首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kallikrein-related peptidases (KLKs) play a central role in skin desquamation. They are tightly controlled by specific inhibitors, including the lymphoepithelial Kazal-type inhibitor (LEKTI) encoded by SPINK5 and LEKTI-2 encoded by SPINK9. Herein, we identify SPINK6 as a selective inhibitor of KLKs in the skin. Unlike LEKTI but similar to LEKTI-2, SPINK6 possesses only one typical Kazal domain. Its mRNA was detected to be expressed at low levels in several tissues and was induced during keratinocyte differentiation. Natural SPINK6 was purified from human plantar stratum corneum extracts. Immunohistochemical analyses revealed SPINK6 expression in the stratum granulosum of human skin at various anatomical localizations and in the skin appendages, including sebaceous glands and sweat glands. SPINK6 expression was decreased in lesions of atopic dermatitis. Using KLK5, KLK7, KLK8, KLK14, thrombin, trypsin, plasmin, matriptase, prostasin, mast cell chymase, cathepsin G, neutrophil elastase, and chymotrypsin, inhibition with recombinant SPINK6 was detected only for KLK5, KLK7, and KLK14, with apparent Ki values of 1.33, 1070, and 0.5 nm, respectively. SPINK6 inhibited desquamation of human plantar callus in an ex vivo model. Our findings suggest that SPINK6 plays a role in modulating the activity of KLKs in human skin. A selective inhibition of KLKs by SPINK6 might have therapeutic potential when KLK activity is elevated.  相似文献   

2.
Desquamation of the stratum corneum is a serine protease-dependent process. Two members of the human tissue kallikrein (KLK) family of (chymo)tryptic-like serine proteases, KLK5 and KLK7, are implicated in desquamation by digestion of (corneo)desmosomes and inhibition by desquamation-related serine protease inhibitors (SPIs). However, the epidermal localization and specificity of additional KLKs also supports a role for these enzymes in desquamation. This study aims to delineate the probable contribution of KLK1, KLK5, KLK6, KLK13, and KLK14 to desquamation by examining their interactions, in vitro, with: 1) colocalized SPI, lympho-epithelial Kazal-type-related inhibitor (LEKTI, four recombinant fragments containing inhibitory domains 1-6 (rLEKTI(1-6)), domains 6-8 and partial domain 9 (rLEKTI(6-9')), domains 9-12 (rLEKTI(9-12)), and domains 12-15 (rLEKTI(12-15)), secretory leukocyte protease inhibitor, and elafin and 2) their ability to digest the (corneo)desmosomal cadherin, desmoglein 1. KLK1 was not inhibited by any SPI tested. KLK5, KLK6, KLK13, and KLK14 were potently inhibited by rLEKTI(1-6), rLEKTI(6-9'), and rLEKTI(9-12) with Ki values in the range of 2.3-28.4 nm, 6.1-221 nm, and 2.7-416 nm for each respective fragment. Only KLK5 was inhibited by rLEKTI(12-15) (Ki = 21.8 nm). No KLK was inhibited by secretory leukocyte protease inhibitor or elafin. Apart from KLK13, all KLKs digested the ectodomain of desmoglein 1 within cadherin repeats, Ca2+ binding sites, or in the juxtamembrane region. Our study indicates that multiple KLKs may participate in desquamation through cleavage of desmoglein 1 and regulation by LEKTI. These findings may have clinical implications for the treatment of skin disorders in which KLK activity is elevated.  相似文献   

3.
We have previously presented evidence that two human kallikrein-related peptidases, KLK5 (hK5, stratum corneum tryptic enzyme, SCTE) and KLK7 (hK7, stratum corneum chymotryptic enzyme, SCCE), which are abundant in the stratum corneum, may be involved in desquamation. Since we had noted that not all trypsin-like activity in the plantar stratum corneum could be ascribed to KLK5, we set out to identify other skin proteases with similar primary substrate specificity. Here we describe purification of a protease identified as KLK14 from plantar stratum corneum, and show that this enzyme may be responsible for as much as 50% of the total trypsin-like activity in this tissue, measured as activity towards a chromogenic substrate cleaved by a wide variety of enzymes with trypsin-like specificity. This was in spite of very low levels of KLK14 protein compared to KLK5 and KLK7. KLK14 could be detected by immunoblotting in normal superficial stratum corneum of all individuals examined. The majority of KLK14 in the plantar stratum corneum is present in its catalytically active form. KLK14 could be immunohistochemically detected in sweat ducts, preferentially in the intraepidermal parts (the acrosyringium), and in sweat glands. The role played by this very efficient protease under normal and disease conditions in the skin remains to be elucidated.  相似文献   

