首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
We obtained a full-length cDNA clone for the Mx gene of barramundi (Lates calcarifer), using RACE (rapid amplification of cDNA ends) polymerase chain reaction (PCR) amplification of RNA extracted from a barramundi brain cell line cBB. The Mx cDNA of 2.2kb contains an open reading frame (ORF) of 1875 nucleotides encoding a protein of 624 amino acids. The predicted barramundi Mx protein is 71.4 kDa and contains a tripartite guanosinetriphosphate (GTP)-binding motif at the amino terminal and a leucine zipper at the carboxyl terminal, characteristic of all known Mx proteins. Poly I:C-transfection induced the expression of Mx gene in cBB cells, and the induction level at 28 degrees C was higher than that at 20 degrees C. Moreover, Mx gene expression was also induced by viral infection, including fish nodavirus, birnavirus, and iridovirus. Among these, nodavirus was a stronger inducer than the other two viruses. Using an antiviral activity assay, we revealed that poly I:C-transfected cBB cells had antiviral activity against fish nodavirus and birnavirus, but not iridovirus. Furthermore, the replication of nodavirus and birnavirus could be restored after the expression of Mx gene was down-regulated by siRNA. Therefore, these results indicated that the expression of barramundi Mx gene was able to inhibit the proliferation of fish nodavirus and birnavirus.  相似文献   

2.
3.
To determine whether the NV gene of viral hemorrhagic septicemia virus (VHSV) is related to the type I interferon response of hosts, expression of Mx gene in Epithelioma papulosum cyprini (EPC) cells and in olive flounder (Paralichthys olivaceus) in response to infection with either wild-type VHSV or recombinant VHSVs (rVHSV-ΔNV-EGFP and rVHSV-wild) was investigated. A reporter vector was constructed for measuring Mx gene expression using olive flounder Mx promoter, in which the reporter Metridia luciferase was designed to be excreted to culture medium to facilitate measurement. The highest increase of luciferase activity was detected from supernatant of cells infected with rVHSV-ΔNV-EGFP. In contrast cells infected with wild-type VHSV showed a slight increase of the luciferase activity. Interestingly, cells infected with rVHSV-wild that has artificially changed nucleotides just before and after the NV gene ORF, also showed highly increased luciferase activity, but the increased amplitude was lower than that by rVHSV-ΔNV-EGFP. These results strongly suggest that the NV protein of VHSV plays an important role in suppressing interferon response in host cells, which provides a condition for the viruses to efficiently proliferate in host cells. In an in vivo experiment, the Mx gene expression in olive flounder challenged with the rVHSV-ΔNV-EGFP was clearly higher than fish challenged with rVHSV-wild or wild-type VHSV, suggesting that lacking of the NV gene in the genome of rVHSV-ΔNV-EGFP brought to strong interferon response that subsequently inhibit viral replication in fish.  相似文献   

4.
The relationship(s) between nodavirus infection and myostatin expression in the skeletal muscle tissue of grouper is unclear. To investigate, the grouper (Epinephelus coioides) myostatin gene was cloned and cDNA was utilized to examine the expression of the gene in skeletal muscle and serum of healthy (uninfected) grouper and fish naturally infected with nodavirus. The myostatin gene comprises three exons and two introns and is transcribed as a 2778-bp mRNA length that encodes a 376-aa precursor protein. All exon–intron boundaries conformed to the consensus sequences. Alignment of the upstream sequences indicated that the grouper myostatin promoter has been highly conserved during evolution. Sequence analyses of 1936 bp of the upstream region revealed ten E-box motifs. The protein was consistent with the predicted molecular weight (approximately 42 kDa) of the unprocessed monomeric precursor protein and the processed myostatin form of the protein secreted into the plasma. Transient transfection studies revealed that the activity of the myostatin promoter decreased in a subset of viral titers. Grouper naturally infected with nodavirus displayed downregulation of the myostatin protein.  相似文献   

