致基因沉默(RNAi)现象后,人们开始大量地研究RNAi技术,并将其应用于功能基因的研究,来提高作物的抗性和改良遗传育种等。本文详细介绍了RNAi的技术原理,并且对RNAi技术与传统转基因技术的区别进行分析,阐述了该技术具有重要的生物学意义,以及在农作物害虫防治领域的占据独特优势。基于RNAi技术存在的潜在脱靶效应,从改良植物、靶标生物和生态环境的3个方面具体分析该技术可能存在的风险,为RNAi技术的风险评估提供参考。由于RNAi技术仍存在风险,为了维护生态多样性和保障人们的人身安全,应尽快建立起符合实际需求的安全性评价方法,本文针对RNAi转基因作物的环境安全和食用安全2个方面的评估方案进行概述。RNAi技术对减少害虫数量、提高水稻产量、降低种植成本以及减少化学农药污染、促进农业可持续发展来说具有重要意义,但该技术仍存在风险,需要进一步监管和研究,建立完善的生态评价系统,让RNAi技术在农业生产上发挥作用。  相似文献   

18.
??????? 目的 了解浙江省卫生技术及管理人员对卫生技术评估(HTA)的认知和需求,为进一步开展HTA工作提供建议。方法 采用问卷调查与访谈相结合的方法对3家医院,1家公共卫生机构,8家卫生行政机构的102位运用HTA结果的潜在使用者和22位决策者进行了调查。结果 被调查者认为卫生技术相关政策法规在卫生技术信息来源最为重要,卫生技术临床疗效在用于决策的卫生技术相关信息中最为重要,相关研究质量太差是影响卫生技术评估的最大障碍。结论 浙江省卫生技术及管理人员对于HTA有一定的认知与需求,但关注度不够,针对遇到的障碍提出了HTA进一步发展的建议。  相似文献   

19.
New technologies drive progress in many research fields, including cell biology. Much of technological innovation comes from “bottom-up” efforts by individual students and postdocs. However, technology development can be challenging, and a successful outcome depends on many factors. This article outlines some considerations that are important when embarking on a technology development project. Despite the challenges, developing a new technology can be extremely rewarding and could lead to a lasting impact in a given field.As is true for many fields of research, cell biology has always been propelled forward by technological innovations (Botstein, 2010). Thanks to these advances we now have access to microscopes and other equipment with exquisite resolution and sensitivity, a variety of methods to track and quantify biological molecules, and many ingenious tools to manipulate genes, molecules, organelles, and cells. In addition, we have hardware and software that enable us to analyze our data, and build models of cells and their components.Naturally, even today’s technologies have limitations, and hence there is always need for improvements and for completely novel approaches that create new opportunities. Cell biology is one of the research areas with many chances for individual young scientists to invent and develop such new technologies. Numerous recent examples illustrate that such “bottom-up” efforts can be highly successful across all areas in cell biology; e.g., as a handy vector for RNA interference (Brummelkamp et al., 2002); as methods for visualization of protein–protein or protein–DNA interactions (Roux et al., 2012; Kind et al., 2013); as tools to study chromatin (van Steensel et al., 2001), ribonucleoprotein complexes (Ule et al., 2003), or translation (Ingolia et al., 2009); or as tags for sensitive protein detection (Tanenbaum et al., 2014), just to name a few examples.As a student or postdoc, you may similarly conceive an idea for a new method or tool. Usually this idea is inspired by a biological question that you are trying to address in your ongoing research project. You might then also realize that the new method, at least on paper, may have additional applications. Yet, the development of a new technique typically requires a substantial effort. Should you halt or delay your ongoing research and embark on the development of this new technique? And if so, what is the best strategy to minimize the risks and maximize the chance of success? How do you get the most out of the investment that it takes to develop the method? Here I will discuss some issues that students and postdocs might want to consider when venturing into the development of a new technique.

