首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allograft inflammatory factor-1 (AIF-1), an interferon (IFN)-γ-inducible calcium-binding cytokine, is associated with the inflammatory response and defense. We cloned and analyzed the expression pattern of the AIF-1 gene of the pearl oyster Pinctada martensii, hereafter designated PmAIF-1. The full-length PmAIF-1 cDNA is 946 bp in length and consists of a 5′-untranslated region (UTR) of 120 bp, a 3′-UTR of 376 bp, and an open reading frame (ORF) of 450 bp encoding a polypeptide of 149 amino acids with an estimated molecular mass of 17 kDa. Sequence analysis reveals that PmAIF-1 contains two EF hand Ca+2-binding motifs like those in previously characterized AIF-1s while alignment with known AIF-1 protein sequences reveals higher similarity to invertebrate orthologs than to those of vertebrates.Quantitative PCR analysis reveals that PmAIF-1 is constitutively expressed, with the highest expression detected in hemocytes, and the expression level of PmAIF-1 mRNA was significantly up-regulated in hemocytes, gill, digestive gland under bacterial challenge and tissue injury. After challenged by gram-negative bacteria Vibrio alginolyticus and Vibrio parahaemolyticus, gram-positive bacteria Bacillus subtilis, the expression level of this gene in hemocytes were all up-regulated and reached the maximum point at 12 h (5.80 folds, P < 0.01), 6 h (5.02 folds, P < 0.01) and 12 h (5.49 folds, P < 0.01), respectively. Under shell damage and mantle injury, PmAIF-1 mRNA increased gradually in the first 3 h and reached a peak of expression at 6 h post-injury. These findings suggest that PmAIF-1 is an acute-response protein involved in the innate immune responses of pearl oysters, and provide general information about the mechanisms of innate immune defense against bacterial infection in pearl oysters.  相似文献   

2.
3.
Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, calcium-binding, inflammation-responsive scaffold protein. Several studies have reported increased AIF-1 expression in activated macrophages and have implicated AIF-1 as a marker of activated macrophages. However, the function of AIF-1 in macrophages and the mechanism whereby it participates in macrophage activation are unknown at this time. Immunohistochemical analysis colocalized AIF-1 expression with CD68-positive macrophages in atherosclerotic human coronary arteries. Subsequent experiments were designed to determine a role for AIF-1 in macrophage activation in response to atherogenic stimuli. Stimulation of human and murine macrophages with oxidized LDL significantly increased AIF-1 expression above basal levels. Stable transfection of AIF-1 small interfering RNA (siRNA) in macrophages reduced AIF-1 protein expression by 79% and reduced macrophage proliferation by 52% (P < 0.01). Inhibition of proliferation was not due to induction of apoptosis. Sequences that did not knock down AIF-1 expression had no effect on proliferation. AIF-1 siRNA expression reduced macrophage migration by 60% (P < 0.01). Both proliferation and migration of siRNA-expressing macrophages could be restored by adenoviral expression of AIF-1 (P < 0.001 and 0.005, respectively), suggesting a tight association between AIF-1 expression and macrophage activation. Phosphorylation of Akt, p44/42 MAPK, and p38 kinase were significantly reduced in siRNA macrophages challenged with oxidized LDL (P < 0.05). Phosphorylation of p38 kinase was significantly inhibited in siRNA macrophages stimulated with T lymphocyte conditioned medium (P < 0.05). These data indicate that AIF-1 mediates atherogenesis-initiated signaling and activation of macrophages. allograft inflammatory factor-1; cell activation; small interfering RNA  相似文献   