4.
Netherton Syndrome (NS) is a rare and severe autosomal recessive skin disease which can be life-threatening in infants. The disease is characterized by extensive skin desquamation, inflammation, allergic manifestations and hair shaft defects. NS is caused by loss-of-function mutations in SPINK5 encoding the LEKTI serine protease inhibitor. LEKTI deficiency results in unopposed activities of kallikrein-related peptidases (KLKs) and aberrantly increased proteolysis in the epidermis. Spink5 -/- mice recapitulate the NS phenotype, display enhanced epidermal Klk5 and Klk7 protease activities and die within a few hours after birth because of a severe skin barrier defect. However the contribution of these various proteases in the physiopathology remains to be determined. In this study, we developed a new murine model in which Klk5 and Spink5 were both knocked out to assess whether Klk5 deletion is sufficient to reverse the NS phenotype in Spink5 -/- mice. By repeated intercrossing between Klk5 -/- mice with Spink5 -/- mice, we generated Spink5 -/- Klk5 -/- animals. We showed that Klk5 knock-out in Lekti-deficient newborn mice rescues neonatal lethality, reverses the severe skin barrier defect, restores epidermal structure and prevents skin inflammation. Specifically, using in situ zymography and specific protease substrates, we showed that Klk5 knockout reduced epidermal proteolytic activity, particularly its downstream targets proteases KLK7, KLK14 and ELA2. By immunostaining, western blot, histology and electron microscopy analyses, we provide evidence that desmosomes and corneodesmosomes remain intact and that epidermal differentiation is restored in Spink5 -/- Klk5 -/-. Quantitative RT-PCR analyses and immunostainings revealed absence of inflammation and allergy in Spink5 -/- Klk5 -/- skin. Notably, Il-1β, Il17A and Tslp levels were normalized. Our results provide in vivo evidence that KLK5 knockout is sufficient to reverse NS-like symptoms manifested in Spink5 -/- skin. These findings illustrate the crucial role of protease regulation in skin homeostasis and inflammation, and establish KLK5 inhibition as a major therapeutic target for NS.  相似文献   

5.
Netherton syndrome (NS) is a rare autosomal recessive skin disease with severe skin inflammation and scaling, a specific hair shaft defect and constant allergic manifestations. NS is caused by loss-of-function mutations in SPINK5 (serine protease inhibitor of kazal type 5) encoding LEKTI-1 (lympho-epithelial kazal type related inhibitor type 5) expressed in stratified epithelia. In vitro and in vivo studies in murine models and in NS patients have cast light on the pathogenesis of the disease and shown that LEKTI deficiency results in unopposed kallikrein-related peptidase 5 (KLK5) and KLK7 activities and to the overactivity of a new epidermal protease, elastase 2 (ELA2). Two main cascades initiated by KLK5 activity have emerged. One results in desmoglein 1 degradation and desmosome cleavage leading to stratum corneum detachment. KLK5 also activates KLK7 and ELA2, which contribute to a defective skin barrier. This facilitates allergen and microbe penetration and generates danger signals leading to caspase 1 activation and the production of active interleukin-1β. In parallel, KLK5 activates a specific cascade of allergy and inflammation by activating protease-activated receptor-2 (PAR-2) receptors. PAR-2 activation triggers the production of the major pro-Th2 cytokine TSLP (thymic stromal lymphopoietin) and several inflammatory cytokines, including tumour necrosis factor-α. Levels of thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) also contribute to allergy in a PAR-2-independent manner. Patient investigations have confirmed these abnormalities and revealed a wide spectrum of disease expression, sometimes associated with residual LEKTI expression. These results have demonstrated that the tight regulation of epidermal protease activity is essential for skin homeostasis and identified new targets for therapeutic intervention. They also provide a link with atopic dermatitis through deregulated protease activity, as recently supported by functional studies of the E420K LEKTI variant.  相似文献   

