首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The importance of arm-raising has been a major consideration in the functional interpretation of differences in shoulder morphology among species of nonhuman primates. Among the characters that have been associated with enhancement of the arm-raising mechanism in hominoid primates are the relative enlargement of cranial trapezius and caudal serratus anterior, as the main scapular rotators, as well as changes in scapular morphology associated with their improved leverage for scapular rotation. Yet in an EMG study of cranial trapezius and caudal serratus anterior function in the great apes, Tuttle and Basmajian (Yrbk. Phys. Anthropol. 20:491-497, 1977) found these muscles to be essentially inactive during arm-raising. Although Tuttle and Basmajian suggest that the cranial orientation of the glenoid fossa in apes has reduced the demand for scapular rotation during arm-raising, subsequent EMG studies on other primate species suggest that these muscles do play a significant role in arm motion during active locomotion. This paper presents a reexamination of muscle recruitment patterns for trapezius and caudal serratus anterior in the chimpanzee. All but the lowest parts of caudal serratus anterior were found to be highly active during arm-raising motions, justifying earlier morphological interpretations of differences in caudal serratus anterior development. The lowest digitations of this muscle, while inactive during arm-raising, displayed significant activity during suspensory postures and locomotion, presumably to control the tendency of the scapula to shift cranially relative to the rib cage. Cranial trapezius did not appear to be involved in arm-raising; instead, its recruitment was closely tied to head position.  相似文献   

2.
The purpose of this study was to examine the differences in activation levels and times of activation for the pectoralis major and anterior deltoid when performing the concentric phase of 3 upper-body lifts. Twelve college-age men and women with various degrees of lifting experience performed 3 repetitions using the 6 repetition maximum in a barbell bench press, dumbbell bench press, and dumbbell fly while being monitored for electromyographic activity in both muscles. Motor unit activation of both muscles was not significantly different during all 3 lifts. However, dumbbell flys had significantly less relative time of activation than did barbell or dumbbell bench presses. Therefore, dumbbell flys may be better suited as an auxiliary lift, whereas barbell and dumbbell bench presses may be used interchangeably in training programs. The compatibility of the barbell and dumbbell bench presses may aid lifters in overcoming training plateaus by alternating exercises for the same muscle groups.  相似文献   

3.
The present study was performed to assess the electromyographic activity of the scapular muscles during push-ups on a stable and unstable surface, in subjects with scapular dyskinesis. Muscle activation (upper trapezius [UT]; lower trapezius [LT]; upper serratus anterior [SA_5th]; lower serratus anterior [SA_7th]) and ratios (UT/LT; UT/SA_5th; UT/ SA_7th) levels were determined by surface EMG in 30 asymptomatic men with scapular dyskinesis, during push-up performed on a stable and unstable surface. Multivariate analysis of variance with repeated measures was used for statistical analyses. The unstable surface caused a decrease in the EMG activity of the serratus anterior and an increase in EMG activity of the trapezius (p = 0.001). UT/SA_5th and UT/ SA_7th ratios were higher during unstable push-ups (p = 0.001). The results suggest that, in individuals with scapular dyskinesis, there is increased EMG activity of the trapezius and decreased EMG activity of the serratus anterior in response to an unstable surface. These results suggest that the performance of the push up exercise on an unstable surface may be more favorable to produce higher levels of trapezius activation and lower levels of serratus anterior activation. However, if the goal of the exercise program is the strengthening of the SA muscle, it is suggested to perform the push up on a stable surface.  相似文献   

4.
Surface EMG was recorded in four subjects on three different occasions from the three parts of the deltoid, the clavicular part of the pectoralis major and from the infraspinatus muscles at different angles of abduction, in the frontal and scapular plane. The integrated EMG was related to the maximum values found for each muscle or muscle part during test contractions (%EMG). Linear relations can be seen for abduction angle vs %EMG. During abduction in the scapular plane the middle and posterior parts of the deltoid muscle showed significantly less activity than in the frontal plane. A simple two dimensional model to calculate the deltoid force out of total external moment at the shoulder is presented. For the middle part of the deltoid an EMG-force relation is presented. The maximal deltoid forces found during test contractions are compared with the absolute muscle force. Also, the length-force relation for the middle part of the deltoid muscle is given between 30° and 90° of abduction.  相似文献   