To develop or not to develop

Development of a new technique can take one to five years of full-time effort, and hence can be a risky endeavor for a young scientist. The decision to start such a project therefore requires careful weighing of the pros and cons (see text box). In essence, there are four main considerations.

Points to consider before starting to develop a new technology.

•Literature search: Does a similar technology already exist? Is there published evidence for or against its feasibility?•How much time and effort will it take?•What is the chance of success?•Are you in the right environment to develop the technology?•Are simple assays available for testing and optimization?•How important are the biological questions that can be addressed?•How broadly applicable will the technology be?•What are the advantages compared with existing methods?•Is the timing right (will there be substantial interest in the technology)?•Is there potential for future applications/modifications that will further enhance the technology?•How easy will it be for other researchers to use the technology?First, conduct a thorough literature survey to ensure that the method has not been developed by others already, and to search for indications that the method may or may not work. The second consideration is the potential impact of the new technology. Impact is often difficult to predict, but it is linked to how broadly applicable the technology will be. Will the new technology only provide an answer to your specific biological question, or will it be more widely applicable? It may be helpful to ask: how many other scientists will be interested in using the technology, or at least will profit substantially from the resulting biological data or knowledge? If the answer is “about five,” then the impact will likely be low; if the answer is “possibly hundreds,” then it will certainly be worth the investment. This potential impact must be balanced against the third consideration, which is the estimated amount of time and effort it takes to develop the technology. The fourth major consideration is: What is the chance that my technique will actually work and what is the risk of failure? There is no general answer to this question, but below I will outline strategies to reduce the risk of failure and minimize the associated loss of time and effort. For this I will consider the common phases of technology development (Fig. 1).Open in a separate windowFigure 1.Flow diagram showing the typical phases of technology development.

Quick proof-of-principle

An adage that is often heard in the biotechnology industry is “fail fast.” It is OK if a project turns out to be unsuccessful, as long as the failure becomes obvious soon after the start. This way the lost investment will be minimal. In an academic setting, it may also be good to prevent finding yourself empty-handed after years of work. As a rule of thumb, I suggest that one should aim to obtain a basic proof-of-principle within approximately four months of full-time work. If after this period there still is no indication that the method may eventually work, then it may be wise to terminate the project, because further efforts are then also likely to be too time-consuming. It is thus advisable to schedule a “continue/terminate” decision point about four months after the start of the project—and stick to it. Note that at this stage the proof-of-principle evidence may be rudimentary, but it is crucial that it is convincing enough to be a firm basis for the next step: optimization.

Optimization cycles

Obtaining the first proof-of-principle evidence is a reason to celebrate, but usually it is still a long way toward a robust, generally applicable method. Careful optimization is required, through iterations of systematic tuning of parameters and testing of the performance. This can be the most time-consuming phase of technology development. To keep the cycle time of the iterative optimizations short, it is essential that a quick, easy readout is chosen. This readout should be based on a simple assay that ideally requires no more than 1–2 d. It is important that the required equipment is readily accessible; for example, if for each iteration you have to wait for several weeks to get access to an overbooked shared FACS or sequencing machine, or if you depend on the goodwill of a distant collaborator who has many other things on his mind, then the optimization process will be slow and frustrating. If your technology consists of a lengthy protocol with multiple steps, try to optimize each step individually (separated from the rest of the protocol), and include good positive and negative controls.Remember that statistical analysis is your ally: it is a tool to distinguish probable signals from random noise and thus enables you to make rational decisions in the optimization process (did condition A really yield better results than condition B?). Assays with quantitative readouts are easier to analyze statistically and are therefore preferable.

Version 1.0: Reaping the first biological insights

During the optimization process it is helpful to define an endpoint that will result in “version 1.0” of the technology. Typically this is when the technology is ready to address its first interesting biological question. Once you have reached this point, it may be useful to temporarily refrain from further optimization of the technology, and focus on applying it to this biological question. This has two purposes. First, it subjects the technology to a real-life test that may expose some of its shortcomings, which then need to be addressed in further optimization cycles. Second, it may yield biological data that illustrates the usefulness of the technology, which may inspire other scientists to adopt the method. If you are based in a strictly technology-oriented laboratory, collaboration with a colleague who is an expert in the biological system at hand may expedite this phase and help to work out bugs in the methodology.If version 1.0 performs well in this biological test, it may be time to publish the method. For senior postdocs, this may also be a good moment to start your own laboratory. A new technology is usually a perfect basis for such a step.

