首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Snake diversity in the island of Sri Lanka is extremely high, hosting at least 89 inland (i.e., non-marine) snake species, of which at least 49 are endemic. This includes the endemic genera Aspidura, Balanophis, Cercaspis, Haplocercus, and Pseudotyphlops, which are of uncertain phylogenetic affinity. We present phylogenetic evidence from nuclear and mitochondrial loci showing the relationships of 40 snake species from Sri Lanka (22 endemics) to the remaining global snake fauna. To determine the phylogenetic placement of these species, we create a molecular dataset containing 10 genes for all global snake genera, while also sampling all available species for genera with endemic species occurring in Sri Lanka. Our sampling comprises five mitochondrial genes (12S, 16S, cyt-b, ND2, and ND4) and five nuclear genes (BDNF, c-mos, NT3 RAG-1, and RAG-2), for a total of up to 9582 bp per taxon. We find that the five endemic genera represent portions of four independent colonizations of Sri Lanka, with Cercaspis nested within Colubrinae, Balanophis in Natricinae, Pseudotyphlops in Uropeltidae, and that Aspidura + Haplocercus represents a distinct, ancient lineage within Natricinae. We synonymize two endemic genera that render other genera paraphyletic (Haplocercus with Aspidura, and Cercaspis with Lycodon), and discover that further endemic radiations may be present on the island, including a new taxon from the blindsnake family Typhlopidae, suggesting a large endemic radiation. Despite its small size relative to other islands such as New Guinea, Borneo, and Madagascar, Sri Lanka has one of the most phylogenetically diverse island snake faunas in the world, and more research is needed to characterize the island’s biodiversity, with numerous undescribed species in multiple lineages.  相似文献   

2.
We inferred the phylogenetic relationships among members of the Poecilia sphenops species complex to resolve the colonization process and radiation of this group in Central America. We analyzed 2550 base pairs (bp) of mitochondrial DNA (mtDNA), including ATP synthase 6 and 8, cytochrome oxidase subunit I and NADH dehydrogenase subunit 2 genes, and 906 bp of the nuclear S7 ribosomal protein of 86 ingroup individuals from 61 localities spanning most of its distribution from Mexico to Panama. Our mitochondrial data rendered a well-supported phylogeny for the P. sphenops complex that differed with the nuclear data set topology, which did not recover the monophyly of the P. mexicana mitochondrial lineage. Coalescent-based simulations tests indicated that, although hybridization cannot be completely ruled out, this incongruence is most likely due to incomplete lineage sorting in this group, which also showed the widest geographic distribution. A single colonization event of Central America from South America was estimated to have occurred between the early Paleocene and Oligocene (53–22 million years ago). Subsequently, two largely differentiated evolutionary lineages diverged around the Early Oligocene–Miocene (38–13 million years ago), which are considered two separate species complexes: P. sphenops and P. mexicana, which can also be distinguished by their tricuspid and unicuspid inner jaw teeth, respectively. Ultimately, within lineage diversification occurred mainly during the Miocene (22–5 million years ago). All major cladogenetic events predated the final closure of the Isthmus of Panama. The allopatric distribution of lineages together with the long basal internodes suggest that vicariance and long term isolations could be the main evolutionary forces promoting radiation in this group, although dispersal through water barriers might also have occurred. Lastly, our results suggest the need to review the current species distribution and taxonomy of the P. sphenops complex sensu lato.  相似文献   