5.
6.
The accessory colonization factor A (ACFA) of Vibrio alginolyticus plays an important role in the efficient colonization of the bacterium and is potential candidates for vaccine development. In present study, the acfA gene was cloned, expressed and purified. Western blot analysis revealed protein recognition with the native ACFA in different V. alginolyticus strains. To analyze the immunogenicity of the recombinant ACFA, Lutjanus erythropterus Bloch were immunized by intraperitoneal injection, and the results demonstrated that the recombinant ACFA produced an observable antibody response in all sera of the vaccinated fish. The differential expressions of RAG1 gene in various tissues of L. erythropterus were analyzed by fluorescent quantitative real-time PCR, and the results showed the RAG1 mRNA expression was significantly up-regulated in thymus, head kidney and spleen tissue. Furthermore, the protective property of recombinant ACFA was evaluated through challenge with six heterogeneous virulent V. alginolyticus strains, and the immunohistochemical analysis in different tissues after challenge with V. alginolyticus. The results showed L. erythropterus vaccinated with recombinant ACFA were more tolerant of the infection by virulent V. alginolyticus strains. The data indicate that the recombinant ACFA could provide heterologous protection for the different virulent V. alginolyticus strains.  相似文献   

7.
Naïve sea bass juveniles (38.4 ± 4.5 g) were intramuscularly infected with a sublethal dose of betanodavirus isolate 378/I03, followed after 43 days by a similar boosting. This infection resulted in an overall mortality of 7.6%. At various intervals, sampling of fish tissues was performed to investigate: i) B and T lymphocyte content in organs and tissues; ii), proliferation of leucocytes re-stimulated in vitro with inactivated virus; iii) presence of serum antibody specific for betanodavirus; iv) expression of genes coding for the following immunoregulatory molecules involved in innate and acquired responses: type I IFN, Mx, IL-1, Cox-2; IL-10, TGF-β, TCRβ, CD4, CD8α, IgM, by using a quantitative PCR array system developed for sea bass.The obtained results showed a detectable increase of T cells and B cells in PBL during betanodavirus infection. Furthermore, leucocytes obtained from blood, head kidney, and gills showed a detectable “in vitro” increase in viability upon addition of inactivated viral particles, as determined by measuring intracellular ATP concentration. ELISA analysis of sera showed that exposure to nodavirus induced a low, but specific antibody titer measured 43 days after infection, despite the presence of measurable levels of natural antibody. Finally, a strong upregulation of genes coding for type I IFN, Mx, and IgM was identified after both infection and boosting. Interestingly, an upregulation of Cox-2 until boosting, and of TGF-β and IL-10 after boosting was also observed, while the other tested genes did not show any significant variations with respect to mock-treated fish. Overall, our work represents a first comprehensive analysis of cellular and molecular immune parameters in a fish species exposed to a pathogenic virus.  相似文献   

8.
In the current work, we have cloned and sequenced the full cDNA for a Mx protein in the gilthead sea bream (Sparus aurata) by RACE PCR. The Mx cDNA of 2182 bp contained an open reading frame of 1857 bp that codes for a protein of 618 aa. Within the coding sequence, characteristic features of Mx proteins were found, such as a tripartite guanosine-5'-triphosphate (GTP)-binding motif (GXXXSGKS/T, DXXG and T/NKXD), the signature of the dynamin family, LPRG(S/K)GIVTR, and a sequence that codes for a leucine zipper at the C-terminal region of the protein. An RT-PCR was optimised to estimate the level of expression of Mx protein in sea bream. Through this method we determined that Mx is constitutively expressed in head kidney, liver, spleen, heart, gills, muscle and brain of healthy sea bream. Intramuscular challenge of sea bream with polyinosinic:polycytidylic acid (Poly I:C) up-regulated Mx expression in liver, head kidney, spleen and muscle. Constitutive expression was also found in isolated head kidney macrophages and blood leukocytes. This expression was significantly up-regulated by addition of Poly I:C. Mx was not constitutively expressed in the sea bream established cell line, SAF-1, but Poly I:C and nodavirus were also capable of inducing Mx expression in this cell line.  相似文献   

9.
10.
We examined the ability of several fish viruses to induce protection against homologous or heterologous viruses in single or double infections, and assessed whether such protection is correlated with innate immunity or expression of the Mx gene. Monolayers of BF2 cells pre-treated with supernatants of brown trout (Salmo trutta L.) macrophage cultures that had been stimulated with either polyinosinic polycytidylic acid (poly I:C) or viruses, such as infectious pancreatic necrosis virus (IPNV), infectious haematopoietic necrosis virus (IHNV) or a mixture of the two, showed varying degrees of protection against viral infections. The virus showing the strongest induction was IPNV, and the antiviral activity against IHNV was also high: around 6 log(10) reduction of virus yield. Consequently, the IPNV-IHNV co-infection yield was also reduced by varying amounts. In vivo, the cumulative mortality observed in the IPNV-IHNV co-infected fish was always less than that in those with a single infection. Stimulation with poly I:C for 7 days significantly reduced cumulative mortality in single-infected fish, but not in the double-infected, in which the IPNV was the only virus isolated from moribund animals. By RT-PCR, Mx was expressed in all the organ samples tested (kidney, liver and spleen) from virus-stimulated fish at 1, 2 and 3 days. By qRT-PCR the extent and timing of Mx expression was shown to differ in the poly I:C and the single or dual viral infections. The highest increase in Mx expression (21.6-fold above basal levels) occurred (after 24 h) in fish infected with the IHNV, and expression remained high until day 7. Mx expression in fish infected with IPNV peaked later, at 2 days post infection, and also remained high until day 7. The dual infection with IPNV-IHNV induced high Mx expression on day 1, which peaked on day 2 and remained high until day 7. These results indicate that activation of the immune system could explain the interference and loss of IHNV in the IPNV-IHNV co-infections.  相似文献   