6.
LEKTI is a 15-domain serine proteinase inhibitor whose defective expression underlies the severe autosomal recessive ichthyosiform skin disease, Netherton syndrome. Here, we show that LEKTI is produced as a precursor rapidly cleaved by furin, generating a variety of single or multidomain LEKTI fragments secreted in cultured keratinocytes and in the epidermis. The identity of these biological fragments (D1, D5, D6, D8-D11, and D9-D15) was inferred from biochemical analysis, using a panel of LEKTI antibodies. The functional inhibitory capacity of each fragment was tested on a panel of serine proteases. All LEKTI fragments, except D1, showed specific and differential inhibition of human kallikreins 5, 7, and 14. The strongest inhibition was observed with D8-D11, toward KLK5. Kinetics analysis revealed that this interaction is rapid and irreversible, reflecting an extremely tight binding complex. We demonstrated that pH variations govern this interaction, leading to the release of active KLK5 from the complex at acidic pH. These results identify KLK5, a key actor of the desquamation process, as the major target of LEKTI. They disclose a new mechanism of skin homeostasis by which the epidermal pH gradient allows precisely regulated KLK5 activity and corneodesmosomal cleavage in the most superficial layers of the stratum corneum.  相似文献   

7.
Human tissue kallikreins (KLKs) are the largest family of secreted serine protease endopeptidases encoded by 15 genes clustered on chromosome 19q13.4. Multiple KLK enzymes are co-localized in the upper stratum granulosum and stratum corneum of human epidermis, and in associated appendages such as hair follicle epithelia and sweat glands. Until recently, kallikrein proteolytic activity in the skin was exclusively attributed to KLK5 and KLK7. However, wider cutaneous roles of kallikreins became evident in recent years as the proposal of KLK proteolytic activation cascades emerged. We postulate that these proteolytic enzymes may serve as promiscuous mediators of different skin barrier functions, since they are capable of proteolysing different substrates that govern skin desquamation, antimicrobial defense, and lipid permeability. Growing evidence now attests to potential kallikrein involvement in skin inflammation, pigmentation, and tumor suppression via their ability to target proteinase-activated receptor signaling pathways. Current knowledge on kallikrein roles in skin physiology and pathobiology is described in this review.  相似文献   

8.
Tissue kallikreins (KLKs), in particular KLK5, 7 and 14 are the major serine proteases in the skin responsible for skin shedding and activation of inflammatory cell signaling. In the normal skin, their activities are controlled by an endogenous protein protease inhibitor encoded by the SPINK5 gene. Loss-of-function mutations in SPINK5 leads to enhanced skin kallikrein activities and cause the skin disease Netherton Syndrome (NS). We have been developing inhibitors based on the Sunflower Trypsin Inhibitor 1 (SFTI-1) scaffold, a 14 amino acids head-to-tail bicyclic peptide with a disulfide bond. To optimize a previously reported SFTI-1 analogue (I10H), we made five analogues with additional substitutions, two of which showed improved inhibition. We then combined those substitutions and discovered a variant (Analogue 6) that displayed dual inhibition of KLK5 (tryptic) and KLK7 (chymotryptic). Analogue 6 attained a tenfold increase in KLK5 inhibition potency with an Isothermal Titration Calorimetry (ITC) Kd of 20nM. Furthermore, it selectively inhibits KLK5 and KLK14 over seven other serine proteases. Its biological function was ascertained by full suppression of KLK5-induced Protease-Activated Receptor 2 (PAR-2) dependent intracellular calcium mobilization and postponement of Interleukin-8 (IL-8) secretion in cell model. Moreover, Analogue 6 permeates through the cornified layer of in vitro organotypic skin equivalent culture and inhibits protease activities therein, providing a potential drug lead for the treatment of NS.  相似文献   