4.
The oyster Crassostrea ariakensis is an economically important bivalve species in China, unfortunately it has suffered severe mortalities in recent years caused by rickettsia-like organism (RLO) infection. Prevention and control of this disease is a priority for the development of oyster aquaculture. Allograft inflammatory factor-1 (AIF-1) was identified as a modulator of the immune response during macrophage activation and a key gene in host immune defense reaction and inflammatory response. Therefore we investigated the functions of C. ariakensis AIF-1 (Ca-AIF1) and its antibody (anti-CaAIF1) in oyster RLO/LPS-induced disease and inflammation. Ca-AIF1 encodes a 149 amino acid protein containing two typical Ca2+ binding EF-hand motifs and shares a 48–95% amino acid sequence identity with other animal AIF-1s. Tissue-specific expression analysis indicates that Ca-AIF1 is highly expressed in hemocytes. Significant and continuous up-regulation of Ca-AIF1 is detected when hemocytes are stimulated with RLO/LPS (RLO or LPS). Treatment with recombinant Ca-AIF1 protein significantly up-regulates the expression levels of LITAF, MyD88 and TGFβ. When anti-CaAIF1 antibody is added to RLO/LPS-challenged hemocyte monolayers, a significant reduction of RLO/LPS-induced LITAF is observed at 1.5–12 h after treatment, suggesting that interference with Ca-AIF1 can suppress the inflammatory response. Furthermore, flow cytometric analysis indicated that anti-CaAIF1 administration reduces RLO/LPS-induced apoptosis and necrosis rates of hemocytes. Collectively these findings suggest that Ca-AIF1 functions as a pro-inflammatory cytokine in the oyster immune response and is a potential target for controlling RLO infection and LPS-induced inflammation.  相似文献   

5.
6.
The oyster insulin-related peptide (oIRP) is known in other organisms to play important roles in growth control and carbohydrate homeostasis. Polymorphisms of the oIRP gene were evaluated for associations with growth performance of 271 Crassostrea gigas individuals from a diallel cross among three strains of C. gigas. Thirty-one single nucleotide polymorphisms (SNPs) were revealed in 1.5 kb of the oIRP gene, and six of them were significantly associated with growth performance (P < 0.05), particularly for T1358G and G1437A which were highly correlated with all the five growth traits (shell height, shell length, shell width, body mass and soft-tissue mass) (P < 0.01). Moreover, haplotypes analysis revealed that H7 (ATGTGA) and H8 (ATGTTA) might be the most advantageous haplotypes for growth traits. The results demonstrated that the oIRP gene could influence growth performance of C. gigas and have potential applications in future genetic improvement of C. gigas.  相似文献   

7.
Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, calcium-binding, inflammation-responsive scaffold protein involved in vascular smooth muscle cell (VSMC) migration and proliferation. The objective of this study is to characterize AIF-1 functional protein interactions that may regulate VSMC activation. Through use of a bacterial two-hybrid screen, we identified a molecular interaction between AIF-1 and the small GTPase, Rac2, which was verified by pull-down and colocalization experiments. This was unexpected in that Rac2 expression had been considered to be restricted to hematopoietic cells. The Rac2/AIF-1 interaction is functional, in that a loss-of-function, point-mutated AIF-1 does not interact with Rac2; Rac2 colocalizes with AIF-1 in the cytoplasm of VSMC and cotranslocates to lamellopodia upon platelet-derived growth factor stimulation; and AIF-1 expression in VSMC leads to Rac2 activation. Because Rac2 function in VSMC had not been described, we focused on characterization of its function in these cells. Rac2 protein expression in VSMC is inducible by inflammatory cytokines, and Rac2 activation in VSMC is also responsive to inflammatory cytokines. Rac2 expression and activation patterns differ from the ubiquitously expressed Rac1. We hypothesized that Rac2 participates in VSMC activation. Retroviral overexpression of Rac2 in primary VSMC leads to increased migration, activation of the NADPH oxidation cascade, and increased activation of the Rac2 effector protein Pak1 and its proximal effectors, ERK1/2, and p38 (P < 0.05 for all). The major points of this study indicate a functional interaction between AIF-1 and Rac2 in VSMC leading to Rac2 activation and a potential function for Rac2 in inflammation-driven VSMC response to injury. allograft inflammatory factor-1; signal transduction  相似文献   