3.
Evolutionary relationships within and between the marine hydrophiine sea snake groups have been inferred primarily using morphological characters, and two major groups traditionally are recognized. The Aipysurus group comprises nine species in two genera, and the taxonomically chaotic Hydrophis group comprises as many as 40 species, of which 27 are generally allocated to the genus Hydrophis and 13 to ten additional genera. In addition to these two major groups are three putatively ‘primitive’ monotypic genera, Hydrelaps darwiniensis, Ephalophis greyi and Parahydrophis mertoni. The present study investigated the evolutionary relationships of 23 representative species of marine hydrophiines, comprising 15 species from the Hydrophis group, six species from the Aipysurus group, and H. darwiniensis and P. mertoni, to address two broad aims. First, the aim was to provide a robust phylogeny for sea snakes to test previous phylogenetic hypotheses based on morphology, and thus provide some taxonomic stability to the group. Second, there was interest in evaluating the hypothesis that the Hydrophis group might represent a rapidly diverged adaptive radiation. A large mitochondrial DNA data set based on the cytochrome b gene (1080 bp, 401 parsimony informative) and the 16S rRNA gene (510 bp, 57 parsimony informative) was assembled and these data were analysed using parsimony, maximum‐likelihood and Bayesian approaches. All analyses yielded virtually the same optimal tree, confirming that hydrophiine sea snakes comprise at least three lineages. The Aipysurus group formed a strongly supported and well‐resolved monophyletic clade. The Hydrophis group also formed a strongly supported clade; however, resolution among the genera and species was very poor. Hydrelaps darwiniensis and P. mertoni formed a sister clade to the Hydrophis lineage. Our phylogeny was used to test the validity of previous taxonomic and phylogenetic hypotheses, and to demonstrate that the genus Hydrophis is not monophyletic. Genetic diversity relative to phenotypic diversity is four to seven times greater in the Hydrophis lineage compared with the Aipysurus lineage. The topology of our phylogenetic hypothesis, combined with the levels of genetic divergence relative to morphological diversity, demonstrate that the Hydrophis lineage represents a rapidly diverged adaptive radiation. The data are consistent with the hypothesis that this adaptive radiation may be due to historical sea level fluctuations that have isolated populations and promoted speciation. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 89 , 523–539.  相似文献   

4.
Changes in geology, sea-level and climate are hypothesised to have been major driving processes of evolutionary diversification (speciation and extinction) in the Australo-Papuan region. Here we use complete species-level sampling and multilocus (one mitochondrial gene, five nuclear loci) coalescent analyses to estimate evolutionary relationships and test hypotheses about the role of changes in climate and landscape in the diversification of the Australo-Papuan butcherbirds and allies (Cracticinae: Cracticus, Strepera, Peltops). Multilocus species trees supported the current classification of the morphologically, ecologically and behaviourally divergent Australian Magpie (Cracticus tibicen (previously Gymnorhina tibicen)) as a member of an expanded genus Cracticus, which includes seven other species with ‘butcherbird’ morphology and behaviour. Non-monophyly of currently recognised species within Peltops and the white-throated butcherbird species-group (C. argenteus, C. mentalis, C. torquatus) at both mtDNA and nuclear loci suggest that a comprehensive taxonomic revision is warranted for both of these groups. The time-calibrated multilocus species tree revealed an early divergence between the New Guinean rainforest-restricted Peltops lineage and the largely open-habitat inhabiting Cracticus (butcherbirds and magpies) plus Strepera (currawongs) lineage around 17–28 Ma, as well as a relatively recent radiation of lineages within Cracticus over the past 8 Ma. Overall, patterns and timings of speciation were consistent with the hypothesis that both the expansion of open sclerophyllous woodlands 25–30 Ma and the formation of extensive grassland-dominated woodlands 6–8 Ma allowed the radiation of lineages adapted to open woodland habitats.  相似文献   

5.
Research on agronomic grasses has shown that Class 1 fungal endophytes (Neotyphodium/Epichloë; Clavicipitaceae) can have profound effects on host plant fitness. However, in natural systems, even basic ecological knowledge of most endophyte symbioses is lacking. Here, I describe the distribution and abundance of endophytes across 36 native (or naturalized) grasses in a previously unsurveyed region, the California Floristic Province. Symbiosis was generally low: 8.33 % of species and 18.75 % of genera hosted endophytes. I then compared the proportions of symbiotic species and genera found in California and other Mediterranean regions to the proportions found in non-Mediterranean regions. Surveys of Mediterranean-influenced regions showed significantly lower proportions of species (~66 % lower) and genera (~65 % lower) hosting endophyte than surveys of non-Mediterranean regions. This pattern suggests that selection in Mediterranean climates may not favor endophyte symbioses.  相似文献   