9.
Kallikrein-related peptidase-8 (KLK8) is a relatively uncharacterized epidermal protease. Although proposed to regulate skin-barrier desquamation and recovery, the catalytic activity of KLK8 was never demonstrated in human epidermis, and its regulators and targets remain unknown. Herein, we elucidated for the first time KLK8 activity in human non-palmoplantar stratum corneum and sweat ex vivo. The majority of stratum corneum and sweat KLK8 was catalytically active, displaying optimal activity at pH 8.5 and considerable activity at pH 5. We also showed that KLK8 is a keratinocyte-specific protease, not secreted by human melanocytes or dermal fibroblasts. KLK8 secretion increased significantly upon calcium induction of terminal keratinocyte differentiation, suggesting an active role for this protease in upper epidermis. Potential activators, regulators, and targets of KLK8 activity were identified by in vitro kinetic assays using pro-KLK8 and mature KLK8 recombinant proteins produced in Pichia pastoris. Mature KLK8 activity was enhanced by calcium and magnesium ions and attenuated by zinc ions and by autocleavage after Arg(164). Upon screening KLK8 cleavage of a library of FRET-quenched peptides, trypsin-like specificity was observed with the highest preference for (R/K)(S/T)(A/V) at P1-P1'-P2'. We also demonstrated that KLK5 and lysyl endopeptidase activate latent pro-KLK8, whereas active KLK8 targets pro-KLK11, pro-KLK1, and LL-37 antimicrobial peptide activation in vitro. Together, our data identify KLK8 as a new active serine protease in human stratum corneum and sweat, and we propose regulators and targets that augment its involvement in a skin barrier proteolytic cascade. The implications of KLK8 elevation and hyperactivity in desquamatory and inflammatory skin disease conditions remain to be studied.  相似文献   

10.
Human tissue kallikrein-related peptidases (KLK) are a family of 15 genes located on chromosome 19q13.4 that encode secreted serine proteases with trypsin- and/or chymotrypsin-like activity. Relatively large levels of many KLKs are present in human cervico-vaginal fluid (CVF) and in the supernatant of cultured human vaginal epithelial cells. Many KLKs are also hormonally regulated in vaginal epithelial cells, particularly by glucocorticoids and estrogens. The physiological role of KLK in the vagina is currently unknown; however, analysis of the CVF proteome has revealed clues for potential KLK functions in this environment. Here, we detail potential roles for KLKs in cervico-vaginal physiology. First, we suggest that KLKs play a role in the vagina similar to their role in skin physiology: (1) in the desquamation of vaginal epithelial cells, similar to their activity in the desquamation of skin corneocytes; and (2) in their ability to activate antimicrobial proteins in CVF as they do in sweat. Consequently, we hypothesize that dysregulated KLK expression in the vagina could lead to the development of pathological conditions such as desquamative inflammatory vaginitis. Second, we propose that KLKs may play a role in premature rupture of membranes and pre-term birth through their cleavage of fetal membrane extracellular matrix proteins.  相似文献   

11.
Human kallikrein-related peptidases (KLKs) are a family of 15 serine proteases mainly known for their biomarker utility in various neoplastic and non-neoplastic diseases. Despite significant progress in understanding their clinical application, little is known about the activation mechanism(s) of this important family of enzymes. Emerging evidence indicates that KLKs are activated in a stepwise manner, which is a characteristic of proteolytic cascades. Thus far, KLK cascades have been implicated in semen liquefaction and skin desquamation. Many members of the KLK family have been reported to be active in seminal plasma and/or skin, suggesting their involvement in common proteolytic cascades. KLK14, in particular, is highly active and has recently been proposed as one of the key trypsin-like proteases involved in skin desquamation. This study aims to elucidate a probable cascade-mediated role of KLK14 by 1) examining KLK14-mediated cleavage of a heptapeptide library encompassing activation sites of the 15 KLKs and 2) verifying activation of certain candidate downstream targets of KLK14 (i.e. pro-KLK1, -KLK3, and -KLK11). Heptapeptides encompassing activation motifs of KLK2, -3, -5, and -11 were cleaved with a high (> or =85%) cleavage efficiency. Activation of these candidates was confirmed using full-length recombinant proteins. Pro-KLK11, -KLK3, and -KLK1 were rapidly activated in a concentration-dependent manner. Pro-KLK3 regulation was bidirectional because activation was followed by inactivation via internal cleavage of active KLK3. We are proposing a putative cascade model, operating through multiple KLKs. Identification of novel members of such proteolytic cascades will aid in further defining mechanisms involved in seminal/skin homeostasis.  相似文献   

12.
Kallikrein-related peptidases (KLKs) are a group of serine proteases, expressed in several tissues. Their activity is regulated by inhibitors including members of the serine protease of Kazal-type (SPINK) family. Recently, we discovered that SPINK6 is expressed in human skin and inhibits KLK5, KLK7, KLK14 but not KLK8. In this study we tested whether SPINK6 inhibits other members of the KLK family and caspase-14. Using chromogenic substrates, SPINK6 exhibited inhibitory activity against KLK12 and KLK13 with Ki around 1 nM, KLK4 with Ki = 27.3 nM, KLK6 with Ki = 140 nM, caspase-14 with a Ki approximating 1 μM and no activity against KLK1, KLK3 and KLK11. Taken together, SPINK6 is a potent inhibitor of distinct KLKs members.  相似文献   