11.
To investigate the immunological responses of turbot to nodavirus infection or pIC stimulation, we constructed cDNA libraries from liver, kidney and gill tissues of nodavirus-infected fish and examined the differential gene expression within turbot kidney in response to nodavirus infection or pIC stimulation using a turbot cDNA microarray. Turbot were experimentally infected with nodavirus and samples of each tissue were collected at selected time points post-infection. Using equal amount of total RNA at each sampling time, we made three tissue-specific cDNA libraries. After sequencing 3230 clones we obtained 3173 (98.2%) high quality sequences from our liver, kidney and gill libraries. Of these 2568 (80.9%) were identified as known genes and 605 (19.1%) as unknown genes. A total of 768 unique genes were identified.The two largest groups resulting from the classification of ESTs according to function were the cell/organism defense genes (71 uni-genes) and apoptosis-related process (23 uni-genes). Using these clones, a 1920 element cDNA microarray was constructed and used to investigate the differential gene expression within turbot in response to experimental nodavirus infection or pIC stimulation. Kidney tissue was collected at selected times post-infection (HPI) or stimulation (HPS), and total RNA was isolated for microarray analysis. Of the 1920 genes studied on the microarray, we identified a total of 121 differentially expressed genes in the kidney: 94 genes from nodavirus-infected animals and 79 genes from those stimulated with pIC. Within the nodavirus-infected fish we observed the highest number of differentially expressed genes at 24 HPI. Our results indicate that certain genes in turbot have important roles in immune responses to nodavirus infection and dsRNA stimulation.  相似文献   

12.
13.
We have previously observed that in common carp (Cyprinus carpio), administration of β-glucan (MacroGard®) as feed additive leads to a lower expression of pro-inflammatory cytokines suggesting that this immunostimulant may be preventing an acute and potentially dangerous response to infection, particularly in the gut. However, in general, mechanisms to detect and eliminate pathogens must also be induced in order to achieve an efficient clearance of the infection. Protection against viral diseases acquired through β-glucan-supplemented feed has been extensively reported for several experimental models in fish but the underlining mechanisms are still unknown. Thus, in order to better characterize the antiviral action induced by β-glucans in fish, MacroGard® was administered daily to common carp in the form of supplemented commercial food pellets. Carp were fed for a period of 25 days prior to intra-peritoneal injection with polyinosinic:polycytidylic acid (poly(I:C)), a well-known double-stranded RNA mimic that triggers a type-I interferon (IFN) response. Subsequently, a set of immune related genes, including mx, were analysed by real-time PCR on liver, spleen, head kidney and mid gut tissues. Results obtained confirmed that treatment with β-glucan alone generally down-regulated the mRNA expression of selected cytokines when compared to untreated fish, while mx gene expression remained stable or was slightly up-regulated. Injection with poly(I:C) induced a similar down-regulated gene expression pattern for cytokines in samples from β-glucan fed fish. In contrast, poly(I:C) injection markedly increased mx gene expression in samples from β-glucan fed fish but hardly in samples from fish fed control feed. In an attempt to explain the high induction of mx, we studied Toll-like receptor 3 (TLR3) gene expression in these carp. TLR3 is a prototypical pattern recognition receptor considered important for the binding of viral double-stranded RNA and triggering of a type-I IFN response. Through genome data mining, two sequences for carp tlr3 were retrieved (tlr3.1 and tlr3.2) and characterized. Constitutive gene expression of both tlr3.1 and tlr3.2 was detected by real-time PCR in cDNA of all analysed carp organs. Strikingly, 25 days after β-glucan feeding, very high levels of tlr3.1 gene expression were observed in all analysed organs, with the exception of the liver. Our data suggest that β-glucan-mediated protection against viral diseases could be due to an increased Tlr3-mediated recognition of ligands, resulting in an increased antiviral activity of Mx.  相似文献   