6.
The Neotropical knifefish genus Gymnotus is the most broadly distributed and the most diverse (34 + species) gymnotiform genus. Its wide range includes both Central and South American drainages, including the Amazon, Orinoco, and La Plata Basins. Like all gymnotiforms, Gymnotus species produce weak electric fields for both navigation and communication, and these fields exhibit interspecific variation in electric waveform characteristics. Both biogeography and electric signal evolution can profitably be analyzed in a phylogenetic context. Here, we present a total evidence phylogeny for 19 Gymnotus species based on data from the mitochondrial cytochrome b and 16S genes (1558 bp), the nuclear RAG2 gene (1223 bp), and 113 morphological characters. Our phylogenetic hypothesis resolves five distinct Gymnotus lineages. In a previous morphology-based analysis, the Central American Gymnotus cylindricus lineage was hypothesized as the sister group to all other Gymnotus species. In our analysis, the G. cylindricus lineage is nested within South American species, and molecular age estimates support a relatively recent origin for the clade in Central America. Phylogenetic optimization of electric signal waveforms indicate that the ancestral state in Gymnotus is a multiphasic (4 + phases of alternating polarity) condition, and independent phase loss has occurred in multiple lineages. Gymnotus is a model group for understanding Neotropical diversification and the evolution of communication at a continental scale.  相似文献   

7.
Community structure and species richness of arbuscular mycorrhizal fungi (Phylum Glomeromycota) were studied in sand dune sites at Itapiruba (southern), Joaquina (intermediate) and Praia Grande (northern) beaches along the coast of the state of Santa Catarina, Brazil. In each site, a 20 × 20 m plot was established and 20 soil samples collected in a regular grid pattern. Fungal spores were extracted from each sample, counted and identified to species level. A total of 25 species were recovered belonging to seven genera and five families in the Glomeromycota. Gigaspora albida and Acaulospora scrobiculata occurred in >50 % of samples at all three sites. Other common species whose sample frequency was >50 % in one or two sites were Scutellospora weresubiae, Scutellospora cerradensis and Racocetra gregaria, while the remaining majority of species were detected in <25 % of samples within a given site. Dune sites could be differentiated based on the higher frequency of occurrence of S. cerradensis and Acaulospora morrowiae in Itapiruba, S. weresubiae in Joaquina, and Scutellospora hawaiiensis in Praia Grande. No differences across sites were observed for species richness and total spore numbers, the latter averaging from 28.8 to 31.8 spores per 100 ml soil. Shannon diversity was significantly higher in Praia Grande compared to the other two sites. Differences in the relative spore abundance of genera among dunes were detected only for Scutellospora, which was significantly more abundant in the Joaquina beach. Community structure, as depicted by species rank/log abundance graphs, was not significantly different between areas according to the Kolmogorov–Smirnov two-sample test. Species accumulation curves demonstrated that 13 samples were enough to detect 90 % of all species. Overall, sand dune systems share similar arbuscular mycorrhizal fungal communities despite being geographically distant (150 km) from each other.  相似文献   

8.
With about 400 living species and 82 genera, rodents of the subfamily Sigmodontinae comprise one of the most diverse and more broadly distributed Neotropical mammalian clades. There has been much debate on the origin of the lineage or the lineages of sigmodontines that entered South America, the timing of entrance and different aspects of further diversification within South America. The ages of divergence of the main lineages and the crown age of the subfamily were estimated by using sequences of the interphotoreceptor retinoid binding protein and cytochrome b genes for a dense sigmodontine and muroid sampling. Bayesian inference using three fossil calibration points and a relaxed molecular clock estimated a middle Miocene origin for Sigmodontinae (~12 Ma), with most tribes diversifying throughout the Late Miocene (6.9–9.4 Ma). These estimates together results of analyses of ancestral area reconstructions suggest a distribution for the most recent common ancestor of Sigmodontinae in Central-South America and a South American distribution for the most recent common ancestor of Oryzomyalia.  相似文献   