5.
The serratus anterior and trapezius muscles are considered to be the only upward rotators of the scapula and are very important for normal shoulder function. A variety of methods have been used to produce a maximum voluntary isometric contraction (MVIC) of these muscles for normalization of EMG data. The purpose of this study was to quantify the surface EMG activity of the serratus anterior muscle and the upper, middle, and lower parts of the trapezius during 9 manual muscle tests performed with maximum effort in 30 subjects. It was found that no one muscle test produced a MVIC for all individuals. Therefore, to perform normalization within each subject, it is suggested that the 2 or 3 tests identified in this study that produce high levels of EMG activity for each muscle be performed. The scapular protraction muscle test that is often used to normalize data for the serratus anterior muscle produced relatively low levels of EMG activity and was not found to be an optimal test. Muscle tests in which an attempt was made to de-rotate the scapula from an upwardly rotated position produced much higher levels of EMG activity in the serratus anterior muscle.  相似文献   

6.
Increased activity of the serratus anterior (SA) muscle combined with decreased activity of the pectoralis major (PM) muscle during scapular protraction exercise is a widely used method for selective strengthening of the former muscle. However, the role played by the PM during maximal scapular protraction remains unclear. The objective of our study was to investigate the effects of horizontal shoulder abduction (decreasing PM activity) and adduction (increasing activity) on the strength and activity of the scapular protractors (the SA and PM) during maximal protraction. Twenty-nine healthy males performed maximal scapular protraction combined with horizontal shoulder abduction or adduction. The strength and activity of the PM and SA decreased significantly (both p < 0.01) during maximal scapular protraction combined with horizontal shoulder abduction, compared with maximal scapular protraction alone, but increased significantly (both p < 0.01) when maximal scapular protraction was combined with horizontal shoulder adduction. We thus conclude that the PM stabilizes the activated SA during maximal scapular protraction, which effectively increases SA activity and scapular protraction strength in the serratus punch posture.  相似文献   

7.
The purpose of this study was to establish the effects of different hip rotations during isometric side-lying hip abduction (SHA) in subjects with gluteus medius (Gmed) weakness by investigating the electromyographic (EMG) amplitude of the Gmed, tensor fasciae latae (TFL) activity, and gluteus maximus (Gmax), and the activity ratio of the Gmed/TFL, Gmax/TFL, and Gmed/Gmax. Nineteen subjects with Gmed weakness were recruited for this study. Subjects performed three isometric hip abductions: frontal SHA with neutral hips (SHA-N), frontal SHA with hip medial rotation (SHA-MR), and frontal SHA with hip lateral rotation (SHA-LR). Surface EMG amplitude was measured to collect the EMG data from the Gmed, TFL, and Gmax. A one-way repeated-measures analysis of variance was used to determine the statistical significance of the Gmed, TFL, and Gmax EMG activity and the Gmed/TFL, Gmax/TFL, and Gmed/Gmax EMG activity ratios. Gmed EMG activity was significantly greater in SHA-MR than in SHA-N. TFL EMG activity was significantly greater in SHA-LR than in SHA-N. The Gmed/TFL and Gmed/Gmax EMG activity ratios were also significantly greater in SHA-MR than in SHA-N or SHA-LR. The results of this study suggest that SHA-MR can be used as an effective method to increase Gmed activation and to decrease TFL activity during SHA exercises.  相似文献   