14.
Vibrio alginolyticus is a Gram-negative halophilic bacterium and has been recognized as an opportunistic pathogen to both humans and marine animals. So far, most studies have been focused on marine animals and few reports have been aimed at mammals, including human. In this study, we first established a mouse model to understand the pathogenic mechanism of V. alginolyticus infection. After infection via intraperitoneal injection, hematological and liver function indicators were evaluated and serum interleukin (IL)-1β and IL-6 expression were detected by ELISA. Furthermore, we compared the virulence of two V. alginolyticus strains, ATCC17749T and E0666. The results demonstrated that V. alginolyticus infection causes robust lung and liver damage and induces changes in IL-1β, IL-6, hematological, and liver indicators. In addition, the ATCC17749T strain appeared to be more virulent than the E0666 strain. Better understanding of the pathogenic mechanism of V. alginolyticus infection should guide effective prevention and therapy for V. alginolyticus infection.  相似文献   

15.
为研究赤眼鳟(Squaliobarbus curriculus)Mx蛋白(Myxovirus resistance protein)的功能, 采用简并PCR和SMART RACE方法从赤眼鳟脾脏中克隆得到Mx基因全长cDNA, 并通过生物信息学方法分析其同源性, 再利用实时荧光定量PCR (RT-qPCR)检测其在脾、肝、肠、肾等9个组织中的表达, 以及感染草鱼呼肠孤病毒(Reovirus of Grass carp) GCRV-104后不同时间点赤眼鳟Mx的时空表达规律。结果表明: 赤眼鳟Mx基因cDNA序列(ScMx)全长2325 bp, 包含5'-UTR 40 bp, 3'-UTR 371 bp和ORF 1884 bp, 共编码627个氨基酸, 其编码的Mx蛋白分子量约为70.9 kD, 理论等电点 pI 为 8.25, 具有脊椎动物Mx蛋白共有的结构特征; 赤眼鳟Mx与鲫鱼Mx3同源性最高; Mx在赤眼鳟脾、肝、肠、肾等9个组织中均有表达, 其中肝脏中的相对表达量最高, 脾脏次之, 肠组织中的表达量最低; 经GCRV-104病毒感染刺激后, ScMx在肝和脾组织中的表达量显著上调, 均在48h到达峰值, 分别为对照组的10倍(肝)和5倍(脾), 且在这两个组织中的表达模式相似, 均表现为先升高后下降的波动型变化趋势。研究表明ScMx参与了赤眼鳟抗GCRV-104病毒的免疫反应。    相似文献   

16.
Monitoring the immune response in fish over the progression of a disease is traditionally carried out by experimental infection whereby animals are killed at regular intervals and samples taken. We describe here a novel approach to infectiology for salmonid fish where blood samples are collected repeatedly in a small group of PIT-tagged animals. This approach contributes to the reduction of animals used in research and to improved data quality. Two groups of 12 PIT-tagged Atlantic salmon (Salmo salar) were i.p infected with Infectious Salmon Anaemia Virus (ISAV) or culture medium and placed in 1 m3 tanks. Blood samples were collected at 0, 4, 8, 12, 16, 21 and 25 days post infection. The viral load, immune and stress response were determined in individual fish by real-time quantitative PCR (QPCR) on the blood cells, as well as the haematocrit used as an indicator of haemolysis, a clinical consequence of ISAV infection. “In-tank” anaesthesia was used in order to reduce the stress related to chase and netting prior to sampling. The data were analysed using a statistical approach which is novel with respect to its use in fish immunology. The repeated blood collection procedure did not induce stress response as measured by HSP70 and HSP90 gene expression in the un-infected animals. A strong increase in viraemia as well as a significant induction of Mx and γIP gene expression were observed in the infected group. Interleukin 10 was found induced at the later stage of the infection whereas no induction of CD8 or γ IFN could be detected. These results and the advantages of this approach are discussed.  相似文献   