9.
The phylogeny of the family Sciaridae is reconstructed, based on maximum likelihood, maximum parsimony, and Bayesian analyses of 4809 bp from two mitochondrial (COI and 16S) and two nuclear (18S and 28S) genes for 100 taxa including the outgroup taxa. According to the present phylogenetic analyses, Sciaridae comprise three subfamilies and two genus groups: Sciarinae, Chaetosciara group, Cratyninae, and Pseudolycoriella group + Megalosphyinae. Our molecular results are largely congruent with one of the former hypotheses based on morphological data with respect to the monophyly of genera and subfamilies (Sciarinae, Megalosphyinae, and part of postulated “new subfamily”); however, the subfamily Cratyninae is shown to be polyphyletic, and the genera Bradysia, Corynoptera, Leptosciarella, Lycoriella, and Phytosciara are also recognized as non-monophyletic groups. While the ancestral larval habitat state of the family Sciaridae, based on Bayesian inference, is dead plant material (plant litter + rotten wood), the common ancestors of Phytosciara and Bradysia are inferred to living plants habitat. Therefore, shifts in larval habitats from dead plant material to living plants may have occurred within the Sciaridae at least once. Based on the results, we discuss phylogenetic relationships within the family, and present an evolutionary scenario of development of larval habitats.  相似文献   

10.
Cyclestheria hislopi is thought to be the only extant species of Cyclestherida. It is the sister taxon of all Cladocera and displays morphological characteristics intermediate of Spinicaudata and Cladocera. Using one mitochondrial (COI) and two nuclear (EF1α and 28S rRNA) markers, we tested the hypothesis that C. hislopi represents a single circumtropic species. South American (French Guiana), Asian (India, Indonesia, Singapore) and several Australian populations were included in our investigation. Phylogenetic and genetic distance analyses revealed remarkable intercontinental genetic differentiation (uncorrected p-distances COI > 13%, EF1α > 3% and 28S > 4%). Each continent was found to have at least one distinct Cyclestheria species, with Australia boasting four distinct main lineages which may be attributed to two to three species. The divergence of these species (constituting crown group Cyclestherida) was, on the basis of phylogenetic analyses of COI and EF1α combined with molecular clock estimates using several fossil branchiopod calibration points or a COI substitution rate of 1.4% per million years, dated to the Cretaceous. This was when the South American lineage split from the Asian–Australian lineage, with the latter diverging further in the Paleogene. Today’s circumtropic distribution of Cyclestheria may be best explained by a combination of Gondwana vicariance and later dispersal across Asia and Australia when the tectonic plates of the two continents drew closer in the early Miocene. The lack of morphological differentiation that has taken place in this taxon over such a long evolutionary period contrasts with the high level of differentiation and diversification observed in its sister taxon the Cladocera. Further insights into the evolution of Cyclestheria may help us to understand the evolutionary success of the Cladocera.  相似文献   

11.
Sediment trap samples collected over a seven-year period (February 1991–October 1997) from Guaymas Basin in the Gulf of California were used to study the oxygen isotope composition of five species of planktonic foraminifera, Globigerinoides ruber (white), Globigerina bulloides, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, and Globorotalia menardii. The δ18O data were analyzed for temporal and interspecies variability and were compared to local hydrography to evaluate the use of each species in reconstructing past oceanographic applications. The two surface dwelling species, G. ruber and G. bulloides displayed the lowest δ18O values (~ 0.0 to ? 5.0‰), while δ18O values for the thermocline dwelling N. dutertrei, P. obliquiloculata, and G. menardii were higher (~ 0.0 to ? 2.0‰). The δ18O of G. ruber most accurately records measured sea surface temperatures (SSTs) throughout the year. G. bulloides δ18O tracks SSTs during the winter–spring upwelling period but for the remainder of the year records slightly colder, subsurface temperatures. The difference between the δ18O of the surface dwelling species, G. ruber and G. bulloides, and that of the thermocline dwelling species, N. dutertrei, P. obliquiloculata, and G. menardii, was used to estimate the surface to thermocline temperature gradient. During the winter these δ18O differences are small (~ 0.50‰) reflecting a well-mixed water column. These interspecies δ18O differences increase during the summer (~ 1.90‰) in response to the strong thermal stratification that exists at this time of year.  相似文献   

