首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
IL-2 stimulates extracellular signal-regulated protein kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) in various immune cell populations. The functional roles that these kinases play are still unclear. In this study, we examined whether MAPK kinase (MKK)/ERK and p38 MAPK pathways are necessary for IL-2 to activate NK cells. Using freshly isolated human NK cells, we established that an intact MKK/ERK pathway is necessary for IL-2 to activate NK cells to express at least four known biological responses: LAK generation, IFN-gamma secretion, and CD25 and CD69 expression. IL-2 induced ERK activation within 5 min. Treatment of NK cells with a specific inhibitor of MKK1/2, PD98059, during the IL-2 stimulation blocked in a dose-dependent manner each of four sequelae, with inhibition of lymphokine-activated killing induction being least sensitive to MKK/ERK pathway blockade. Activation of p38 MAPK by IL-2 was not detected in NK cells. In contrast to what was observed by others in T lymphocytes, SB203850, a specific inhibitor of p38 MAPK, did not inhibit IL-2-activated NK functions. This data indicate that p38 MAPK activation was not required for IL-2 to activate NK cells for the four functions examined. These results reveal selective signaling differences between NK cells and T lymphocytes; in NK cells, the MKK/ERK pathway and not p38 MAPK plays a critical positive regulatory role during activation by IL-2.  相似文献   

2.
IL-15: targeting CD8+ T cells for immunotherapy   总被引:1,自引:0,他引:1  
IL-15 is a pleiotropic cytokine that plays an important role in both the innate and adaptive immune system. IL-15 promotes the activation of neutrophils and macrophages, and is critical to DC function. In addition, IL-15 is essential to the development, homeostasis, function and survival of natural killer (NK) cells, NK T (NKT) cells and CD8+ T cells. Based on these properties, IL-15 has been proposed as a useful cytokine for immunotherapy. It is currently being investigated in settings of immune deficiency, for the in vitro expansion of T and NK cells, as well as an adjuvant for vaccines. In this paper, we will review the targeting of IL-15 for immunotherapy, with a particular emphasis on its effects on CD8+ T cells.  相似文献   

3.
NK cells are defined as those cells that lyse tumor cells without priming. In this study, we show that the preincubation of resting human NK cells with the leukemia cell CTV-1 primes NK cells to lyse NK-resistant cell lines, primary leukemias, and solid tumors even when HLA-matched, allogeneic or autologous. The primed NK cells remained nonresponsive to HLA-C matched and mismatched normal mononuclear cells from multiple donors. CD69, a known NK trigger receptor, was shown to be the predominant trigger on the tumor-primed NK cells because lysis was blocked with the rCD69 protein. The lack of lytic activity against normal hemopoietic cells implied that the ligand for CD69 is tumor restricted, and this was confirmed by experiments using fluorochrome labeled rCD69. It has been recently shown that resting NK cells require prior stimulation with IL-2 before triggering by all known NK-triggering ligands. In this study, we show that a tumor cell can provide the NK priming signal independently of IL-2. These data provide evidence for two NK evasion strategies for tumor cells, namely the prevention of priming (type1 evasion) and failure to trigger (type 2 evasion). Most NK-resistant cell lines are type 1 and fail to prime resting NK cells but are lysed by IL-2-primed NK cells. In contrast, CTV-1 cells prime resting NK cells but fail to trigger (type 2), and coincubation with CTV-1 primes for triggering by type 1 NK-resistant tumor cells. These tumor-activated NK cells lyse a broad spectrum of tumor cells with a degree of specificity never previously reported.  相似文献   

4.
Fu Y  Quan R  Zhang H  Hou J  Tang J  Feng WH 《Journal of virology》2012,86(14):7625-7636
Porcine reproductive and respiratory syndrome virus (PRRSV) mainly infects macrophages/dendritic cells and modulates cytokine expression in these cells. Interleukin-15 (IL-15) is a pleiotropic cytokine involved in wide range of biological activities. It has been shown to be essential for the generation, activation, and proliferation of NK and NKT cells and for the survival and activation of CD8(+) effector and memory T cells. In this study, we discovered that PRRSV infection upregulated IL-15 production at both the mRNA and protein levels in porcine alveolar macrophages (PAMs), blood monocyte-derived macrophages (BMo), and monocyte-derived dendritic cells (DCs). We subsequently demonstrated that the NF-κB signaling pathway was essential for PRRSV infection-induced IL-15 production. First, addition of an NF-κB inhibitor drastically reduced PRRSV infection-induced IL-15 production. We then found that NF-κB was indeed activated upon PRRSV infection, as evidenced by IκB phosphorylation and degradation. Moreover, we revealed an NF-κB binding motif in the cloned porcine IL-15 (pIL-15) promoter, deletion of which abrogated the pIL-15 promoter activity in PRRSV-infected alveolar macrophages. In addition, we demonstrated that PRRSV nucleocapsid (N) protein had the ability to induce IL-15 production in porcine alveolar macrophage cell line CRL2843 by transient transfection, which was mediated by its multiple motifs, and it also activated NF-κB. These data indicated that PRRSV infection-induced IL-15 production was likely through PRRSV N protein-mediated NF-κB activation. Our findings provide new insights into the molecular mechanisms underling the IL-15 production induced by PRRSV infection.  相似文献   