13.
The human kallikrein-related peptidases (KLKs) comprise 15 members (KLK1-15) and are the single largest family of serine proteases. The KLKs are utilized, or proposed, as clinically important biomarkers and therapeutic targets of interest in cancer and neurodegenerative disease. All KLKs appear to be secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their N-terminal pro-peptide. This processing is a key step in the regulation of KLK function. Much recent work has been devoted to elucidating the potential for activation cascades between members of the KLK family, with physiologically relevant KLK regulatory cascades now described in skin desquamation and semen liquefaction. Despite this expanding knowledge of KLK regulation, details regarding the potential for functional intersection of KLKs with other regulatory proteases are essentially unknown. To elucidate such interaction potential, we have characterized the ability of proteases associated with thrombostasis to hydrolyze the pro-peptide sequences of the KLK family using a previously described pro-KLK fusion protein system. A subset of positive hydrolysis results were subsequently quantified with proteolytic assays using intact recombinant pro-KLK proteins. Pro-KLK6 and 14 can be activated by both plasmin and uPA, with plasmin being the best activator of pro-KLK6 identified to date. Pro-KLK11 and 12 can be activated by a broad-spectrum of thrombostasis proteases, with thrombin exhibiting a high degree of selectivity for pro-KLK12. The results show that proteases of the thrombostasis family can efficiently activate specific pro-KLKs, demonstrating the potential for important regulatory interactions between these two major protease families.  相似文献   

14.
Kallikrein-related peptidases (KLKs) are a group of serine proteases widely expressed in various tissues and involved in a wide range of physiological and pathological processes. Although our understanding of the pathophysiological roles of most KLKs has blossomed in recent years, identification of the direct endogenous substrates of human KLKs remains an unmet objective. In this study we employed a degradomics approach to systemically investigate the endogenous substrates of KLK7 in an effort to understand the molecular pathways underlying KLK7 action in skin. We identified several previously known as well as novel protein substrates. Our most promising candidates were further validated with the use of targeted quantitative proteomics (selected reaction monitoring methods) and in vitro recombinant protein digestion assays. Our study revealed midkine, CYR61, and tenascin-C as endogenous substrates for KLK7. Interestingly, some of these substrates (e.g. midkine) were prone to proteolytic cleavage only by KLK7 (and not by other skin-associated KLKs), whereas others (e.g. CYR61 and tenascin-C) could be digested by several KLKs. Furthermore, using melanoma cell line, we show that KLK7-mediated cleavage of midkine results in an overall reduction in the pro-proliferative and pro-migratory effect of midkine. An inverse relation between KLK7 and midkine is also observed in human melanoma tissues. In summary, our degradomics approach revealed three novel endogenous substrates for KLK7, which may shed more light on the pathobiological roles of KLK7 in human skin. Similar substrate screening approaches could be applied for the discovery of biological substrates of other protease.  相似文献   

15.
LEKTI is a 120-kDa protein that plays an important role in skin development, as mutations affecting LEKTI synthesis underlie Netherton syndrome, an inherited skin disorder producing severe scaling. Its primary sequence indicates that the protein consists of 15 domains, all resembling a Kazal-type serine protease inhibitor. LEKTI and two serine proteases belonging to the human tissue kallikrein (hK) family (hK5 and hK7) are expressed in the granular layer of skin. In this study, we characterize the interaction of two recombinant LEKTI fragments containing three or four intact Kazal domains (domains 6-8 and 9-12) with recombinant rhK5, a trypsin-like protease, and recombinant rhK7, a chymotrypsin-like protease. Both fragments inhibited rhK5 similarly in binding and kinetic studies performed at pH 8.0, as well as pH 5.0, the pH of the stratum corneum where both LEKTI and proteases may function. Inhibition equilibrium constants (Ki) measured either directly in concentration-dependent studies or calculated from measured association (kass) and dissociation (kdis) rate constants were 1.2-5.5 nM at pH 8.0 and 10-20 nM at pH 5.0. At pH 8.0, kass and kdis values were 4.7 x 10(5) M(-1) s(-1) and 5.5 x 10(-4) s(-1), and at pH 5.0 they were 4.0 x 10(4) M(-1) s(-1) and 4.3 x 10(-4) s(-1), respectively. The low Ki and kdis values (t1/2 of 20-25 min) indicate tight and specific association. Only fragment 6-9' was a good inhibitor of rhK7, demonstrating a Ki of 11 nM at pH 8.0 in a reaction that was rapidly reversible. These results show that LEKTI, at least in fragment form, is a potent inhibitor of rhK5 and that this protease may be a target of LEKTI in human skin.  相似文献   