Disseminating and leveraging the technology

When, upon publication, other scientists adopt your new technology, they will often implement improvements and new applications, which makes the technology attractive to yet more scientists. This snowball effect is one of the hallmarks of a high-impact technology. An extreme example is the recently developed CRISPR–Cas9 technology (Doudna and Charpentier, 2014), for which improvements and new applications are currently reported almost on a weekly basis. What can you do to get such a snowball rolling?First, it helps to publish the new technology in a widely read or Open Access journal, to present it at conferences, and to initiate collaborations in order to reach a broad group of potential users. Second, the threshold for others to use the new technology must be as low as possible. Thus, implementation of the technology must be simple, and users must have easy access to detailed protocols. A website with troubleshooting advice, answers to frequently asked questions, and (if applicable) software for download will also help. Depending on the complexity of the technology, it may be worth considering whether to organize hands-on training, perhaps in the form of a short course. This may seem like a big investment, but it can substantially contribute to the snowball effect.Third, materials and software required for the technology should be readily available. Technology transfer offices of research institutes often insist on the signing of a material transfer agreement (MTA) before materials such as plasmids can be shared. But all too often this leads to a substantial administrative burden and delays of weeks or even months. Free “no-strings-attached” sharing of reagents is often the best way to promote your technology—and scientific progress in general.

Patents and the commercial route

Before publication of the technology, you may consider protecting the intellectual property by filing a patent application. Most academic institutes do this, but often the associated costs are high and the ultimate profits uncertain, in part because it can be difficult to enforce protection of a patented technology (how do you prove that your technology was used by someone else?). That said, some technologies or associated materials may be more effectively scaled up and disseminated through a commercial route than via purely academic channels. Specific companies may have distribution infrastructure or technical expertise that is hard to match in an academic laboratory. Founding your own company may also be a way to give the technology more leverage, as it provides access to funds not available in an academic setting. In these cases, timely filing of a patent application may be essential. Note that in certain countries one cannot apply for a patent once the technology has been publicly disclosed (e.g., at a conference).

Competing technologies

Often different technologies for the same purpose are invented independently and more or less simultaneously. It is therefore quite likely that sooner or later an alternative technology emerges in the literature, or appears on the commercial market. This is sometimes referred to as “competing technology,” but in an academic setting this is somewhat of a misnomer, as solid science requires multiple independent methods to cross-validate results. Moreover, it is extremely rare that two independent technologies cover exactly the same spectrum of applications. For example, one technology may have a higher resolution, but the other may be superior in sensitivity. The sudden emergence of a competing technology can however have strategic consequences, and it is important to carefully define the advantages of your technology and focus on these strengths.

A bright future for technology development

New technologies generally consist of a new combination of available technologies, or apply newly discovered fundamental principles. Because the pool of available knowledge and tools continues to expand, the opportunities to devise and test new methods will only improve. This is further facilitated by the increasing quality of basic methods and tools to build on. Thus, there is a bright future for technology development. With a carefully designed strategy, the risks associated with such efforts can be minimized and the overall impact maximized. In the end, it is extremely gratifying to apply a “home-grown” technology to exciting biological questions, and to see other laboratories use it.  相似文献   

20.
Summary Mycorrhization of in vitro-propagated plantlets is having a ‘positive impact’ on their posttransplanting performance. Different aspects of the technology, such as the need for improvement, sereening bioassays for selection of the most effective strains, and determination of the multiple role played by mycorrhiza, are discussed. Various constraints pertaining to the utilization of this technology and their possible solutions, such as the use of mixed cultures and aspects of technology transfer are also reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号