8.
BackgroundMuscle imbalance between serratus anterior (SA), upper trapezius (UA), middle trapezius (MT), and lower trapezius (LT) muscles has been observed in subjects with subacromial impingement syndrome (SAIS).Objective(1) To investigate the effect of electromyography (EMG) biofeedback training on muscle balance ratios and scapular kinematics in healthy adults and subjects with SAIS. (2) To investigate whether the effects of EMG biofeedback on muscle balance ratios are different between groups.DesignTwelve healthy adults and 13 subjects with SAIS were recruited in this study. EMG was used to record the activity of scapular muscles. The ratios (UT/SA, UT/MT, and UT/LT) during exercises with/without EMG biofeedback were calculated. Scapular kinematics were recorded before and after exercises with/without EMG biofeedback.ResultsFor the subjects with SAIS, muscle balance ratios were lower during forward flexion with EMG biofeedback than during exercise only (UT/SA: 70.3–45.2; UT/LT: 124.8–94.6). Additionally, similar results were found during side-lying external rotation (UT/MT: 58.5–36.4). For the scapular upward rotation and tipping in both groups, there were no significant differences with and without EMG biofeedback.ConclusionEMG biofeedback improved the scapular muscular balance during training exercises in both groups. Further clinical trials should investigate the long-term effects of EMG biofeedback.  相似文献   

9.
The purpose of this study was to investigate the effects of a 6-week scapular upward rotation exercise (SURE) on scapular and clavicular alignment and scapular upward rotators strength in subjects with scapular downward rotation syndrome (SDRS). Seventeen volunteer subjects with SDRS were recruited from university populations. The alignment of the scapula and clavicle was measured using radiographic analysis and compared in subjects before and after a 6-week self-SURE program. A hand-held dynamometer was used to measure the strength of the scapular upward rotators. The subjects were instructed how to perform the self-SURE program at home. The 6-week self-SURE program was divided into two sections (the first section with non-resistive SURE during weeks 1–3, and the second section with resistive SURE using thera-band during weeks 4–6). The significance of the difference between pre- and post-program was assessed using a paired t-test, with the level of statistical significance set at p < 0.05. Significant differences between pre- and post-program were found for scapular and clavicular alignment (p < 0.05). Additionally, the comparison between pre- and post-program measurements of the strength of the scapular upward rotators showed significant differences (p < 0.05). The results of this study showed that a 6-week self-SURE program is effective for improving scapular and clavicular alignment and increasing the strength of scapular upward rotator muscles in subjects with SDRS.  相似文献   

10.
The purpose of this study was to provide evidence on the fact that the observed decrease in EMG activity of the gastrocnemius medialis (GM) at pronounced knee flexed positions is not only due to GM insufficiency, by examining muscle fascicle lengths during maximal voluntary contractions at different positions. Twenty-two male long distance runners (body mass: 78.5+/-6.7 kg, height: 183+/-6 cm) participated in the study. The subjects performed isometric maximal voluntary plantar flexion contractions (MVC) of their left leg at six ankle-knee angle combinations. To examine the resultant ankle joint moments the kinematics of the left leg were recorded using a Vicon 624 system with 8 cameras operating at 120 Hz. The EMG activity of GM, gastrocnemius lateralis (GL), soleus (SOL) and tibialis anterior (TA) were measured using surface electromyography. Synchronously, fascicle length and pennation angle values of the GM were obtained at rest and at the plateau of the maximal plantar flexion using ultrasonography. The main findings were: (a) identifiable differences in fascicle length of the GM at rest do not necessarily imply that these differences would also exist during a maximal isometric plantar flexion contraction and (b) the EMG activity of the biarticular GM during the MVC decreased at a pronounced flexed knee-joint position (up to 110 degrees ) despite of no differences in GM fascicle length. It is suggested that the decrease in EMG activity of the GM at pronounced knee flexed positions is due to a critical force-length potential of all three muscles of the triceps surae.  相似文献   