8.
Inflammasome-derived cytokines, IL-1β and IL-18, and complement cascade have been independently implicated in the pathogenesis of tuberculosis (TB)-immune reconstitution inflammatory syndrome (TB-IRIS), a complication affecting HIV+ individuals starting antiretroviral therapy (ART). Although sublytic deposition of the membrane attack complex (MAC) has been shown to promote NLRP3 inflammasome activation, it is unknown whether these pathways may cooperatively contribute to TB-IRIS. To evaluate the activation of inflammasome, peripheral blood mononuclear cells (PBMCs) from HIV-TB co-infected patients prior to ART and at the IRIS or equivalent timepoint were incubated with a probe used to assess active caspase-1/4/5 followed by screening of ASC (apoptosis-associated speck-like protein containing a CARD domain) specks as a readout of inflammasome activation by imaging flow cytometry. We found higher numbers of monocytes showing spontaneous caspase-1/4/5+ASC-speck formation in TB-IRIS compared to TB non-IRIS patients. Moreover, numbers of caspase-1/4/5+ASC-speck+ monocytes positively correlated with IL-1β/IL-18 plasma levels. Besides increased systemic levels of C1q and C5a, TB-IRIS patients also showed elevated C1q and C3 deposition on monocyte cell surface, suggesting aberrant classical complement activation. A clustering tSNE analysis revealed TB-IRIS patients are enriched in a CD14highCD16- monocyte population that undergoes MAC deposition and caspase-1/4/5 activation compared to TB non-IRIS patients, suggesting complement-associated inflammasome activation during IRIS events. Accordingly, PBMCs from patients were more sensitive to ex-vivo complement-mediated IL-1β secretion than healthy control cells in a NLRP3-dependent manner. Therefore, our data suggest complement-associated inflammasome activation may fuel the dysregulated TB-IRIS systemic inflammatory cascade and targeting this pathway may represent a novel therapeutic approach for IRIS or related inflammatory syndromes.  相似文献   

9.
The allograft inflammatory factor-1 family of proteins   总被引:5,自引:0,他引:5  
  相似文献   

10.
11.
Endothelial cell (EC) activation plays a key role in vascular inflammation, thrombosis, and angiogenesis. Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, calcium-binding, inflammation-responsive scaffold protein that has been implicated in the regulation of inflammation. The expression and function of AIF-1 in EC is uncharacterized, and the purpose of this study was to characterize AIF-1 expression and function in ECs. AIF-1 expression colocalized with CD31-positive ECs in neointima of inflamed human arteries but not normal arteries. AIF-1 is detected at low levels in unstimulated EC, but expression can be increased in response to serum and soluble factors. Stable transfection of AIF-1 small interfering RNA (siRNA) in ECs reduced AIF-1 protein expression by 73% and significantly reduced EC proliferation and migration (P < 0.05 and 0.001). Rescue of AIF-1 expression restored both proliferation and migration of siRNA-expressing ECs, and AIF-1 overexpression enhanced both of these activities, suggesting a strong association between AIF-1 expression and EC activation. Activation of mitogen-activated protein kinase p44/42 and PAK1 was significantly reduced in siRNA ECs challenged with inflammatory stimuli. Reduction of AIF-1 expression did not decrease EC tube-like structure or microvessel formation from aortic rings, but overexpression of AIF-1 did significantly increase the number and complexity of these structures. These data indicate that AIF-1 expression plays an important role in signal transduction and activation of ECs and may also participate in new vessel formation.  相似文献   

12.
《Cytokine》2015,71(2):173-178
In order to examine the immunomodulatory effects of antithrombin III (AT-III) and C1 esterase inhibitor (C1-INH) in human monocytes, we investigated the intracellular expression of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α in an ex-vivo laboratory study in a whole blood setting.Heparinized whole blood samples from 23 healthy male and female volunteers (mean age: 27 ± 7 years) were pre-incubated with clinically relevant concentrations of AT-III (n = 11) and C1-INH (n = 12), then stimulated with 0.2 ng/mL lipopolysaccharide (LPS) for 3 h. After phenotyping CD14+ monocytes, intracellular expression of IL-6, IL-8, and TNF-α was assessed using flow cytometry. In addition, 12 whole blood samples (AT-III and C1-INH, n = 6 each) were examined using hirudin for anticoagulation; all samples were processed in the same way. To exclude cytotoxicity effects, 7-amino-actinomycin D and Nonidet P40 staining were used to investigate probes.This study is the first to demonstrate the influence of C1-INH and AT-III on the monocytic inflammatory response in a whole blood setting, which mimics the optimal physiological setting. Cells treated with AT-III exhibited significant downregulation of the proportion of gated CD14+ monocytes for IL-6 and IL-8, in a dose-dependent manner; downregulation for TNF-α did not reach statistical significance. There were no significant effects on mean fluorescence intensity (MFI). In contrast, C1-INH did not significantly reduce the proportion of gated CD14+ monocytes or the MFI regarding IL-6, TNF-α, and IL-8. When using hirudin for anticoagulation, no difference in the anti-inflammatory properties of AT-III and C1-INH in monocytes occurs.Taken together, in contrast to TNF-α, IL-6 and IL-8 were significantly downregulated in monocytes in an ex-vivo setting of human whole blood when treated with AT-III. This finding implicates monocytes as an important point of action regarding the anti-inflammatory properties of AT-III in sepsis. C1-INH was unable to attenuate the monocytic response, which supports the hypothesis that other cellular components in whole blood (e.g., neutrophils) might be responsible for the known effects of C1-INH in inflammation.  相似文献   