12.
13.
The wood and bark anatomy of all three species of Hypocalyptus from the monotypic South African endemic tribe Hypocalypteae were studied. Despite large morphological differences (especially in habit) the species were found to be similar in wood and bark structure. Discontinuities are quantitative only, relating mainly to differences in growth form between H. oxalidifolius, a short-lived shrublet, and the two other species, H. coluteoides and H. sophoroides, both of which are erect shrubs or small trees of up to 6 m tall. Hypocalyptus wood has a mesomorphic structure with vessels solitary or in small groups, reflecting relatively moist habitats in fynbos vegetation. In contrast to many genera of Leguminosae for which data are available, crystals are absent from the wood. This is the first report of tanniniferous tubes in the wood of Leguminosae (previously reported only in Myristicaceae and a genus from Ulmaceae). The presence of tanniniferous tubes and the absence of crystals in all three species of Hypocalyptus underline the isolated position of the genus and support its tribal status.  相似文献   

14.
Species composition and distribution of ciliates were investigated in the rumen contents of 25 domestic cattle (Bos taurus taurus L.) living in Kastamonu, Turkey. Forty-seven species and 37 morphotypes representing 15 genera were identified. Of them, a new species of Ostracodinium was recognized and described as Ostracodinium anatolicum n. sp. This new species has two caudal lobes. The dorsal lobe is small and rounded and the ventral lobe is triangular shaped and bent toward the dorsal side like a thick hook. Furthermore, the anterior end of the macronucleus (1/5 of the length) is bent toward the left like a hook. The density of rumen ciliates in cattle was 96.8 ± 43.3 × 104 cells mL−1 and the mean number of ciliate species per host was 14.2 ± 4.4. Entodinium longinucleatum, E. nanellum, E. simulans and Isotricha prostoma were the most abundant species, each with a prevalence of 88%. Entodinium chatterjeei, E. bifidum m. monospinosum, Hsiungia triciliata, Oligoisotricha bubali, Ostracodinium dogieli, O. mammosum and O. munham are new host records for cattle from Turkey.  相似文献   

15.
The acalyptrate fly superfamily Opomyzoidea, as currently recognized, is a poorly-known group of 14 families. The composition of this group and relationships among included families have been controversial. Furthermore, the delimitation of two opomyzoid families, Aulacigastridae and Periscelididae, has been unstable with respect to placement of the genera Stenomicra, Cyamops, and Planinasus. To test the monophyly of Opomyzoidea, previously proposed relationships between families, and the position of the three problematic genera, we sequenced over 3300 bp of nucleotide sequence data from the 28S ribosomal DNA and CAD (rudimentary) genes from 29 taxa representing all opomyzoid families, as well as 13 outgroup taxa. Relationships recovered differed between analyses, and only branches supporting well-established monophyletic families were recovered with high support, with a few exceptions. Opomyzoidea and its included subgroup, Asteioinea, were found to be non-monophyletic. Stenomicra, Cyamops, and Planinasus group consistently with Aulacigastridae, contrary to recent classifications. Xenasteiidae and Australimyzidae, two small, monogeneric families placed in separate superfamilies, were strongly supported as sister groups.  相似文献   

16.
Sleighophrys pustulata nov. gen., nov. spec. and Luporinophrys micelae nov. gen., nov. spec. were discovered in a slightly saline mud and soil sample from some flat, dry puddles in the Maracay National Park on the north coast of Venezuela. Their morphology was studied in vivo, in protargol preparations, and in the scanning electron microscope. The new genera are monotypic and belong to the trachelophyllid haptorids. They are characterized by the unique shape of the epicortical scales (lepidosomes). Sleighophrys pustulata, which has a size of about 180×23 μm, possesses type I and unique type V lepidosomes which are hat-shaped and about 7×7 μm in size. Luporinophrys micelae, which has a size of about 200×35 μm, possesses types I, II, and unique type VI lepidosomes which are narrow, about 10 μm high cones composed of fibrous stripes connected by polygonal meshes. The conspicuous body size and the richly structured, comparatively large lepidosomes make S. pustulata and L. micelae biogeographic flagships which may help to cast some light on the pending question whether or not microorganisms have biogeographies. The available data suggest that both species have a restricted geographic distribution, not only because they were not described previously, but mainly because they were absent in about 2000 freshwater samples from central Europe and in about 1000 soil samples collected globally.  相似文献   