17.
Nervous necrosis virus (NNV) is classified as betanodavirus of Nodaviridae, and has caused mass mortality of numerous marine fish species at larval stage. Antimicrobial peptides (AMPs) play an important role of innate immunity either against bacterial pathogens or viruses. Up to date, little is known if any AMP could effectively inhibit fish nodaviruses and its mechanism. In this study, the antiviral activities of three antimicrobial peptides (AMPs) against grouper NNV (GNNV) were screened in the fish cell line. Two of the three AMPs, tilapia hepcidin 1-5 (TH 1-5) and cyclic shrimp anti-lipopolysaccharide factor (cSALF), were able to agglutinate purified NNV particles into clump, and the clumps were further confirmed to be viral proteins by TEM and Western blot. The NNV solution, separately pre-mixed with AMP (TH 1-5 or cSALF) or deionized-distilled water for 1 h, was used to infect GF-1 cells, and the levels of capsid protein in the GNNV-AMP-infected cells at 1 h post infection were much lower than that in the GNNV-H2O-infected cells, indicating that only a small portion of viral particles in the GNNV-AMP mixture could successfully infected the cells. Treatment of cBB cells with TH 1-5 and cSALF did not induce Mx gene expression; however, grouper epinecidin-1 (CP643-1) could induce the expression of Mx in the pre-treated cBB cells. This study revealed three AMPs with anti-NNV activity through two different mechanisms, and shed light on the future application in aquaculture.  相似文献   

18.
The heat shock proteins (HSPs) family which consists of HSP90, HSP70, and low molecular mass HSPs are involved in chaperone activity. Here, we report the cloning and characterization of HSP90AB gene from orange-spotted grouper, Epinephelus coioides. The full-length of grouper HSP90AB was 727 amino acids and possessed an ATPase domain as well as an evolutionarily conserved molecular chaperone. The HSP90AB-green fluorescent protein fusion protein was evenly distributed in the cytoplasm. Immunohistochemistry (IHC) and real-time polymerase chain reaction (PCR) analyses indicated that the expression of grouper HSP90AB was marginally increased following nodavirus infection. Grouper E. coioides that received HSP90 inhibitor geldanamycin (GA) showed an increase in HSP90AB expression and growth of nodavirus supporting nodavirus replication.  相似文献   

19.
The antibiotic resistance patterns and the plasmids profiles of the predominant etiological agent responsible for vibriosis in Tunisia, V. alginolyticus were studied to contribute to control their spread in some Mediterranean aquaculture farms and seawater. The sixty-nine V. alginolyticus strains isolated from different marine Tunisian biotopes (bathing waters, aquaculture and conchylicole farms and a river connected to the seawater during the cold seasons) were multi-drug resistant with high resistance rate to ampicillin, kanamycin, doxycyclin, erythromycin, imipinem, and nalidixic acid. The multiple resistance index ranged from 0.3 to 0.7 for the isolates of Khenis, from 0.5 to 0.8 for those of Menzel Jmil, from 0.5 to 0.75 (Hergla) and from 0.3 to 0.7 for the isolates of Oued Soltane. The high value of antibiotic resistance index was recorded for the V. alginolyticus population isolated from the fish farm in Hergla (ARI?=?0.672) followed by the population isolated from the conchylicole station of Menzel Jmil (ARI?=?0.645). The results obtained by the MIC tests confirmed the resistance of the V. alginolyticus to ampicillin, erythromycin, kanamycin, cefotaxime, streptomycin and trimethoprim. Plasmids were found in 79.48?% of the strains analyzed and 30 different plasmid profiles were observed. The strains had a high difference in the size of plasmids varying between 0.5 and 45?kb. Our study reveals that the antibiotic-resistant bacteria are widespread in the aquaculture and conchylicole farm relatively to others strains isolated from seawater.  相似文献   

20.
Vibrio alginolyticus is a gram-negative bacterium and has been recognized as an opportunistic pathogen in marine animals as well as humans. Here, we further characterized a cell death mechanism caused by this bacterium in several mammalian cell lines. The T3SS of V. alginolyticus killed HeLa cells by a very similar cell cytolysis mechanism in fish cells, as evidenced by cell rounding and LDH release; however, DNA fragmentation was not observed. Further studies showed that caspase-1 and caspase-3 were not activated during the T3SS-mediated cell death, indicating that the death mechanism is completely independent of pyroptosis and apoptosis in HeLa cells. Conversely, autophagy was detected during the T3SS-mediated cell death by the appearance of MDC-labeled punctate fluorescence and accumulation of autophagic vesicles. Moreover, western blot analysis revealed increase in conversion of LC3-I to LC3-II in infected mammalian cell lines, confirming that autophagy occurs during the process. Together, these data demonstrate that the death process used by V. alginolyticus in mammalian cells is different from that in fish cells, including induction of autophagy, cell rounding and osmotic lysis. This study provides some evidences hinting that differences in death mechanism in responses to V. alginolyticus infection may be attributed to the species of infected cells from which it was derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号