13.
Allograft inflammatory factor-1 (AIF-1) is a 17-kDa IFN-gamma inducible Ca2+-binding EF-hand protein involved in immune dysfunction and smooth muscle cell activation. AIF-1 was solubly expressed in E. coli and purified. Crystals of AIF-1 were grown at 291 K using PEG-8000 as precipitant. Diffraction by the AIF-1 crystal extends to 3.3 A resolution, and the crystal belongs to the space group P4(3) with unit cell parameters a=b=73.4, c=49.1 A.  相似文献   

14.
Rheumatoid arthritis (RA) is characterized by massive synovial proliferation, angiogenesis, subintimal infiltration of inflammatory cells and the production of cytokines such as TNF-alpha and IL-6. Allograft inflammatory factor-1 (AIF-1) has been identified in chronic rejection of rat cardiac allografts as well as tissue inflammation in various autoimmune diseases. AIF-1 is thought to play an important role in chronic immune inflammatory processes, especially those involving macrophages. In the current work, we examined the expression of AIF-1 in synovial tissues and measured AIF-1 in synovial fluid (SF) derived from patients with either RA or osteoarthritis (OA). We also examined the proliferation of synovial cells and induction of IL-6 following AIF-1 stimulation. Immunohistochemical staining showed that AIF-1 was strongly expressed in infiltrating mononuclear cells and synovial fibroblasts in RA compared with OA. Western blot analysis and semiquantitative RT-PCR analysis demonstrated that synovial expression of AIF-1 in RA was significantly greater than the expression in OA. AIF-1 induced the proliferation of cultured synovial cells in a dose-dependent manner and increased the IL-6 production of synovial fibroblasts and PBMC. The levels of AIF-1 protein were higher in synovial fluid from patients with RA compared with patients with OA (p < 0.05). Furthermore, the concentration of AIF-1 significantly correlated with the IL-6 concentration (r = 0.618, p < 0.01). These findings suggest that AIF-1 is closely associated with the pathogenesis of RA and is a novel member of the cytokine network involved in the immunological processes underlying RA.  相似文献   

15.

Aims

Recurrent infections and activation of the inflammatory response affect the prognosis of cystic fibrosis (CF). We investigated the relationship between inflammatory response, infection, and pulmonary function in CF.

Main methods

A clinical-cross-sectional study was conducted with 86 subjects: control group (CG, n = 31, the same age and sex of the CF group), and CF group (CFG, n = 55, age: 1–16 years), further distributed into CFG negative or positive bacteriology (CFGB/CFGB+), and CFG negative or positive Pseudomonas aeruginosa (CFGPa/CFGPa+). Using the Wald test, multiple linear regression (95% confidence interval) was performed between CG and CFG, and between CG and each of the CF subgroups (CFGB/CFGB+ and CFGPa/CFGPa+). The inflammatory markers evaluated were myeloperoxidase (MPO), adenosine deaminase (ADA) activities, interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), nitric oxide metabolites (NOx) levels, and total and differential leukocyte counts.

Key findings

After adjusting for sex and age, CFG compared to CG revealed an increase of MPO, IL-1β (P < 0.001 in all subgroups), and CRP: CFG (P = 0.002), CFGB (P = 0.007), CFGB+ (P = 0.009), CFGPa (P = 0.004) and CFGPa+ (P = 0.020). NOx (P = 0.001, P < 0.001), leukocytes (P = 0.002, P = 0.001), and neutrophils (P = 0.003, P < 0.001) were increased in CFGB+ and CFGPa+, respectively. A negative correlation between FEV1 and leukocytes (P = 0.008) and FEV1 and neutrophils (P = 0.031) resulted in CFG.