16.
Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs)   总被引:1,自引:0,他引:1  
Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn2+ ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α2-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches.  相似文献   

17.
Human tissue kallikrein-related peptidases (KLKs) are 15 hormonally regulated genes on chromosome 19q13.4 encoding secreted serine proteases. Many KLKs are expressed throughout the female reproductive system and found in cervico-vaginal fluid (CVF). Immunohistochemistry was performed to determine KLK localization in the female reproductive system (fallopian tube, endometrium, cervix and vagina tissues). KLK levels were measured in CVF and saliva over the menstrual cycle to study whether KLKs are regulated by hormonal changes during the cycle. In vitro cleavage analysis was performed to establish whether KLKs may play a role in vaginal epithelial desquamation, mucus remodeling or processing of antimicrobial proteins. KLKs were localized in the glandular epithelium of the fallopian tubes and endometrium, the cervical mucus-secreting epithelium and vaginal stratified squamous epithelium. KLK levels peaked in CVF and saliva after ovulation. In vitro cleavage analysis confirmed KLKs 5 and 12 as capable of digesting desmoglein and desmocollin adhesion proteins and cervical mucin proteins 4 and 5B. KLK5 can digest defensin-1alpha, suggesting it may aid in cervico-vaginal host defense. We provide evidence of potential physiological roles for KLKs in cervico-vaginal physiology: in desquamation of vaginal epithelial cells, remodeling of cervical mucus and processing of antimicrobial proteins.  相似文献   

18.
This paper reviews the role of stratum corneum (SC) proteases and their inhibitors in normal and xerotic skin conditions. The importance of the corneodesmosome for SC integrity is also discussed, and the effect of proteases on its disassembly. The relevance of each enzyme class is outlined, as well as their potential inhibitors. It is becoming much clearer, however, that the LEKTI family of inhibitors are critical for SC enzyme control. Delayed desquamation is the accumulation of corneocytes on the surface of the SC that leads ultimately to the cosmetic condition commonly termed as “dry skin”. The reductions of serine protease activity are a consistent theme in dry skin, and non-eczematous atopic dermatitis otherwise known as atopic xerosis leading to retention hyperkeratosis. Flaky skin is normally seen on the body whereas a rough skin is observed on the face. Increased protease activity occurs in most, if not all, inflammatory dermatoses, ranging from the genetic disorders, psoriasis and eczematous atopic dermatitis to sub-clinical barrier abnormalities induced by surfactants or by environmental influences as a result of premature desquamation. In some of these conditions a thinner SC is apparent, e.g., eczematous atopic skin or on photodamaged facial skin. A better understanding of the proteolytic events and of the regulatory mechanisms involved in desquamation should enable the design of new treatments for skin disorders associated with faulty desquamation. This new knowledge will be an important basis for new developments in ‘corneotherapy’ and ‘corneocare’.  相似文献   

19.
A new human 33-kDa serine protease was purified from human epidermis, and its cDNA was cloned from a keratinocyte library, from mRNA from a human keratinocyte line (HaCat) and from mRNA from human skin. Polyclonal antibodies specific for the new protein detected three groups of proteins in partially purified extracts of cornified eptihelium of human plantar skin. The three components are proposed to correspond to proenzyme, active enzyme, and proteolytically modified active enzyme. After N-deglycosylation, there was a decrease in apparent molecular mass of all detected components. Expression of the cloned cDNA in a eukaryotic virus-derived system yielded a recombinant protein that could be converted to an active protease by treatment with trypsin. Polymerase chain reaction analyses of cDNA from a number of human tissues showed high expression of the new enzyme in the skin and low expression in brain, placenta, and kidney. Homology searches yielded the highest score for porcine enamel matrix protease (55% amino acid sequence homology). High scores were also obtained for human and mouse neuropsin and for human stratum corneum chymotryptic enzyme. The function of this new protease, tentatively named stratum corneum tryptic enzyme, may be related to stratum corneum turnover and desquamation in the epidermis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号