11.
Imbalance and weakness of the serratus anterior and upper trapezius force couple have been described in patients with shoulder dysfunction. There is interest in identifying exercises that selectively activate these muscles and including it in rehabilitation protocols. This study aims to verify the UT/SA electromyographic (EMG) amplitude ratio, performed in different upper limb exercises and on two bases of support. Twelve healthy men were tested (average age = 22.8 +/- 3.1 years), and surface EMG was recorded from the upper trapezius and serratus anterior using single differential surface electrodes. Volunteers performed isometric contractions over a stable base of support and on a Swiss ball during the wall push-up (WP), bench press (BP), and push-up (PU) exercises. All SEMG data are reported as a percentage of root mean square or integral of linear envelope from the maximal value obtained in one of three maximal voluntary contractions for each muscle studied. A linear mixed-effect model was performed to compare UT/SA ratio values. The WP, BP, and PU exercises showed UT/SA ratio mean +/- SD values of 0.69 +/- 0.72, 0.14 +/- 0.12, and 0.39 +/- 0.37 for stable surfaces, respectively, whereas for unstable surfaces, the values were 0.73 +/- 0.67, 0.43 +/- 0.39, and 0.32 +/- 0.30. The results demonstrate that UT/SA ratio was influenced by the exercises and by the upper limb base of support. The practical application is to show that BP on a stable surface is the exercise preferred over WP and PU on either surfaces for serratus anterior muscle training in patients with imbalance between the UT/SA force couple or serratus anterior weakness.  相似文献   

12.
Altered activity in the axioscapular muscles is considered to be an important feature in patients with neck pain. The activity of the serratus anterior (SA) and trapezius muscles during arm elevation has not been investigated in these patients. The objectives of this study was to investigate whether there is a pattern of altered activity in the SA and trapezius in patients with insidious onset neck pain (IONP) (n = 22) and whiplash associated disorders (WAD) (n = 27). An asymptomatic group was selected for baseline measurements (n = 23).Surface electromyography was used to measure the onset of muscle activation and duration of muscle activity of the SA as well as the upper, middle, and lower trapezius during unilateral arm elevation in the three subject groups. Both arms were tested.With no interaction, the main effect for the onset of muscle activation and duration of muscle activity for serratus anterior was statistically significant among the groups. Post hoc comparison revealed a significantly delayed onset of muscle activation and less duration of muscle activity in the IONP group, and in the WAD group compared to the asymptomatic group. There were no group main effects or interaction effects for upper, middle and lower trapezius.This finding may have implications for scapular stability in these patients because the altered activity in the SA may reflect inconsistent or poorly coordinated muscle activation that may reduce the quality of neuromuscular performance and induce an increased load on the cervical and the thoracic spine.  相似文献   

13.
The aim of this study was to investigate the effects of additional isometric hip adduction during the plank exercise on the abdominal muscles. Twenty healthy young men participated in this study. Surface electromyography (EMG) was used to monitor the activity of the bilateral rectus abdominis (RA), the internal oblique (IO), and the external oblique (EO) muscles. The participants performed three types of plank exercise; the standard plank exercise, the plank exercise with bilateral isometric hip adduction, and the plank exercise with unilateral isometric hip adduction. All abdominal muscle activity was significantly increased during the plank exercise combined with the bilateral and unilateral isometric hip adduction compared with the standard plank exercise (p < 0.05). Bilateral IO, EO, and left RA muscle activity was significantly increased during the unilateral isometric hip adduction compared with the bilateral isometric hip adduction (p < 0.05). These findings suggest that additional isometric hip adduction during the plank exercise could be a useful method to enhance abdominal muscle activity. In particular, the unilateral isometric hip adduction is a more beneficial exercise than the bilateral isometric hip adduction.  相似文献   