17.
18.
Based on a considerably enlarged sampling, a phylogenetic analysis of the largest group of didymocarpoid Gesneriaceae, the ??advanced Asiatic and Malesian genera??, was performed, covering all but 3 of the 60 genera presently recognised in this group (20 of these, mostly from China, are monotypic). The results suggest that no fewer than 17 out of the 57 genera examined are poly- (or rarely para-)phyletic. Highly polyphyletic are Briggsia, Chirita, Henckelia and Raphiocarpus. Only a dozen of the non-monotypic genera (including the three species-richest genera, Cyrtandra, Aeschynanthus and Agalmyla) are confirmed as monophyletic entities, though some exhibit considerable genetic variation. For eight genera, no statement can be made, as only one (of two or several) species was included in the analysis. For a dozen of the (particularly Chinese) monotypic genera a close relationship (or possible congenerity) with other genera was found. In China, only Allostigma, Cathayanthe, Conandron and Metapetrocosmea seem to have no strong affinities to other genera, indicating that they represent phylogenetically isolated lineages or represent remnants of previously larger and earlier diversified groups. The present study forms the foundation for targeted molecular, morphological and phytogeographic studies of the polyphyletic and monotypic genera and particular of clades of genera with interrelations uncovered here for the first time.  相似文献   

19.
Studies on the microbial ecology of gut microbiota in bats are limited and such information is necessary in determining the ecological significance of these hosts. Short-nosed fruit bats (Cynopterus brachyotis brachyotis) are good candidates for microbiota studies given their close association with humans in urban areas. Thus, this study explores the gut microbiota of this species from Peninsular Malaysia by means of biochemical tests and 16S rRNA gene sequences analysis. The estimation of viable bacteria present in the stomach and intestine of C. b. brachyotis ranged from 3.06 × 1010 to 1.36 × 1015 CFU/ml for stomach fluid and 1.92 × 1010 to 6.10 × 1015 CFU/ml for intestinal fluid. A total of 34 isolates from the stomach and intestine of seven C. b. brachyotis were retrieved. A total of 16 species of bacteria from eight genera (Bacillus, Enterobacter, Enterococcus, Escherichia, Klebsiella, Pantoea, Pseudomonas and Serratia) were identified, Enterobacteriaceae being the most prevalent, contributing 12 out of 16 species isolated. Most isolates from the Family Enterobacteriaceae have been reported as pathogens to humans and wildlife. With the possibility of human wildlife transmission, the findings of this study focus on the importance of bats as reservoirs of potential bacterial pathogens.  相似文献   

20.
《Ecological Indicators》2008,8(5):454-461
In order to evaluate the dispersal pattern of airborne fluoride emissions, from a single source in the city of Ouro Preto, Brazil, the fluoride impact on some herbaceous plant species was studied using the plants as passive bioindicators. Foliar fluoride contents of eight species collected at different distances from an aluminium smelter were analyzed. The plant species were: Baccaharis dracunculifolia, Bidens pilosa, Borreria verticillata, Calopogonium mucunoides, Erigeron bonariensis, Hedychium coronarium, Ipomoea purpurea and Ipomoea cairica. In all species the fluoride accumulation decreased exponentially with the distance from the emission source. There was specific and distinct variation in fluoride accumulation among the species, a group of high-accumulator species (B. dracunculifolia and Bidens pilosa) and a group of low-accumulator species (I. cairica, H. coronarium and Borreria verticillata). C. mucunoides and E. bonariensis occupied an intermediate position. There was a pattern of plant contamination response during the periods analyzed. The plants nearest to the emission source, between 0.4 km northwest and 1.1 km east, showed fluoride contamination traits in leaves reaching values between 100 and 500 μg g−1. Moreover, fluoride contents higher than 1000 μg g−1 were found in these plants. At the most distant stations, situated 2.9 km northwest and 6 km east from the factory, the fluoride content of the dry matter was less than 10 μg g−1 showing that plants at those distances were submitted to minimum contamination. There were different patterns of tolerance among the species analyzed. While B. dracunculifolia accumulated fluoride up to 1500 μg g−1 in dry matter without any signs of injury, Borreria verticillata showed severe necrosis in leaves, but the fluoride content found was not higher than 120 μg g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号