Significance

The inflammatory response characterized by the increase of MPO, IL-1β, and CRP is determinant for CF. Also leukocytosis due to neutrophilia determines the pulmonary function deficiency in this disease.  相似文献   

16.
ObjectiveThe regulatory role of the Th9 cells along with its signature cytokine IL-9 in human immune system and its aberrant activation in autoimmune diseases is currently under investigation. We are reporting the functional significance of IL-9 in the pathogenesis of autoimmune inflammatory arthritis.MethodsCD3+ T cells were obtained from peripheral blood (PB) and synovial fluid (SF) of psoriatic arthritis (PsA), rheumatoid arthritis (RA), and osteoarthritis (OA) patients. MTT, FACS based CFSE dilution assay and apoptosis assay (Annexin-V) were performed to determine the pro-growth/survival effect of human recombinant IL-9 on activated CD3+ T cells. Immunoblots were performed to determine the signaling proteins responsible for the progrowth/survival effect of IL-9.ResultsSF of PsA and RA was enriched with IL-9 producing CD3+ T cells compared to the SF in OA. IL-9 level measured by ELISA was significantly elevated in PsA and RA patients compared to SF in OA (<.001). Activated T cells of PsA and RA had higher levels of IL-9 receptors. IL-9 promoted proliferation and survival of the CD3+ T cells of PB and SF of PsA and RA and compared to untreated (media) controls (p < .005, t-test). IL-9 induced proliferation of T cells was dependent on PI3K/Akt/mTOR signaling pathway.ConclusionIL-9 is functionally active, and is a pro-growth/survival factor for the localized pathologic T cells in the synovium of inflammatory arthritis. The pro-growth/survival effect is mediated by the activation of mTOR kinase cascade. To our knowledge, this is the first report of a functional role of IL-9 in human autoimmune arthritis.  相似文献   

17.
Palmitate triggers inflammatory responses in several cell types, but its effects on cardiac fibroblasts are at present unknown. The aims of the study were to (1) assess the potential of palmitate to promote inflammatory signaling in cardiac fibroblasts through TLR4 and the NLRP3 inflammasome and (2) characterize the cellular phenotype of cardiac fibroblasts exposed to palmitate. We examined whether palmitate induces inflammatory responses in cardiac fibroblasts from WT, NLRP3−/− and ASC−/− mice (C57BL/6 background). Exposure to palmitate caused production of TNF, IL-6 and CXCL2 via TLR4 activation. NLRP3 inflammasomes are activated in a two-step manner. Whereas palmitate did not prime the NLRP3 inflammasome, it induced activation in LPS-primed cardiac fibroblasts as indicated by IL-1β, IL-18 production and NLRP3-ASC co-localization. Palmitate-induced NLRP3 inflammasome activation in LPS-primed cardiac fibroblasts was associated with reduced AMPK activity, mitochondrial reactive oxygen species production and mitochondrial dysfunction. The cardiac fibroblast phenotype caused by palmitate, in an LPS and NLRP3 independent manner, was characterized by decreased cellular proliferation, contractility, collagen and MMP-2 expression, as well as increased senescence-associated β-galactosidase activity, and consistent with a state of cellular senescence. This study establishes that in vitro palmitate exposure of cardiac fibroblasts provides inflammatory responses via TLR4 and NLRP3 inflammasome activation. Palmitate also modulates cardiac fibroblast functionality, in a NLRP3 independent manner, resulting in a phenotype related to cellular senescence. These effects of palmitate could be of importance for myocardial dysfunction in obese and diabetic patients.  相似文献   