14.
The purpose of this study was to compare rectus abdominis and erector spinae muscle activity during isometric (prone bridge [PB] and superman [SM]) and dynamic strengthening exercises (back squat, front squat [FS], and military press). Participants (n = 10, age 21.8 ± 2.6 years; body mass 82.65 ± 10.80 kg, 174.5± 7.2 cm), performed each exercise in a randomized order, using a repeated-measures design. Electromyographical (EMG) activity (sampling at 2,000 Hz) of the rectus abdominis (RA) and the erector spinae (ES) muscles was recorded throughout the duration of the exercises. Intraclass correlations demonstrated the highest levels of reliability for muscle activity during the isometric exercises; however, all exercises demonstrated high level of reliability (r = 0.764-0.998, p ≤ 0.01). The PB demonstrated significantly greater (p < 0.01) RA activity compared to all other exercises. The ES activity was significantly (p < 0.01) greater during the FS (1.010 ± 0.308 root mean square value [RMS (V)]) and SM (0.951 ± 0.217 RMS[V]) and compared to all other exercises, although there was no significant difference (p > 0.05) between the FS and the SM exercise. The PB may be the most suitable exercise for strengthening the RA, compared to dynamic exercises at a low to moderate load, because of a higher level of muscle activity. The FS may be a useful alternative to isometric exercises when strengthening the ES, because it results in slightly higher muscle activity levels when using only a light to moderate load. Because of the dynamic nature of the FS, this may also be more beneficial in transferring to activities of daily living and sporting environments.  相似文献   

15.
In order to improve our understanding of the neuromuscular control of the most massive avian flight muscle, we studied the innervation pattern of the pigeon pectoralis. Nine primary branches from the rostral trunk and nine to ten branches from the caudal trunk of the pectoral nerve were identified by microdissection in ten pigeons. The region of muscle that each branch innervates was delineated by nerve stimulation studies (ten pigeons) and six regions were confirmed by glycogen depletion (ten pigeons). In pigeons, branches from the rostral nerve innervate the anterior 3/5 of the sternobrachialis (SB) head of the pectoralis and branches from the caudal trunk innervate the posterior 1/2 of the SB and all of the throacobrachials (TB). In the SB, individual branches of the rostral pectoral nerve innervate wedge-shaped muscle regions (each approximately 1.3 cm wide), collectively forming a fan shaped arrangement along the sternal carina. Adjacent muscle regions partially overlap at their boundaries. Within the thoracobrachialis (TB) head of the pectrolis, muscle regions are wider. There is a region in mid-SB-where the innervation territories of the rostral and caudal nerves oferlap. Electromyographic (EMG) activity patterns were recorded within ten of the identified muscle regions during take-off, level flapping flight, and landing. Onset of EMG activity and EMG intensity within various muscle regions exhibits significant differences both within a wingbeat cycle and among different modes of flight. The innervation pattern of the pectoralis presents the anatomical substrate for neuromuscular compartmentalization and differential EMG activity within the pectoralis may reflect sensory-motor partitioning. The extent to which the neuromuscular compartmentalization of the pectoralis corresponds to its ability to produce an array of force vectors to the wing awaits further more detailed biomechanical studies. © 1993 Wiley-Liss, Inc.  相似文献   

16.
The repeatability of initial values and rate of change of EMG signal mean spectral frequency (MNF), average rectified values (ARV), muscle fiber conduction velocity (CV) and maximal voluntary contraction (MVC) was investigated in the vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles of both legs of nine healthy male subjects during voluntary, isometric contractions sustained for 50 s at 50% MVC. The values of MVC were recorded for both legs three times on each day and for three subsequent days, while the EMG signals have been recorded twice a day for three subsequent days. The degree of repeatability was investigated using the Fisher test based upon the ANalysis Of VAriance (ANOVA), the Standard Error of the Mean (SEM) and the Intraclass Correlation Coefficient (ICC).

Data collected showed a high level of repeatability of MVC measurement (normalized SEM from 1.1% to 6.4% of the mean). MNF and ARV initial values also showed a high level of repeatability (ICC>70% for all muscles and legs except right VMO). At 50% MVC level no relevant pattern of fatigue was observed for the VMO and VL muscles, suggesting that other portions of the quadriceps might have contributed to the generated effort. These observations seem to suggest that in the investigation of muscles belonging to a multi-muscular group at submaximal level, the more selective electrically elicited contractions should be preferred to voluntary contractions.  相似文献   