18.
Allograft inflammatory factor-1 (AIF-1) is expressed by macrophages, fibroblasts, endothelial cells and smooth muscle cells in immune-inflammatory disorders such as systemic sclerosis, rheumatoid arthritis and several vasculopathies. However, its molecular function is not fully understood. In this study, we examined gene expression profiles and induction of chemokines in monocytes treated with recombinant human AIF (rhAIF-1). Using the high-density oligonucleotide microarray technique, we compared mRNA expression profiles of rhAIF-1-stimulated CD14+ peripheral blood mononuclear cells (CD14+ PBMCs) derived from healthy volunteers. We demonstrated upregulation of genes for several CC chemokines such as CCL1, CCL2, CCL3, CCL7, and CCL20. Next, using ELISAs, we confirmed that rhAIF-1 promoted the secretion of CCL3/MIP-1α and IL-6 by CD14+ PBMCs, whereas only small amounts of CCL1, CCL2/MCP-1, CCL7/MCP-3 and CCL20/MIP-3α were secreted. Conditioned media from rhAIF-1stimulated CD14+ PBMCs resulted in migration of PBMCs. These findings suggest that AIF-1, which induced chemokines and enhanced chemotaxis of monocytes, may represent a molecular target for the therapy of immune-inflammatory disorders.  相似文献   

19.
Settlement of larvae of Crassostrea gigas on shell chips (SC) prepared from shells of 11 different species of mollusks was investigated. Furthermore, the settlement inducing compound in the shell of C. gigas was extracted and subjected to various treatments to characterize the chemical cue. C. gigas larvae settled on SC of all species tested except on Patinopecten yessoensis and Atrina pinnata. In SC of species that induced C. gigas larvae to settle, settlement was proportionate to the amount of SC supplied to the larvae. When compared to C. gigas SC, all species except Crassostrea nippona showed lower settlement inducing activities, suggesting that the cue may be more abundant or in a more available form to the larvae in shells of conspecific and C. nippona than in other species. The settlement inducing activity of C. gigas SC remained intact after antibiotic treatment. Extraction of C. gigas SC with diethyl ether (Et2O-ex), ethanol (EtOH-ex), and water (Aq-ex) did not induce larval settlement of C. gigas larvae. However, extraction of C. gigas SC with 2N of hydrochloric acid (HCl-ex) induced larval settlement that was at the same level as the SC. The settlement inducing compound in the HCl-ex was stable at 100°C but was destroyed or degraded after pepsin, trypsin, PNGase F and trifluoromethanesulfonic acid treatments. This chemical cue eluted between the molecular mass range of 45 and 150 kDa after gel filtration and revealed a major band at 55 kDa on the SDS-PAGE gel after staining with Stains-all. Thus, a 55 kDa glycoprotein component in the organic matrix of C. gigas shells is hypothesized to be the chemical basis of larval settlement on conspecifics.  相似文献   

20.
This study tested the hypothesis that melatonin (Mel) therapy preserved the brain architectural and functional integrity against ischaemic stroke (IS) dependently through suppressing the inflammatory/oxidative stress downstream signalling pathways. Adult male B6 (n = 6 per each B6 group) and TLR4 knockout (ie TLR4?/?) (n = 6 per each TLR4?/? group) mice were categorized into sham control (SCB6), SCTLR4?/?, ISB6, ISTLR4?/?, ISB6 + Mel (i.p. daily administration) and ISTLR4?/? + Mel (i.p. daily administration). By day 28 after IS, the protein expressions of inflammatory (HMBG1/TLR2/TLR4/MAL/MyD88/RAM TRIF/TRAF6/IKK‐α/p‐NF‐κB/nuclear‐NF‐κB/nuclear‐IRF‐3&7/IL‐1β/IL‐6/TNF‐α/IFN‐γ) and oxidative stress (NOX‐1/NOX‐2/ASK1/p‐MKK4&7/p‐JNK/p‐c‐JUN) downstream pathways as well as mitochondrial‐damaged markers (cytosolic cytochrome C/cyclophilin D/SRP1/autophagy) were highest in group ISB6, lowest in groups SCB6 and SCTLR4?/?, lower in group ISTLR4?/? + Mel than in groups ISTLR4?/? and ISB6 + Mel and lower in group ISB6 + Mel than in group ISTLR4?/? (all P < .0001). The brain infarct volume, brain infarct area and the number of inflammatory cells in brain (CD14/F4‐88) and in circulation (MPO+//Ly6C+/CD11b+//Ly6G+/CD11b+) exhibited an identical pattern, whereas the neurological function displayed an opposite pattern of inflammatory protein expression among the six groups (all P < .0001). In conclusion, TLR inflammatory and oxidative stress signallings played crucial roles for brain damage and impaired neurological function after IS that were significantly reversed by Mel therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号