17.
To elucidate the influence of muscle length on surface EMG wave form, comparisons were made of surface EMGs of the biceps and triceps brachii muscles during isometric contractions at different muscle lengths. Muscle lengths were altered by setting the elbow joint angle at several intervals between the limits of extension and flexion. The intensity of the isometric contractions was 25% of maximum voluntary contraction at the individual joint angles. Slowing was obvious in the EMG wave forms of biceps as muscle length increased. The so-called 'Piper rhythm' appeared when the muscle was more than moderately lengthened. The slowing trend with muscle lengthening, though less marked, was also seen in triceps. Zero-cross analysis revealed quasi-linear relationships between muscle length and slowing. Frequency analysis confirmed the development of 'Piper rhythm'. An attempt was made to interpret the slowing associated with muscle lengthening in terms of the propagation of myoelectric signals in muscle fibers. given the effect of muscle length on EMG wave forms, a careful control of joint angle may be required in assessing local making fatigue when using EMG spectral indices.  相似文献   

18.
The aim of the current study was to investigate the EMG activity of pectoralis major and latissimus dorsi muscles during the pullover exercise. Eight healthy male volunteers took part in the study. The EMG activity of the pectoralis major and that of the latissimus dorsi of the right side were acquired simultaneously during the pullover exercise with a free-weight barbell during both the concentric and eccentric phases of the movement. After a warm-up, all the subjects were asked to perform the pullover exercise against an external load of 30% of their body weight, during 1 set × 10 repetitions. The criterion adopted to normalize the EMG data was the maximal voluntary isometric activation. The present findings demonstrated that the barbell pullover exercise emphasized the muscle action of the pectoralis major more than that of the latissimus dorsi, and the higher activation depended on the external force lever arm produced.  相似文献   

19.
The purpose of this study was to correlate the trochlear shape and patellar tilt angle and lateral patellar displacement at rest and maximal voluntary isometric contraction (MVIC) exercises during open (OKC) and closed kinetic chain (CKC) in subjects with and without anterior knee pain. Subjects were all women, 20 who were clinically healthy and 19 diagnosed with anterior knee pain. All subjects were evaluated and subjected to magnetic resonance exams during OKC and CKC exercise with the knee placed at 15, 30, and 45 degrees of flexion. The parameters evaluated were sulcus angle, patellar tilt angle and patellar displacement using bisect offset. Pearson's r coefficient was used, with p < .05. Our results revealed in knee pain group during CKC and OKC at 15 degrees that the increase in the sulcus angle is associated with a tilt increase and patellar lateral displacement. Comparing sulcus angle, patellar tilt angle and bisect offset values between MVIC in OKC and CKC in the knee pain group, it was observed that patellar tilt angle increased in OKC only with the knee flexed at 30 degrees. Based on our results, we conclude that reduced trochlear depth is correlated with increased lateral patellar tilt and displacement during OKC and CKC at 15 degrees of flexion in people with anterior knee pain. By contrast, 30 degrees of knee flexion in CKC is more recommended in rehabilitation protocols because the patella was more stable than in other positions.  相似文献   

20.
Through the onset of post-stroke motor disorders, the normal scapular function is compromised. As a result, shoulder pain and associated upper limb dysfunctions frequently arise after stroke.This review aimed to provide a systematic overview of available literature on scapular function, i.e. scapular three-dimensional (3D) kinematics and muscle activity during elevation, in healthy persons, persons with primary shoulder disorders and post-stroke patients. 3D scapular kinematics have been widely reported in healthy persons and persons with primary shoulder disorders, whereby a general pattern of upward rotation and posterior tilt during elevation has been agreed upon. Results on scapular internal/external rotation are inconsistent. In a post-stroke population, 3D scapular kinematics are less frequently reported. Scapular muscle activity has thus far been studied to very limited extend and firm conclusions could not be drawn.Although 3D scapular kinematics and muscle activity registrations are being increasingly used, some general methodological aspects should be considered. While the International Society of Biomechanics already proposed recommendations on the definition of upper limb joint coordinate systems and rotation sequences, proper result comparison necessitates further guidelines on other methodological aspects, i.e. data collection, processing, analyzing, and reporting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号