5.
The natural killer (NK) cells that are present in the uterine mucosa (decidua) during early pregnancy have a distinctive phenotype, CD56(bright) CD16(-). These cells have previously been shown to proliferate and be activated by interleukin (IL)-2. However, IL-2 is absent from the decidua and placenta, and we have therefore investigated whether IL-15 is present in the uterus and can act on decidual NK cells. Both IL-15 mRNA and protein were found in a variety of cells but particularly in decidual macrophages. IL-15 induced a proliferative response in decidual NK cells that was blocked by anti-IL-15 and was augmented by stem cell factor. The cytolytic activity of decidual NK cells against K562 was augmented. Interestingly, in contrast to IL-2, although activation with IL-15 resulted in some killing of JEG-3 choriocarcinoma cells, normal trophoblast cells remained resistant to lysis. These findings suggest that IL-15 is a candidate cytokine responsible for NK cell proliferation in vivo in the progesterone-dominated secretory endometrium and early decidua.  相似文献   

6.
7.
IL-2 and IL-15 are lymphocyte growth factors produced by different cell types with overlapping functions in immune responses. Both cytokines costimulate lymphocyte proliferation and activation, while IL-15 additionally promotes the development and survival of NK cells, NKT cells, and intraepithelial lymphocytes. We have investigated the effects of IL-2 and IL-15 on proliferation, cytotoxicity, and cytokine secretion by human PBMC subpopulations in vitro. Both cytokines selectively induced the proliferation of NK cells and CD56(+) T cells, but not CD56(-) lymphocytes. All NK and CD56(+) T cell subpopulations tested (CD4(+), CD8(+), CD4(-)CD8(-), alphabetaTCR(+), gammadeltaTCR(+), CD16(+), CD161(+), CD158a(+), CD158b(+), KIR3DL1(+), and CD94(+)) expanded in response to both cytokines, whereas all CD56(-) cell subpopulations did not. Therefore, previously reported IL-15-induced gammadelta and CD8(+) T cell expansions reflect proliferations of NK and CD56(+) T cells that most frequently express these phenotypes. IL-15 also expanded CD8alpha(+)beta(-) and Valpha24Vbeta11 TCR(+) T cells. Both cytokines stimulated cytotoxicity by NK and CD56(+) T cells against K562 targets, but not the production of IFN-gamma, TNF-alpha, IL-2, or IL-4. However, they augmented cytokine production in response to phorbol ester stimulation or CD3 cross-linking by inducing the proliferation of NK cells and CD56(+) T cells that produce these cytokines at greater frequencies than other T cells. These results indicate that IL-2 and IL-15 act at different stages of the immune response by expanding and partially activating NK receptor-positive lymphocytes, but, on their own, do not influence the Th1/Th2 balance of adaptive immune responses.  相似文献   

8.
Despite recent gains in knowledge regarding CD1d-restricted NKT cells, very little is understood of non-CD1d-restricted NKT cells such as CD8(+)NK1.1(+) T cells, in part because of the very small proportion of these cells in the periphery. In this study we took advantage of the high number of CD8(+)NK1.1(+) T cells in IL-15-transgenic mice to characterize this T cell population. In the IL-15-transgenic mice, the absolute number of CD1d-tetramer(+) NKT cells did not increase, although IL-15 has been shown to play a critical role in the development and expansion of these cells. The CD8(+)NK1.1(+) T cells in the IL-15-transgenic mice did not react with CD1d-tetramer. Approximately 50% of CD8(+)NK1.1(+) T cells were CD8alphaalpha. In contrast to CD4(+)NK1.1(+) T cells, which were mostly CD1d-restricted NKT cells and of which approximately 70% were CD69(+)CD44(+), approximately 70% of CD8(+)NK1.1(+) T cells were CD69(-)CD44(+). We could also expand similar CD8alphaalphaNK1.1(+) T cells but not CD4(+) NKT cells from CD8alpha(+)beta(-) bone marrow cells cultured ex vivo with IL-15. These results indicate that the increased CD8alphaalphaNK1.1(+) T cells are not activated conventional CD8(+) T cells and do not arise from conventional CD8alphabeta precursors. CD8alphaalphaNK1.1(+) T cells produced very large amounts of IFN-gamma and degranulated upon TCR activation. These results suggest that high levels of IL-15 induce expansion or differentiation of a novel NK1.1(+) T cell subset, CD8alphaalphaNK1.1(+) T cells, and that IL-15-transgenic mice may be a useful resource for studying the functional relevance of CD8(+)NK1.1(+) T cells.  相似文献   

9.
Agents that enhance dendritic cell maturation can enhance T-cell activation and therefore may improve the efficiency of vaccines or improve cellular immunotherapy. Previously, we demonstrated that a novel low-molecular-weight synthetic immune response modifier, R-848, induces IL-12 and IFN-alpha secretion from monocytes and macrophages. Here we report that R-848 induces the maturation of human monocyte-derived dendritic cells. Characteristic of dendritic cell maturation, R-848 treatment induces cell surface expression of CD83 and increases cell surface expression of CD80, CD86, CD40, and HLA-DR. Additionally, R-848 induces cytokine (IL-6, IL-12, TNF-alpha, IFN-alpha) and chemokine (IL-8, MIP-1alpha, MCP-1) secretion from dendritic cells. Most significantly, R-848 enhances dendritic cell antigen presenting function, as measured by increased T-cell proliferation and T-cell cytokine secretion in both allogeneic and autologous T-cell systems. Consequently, low-molecular-weight synthetic molecules such as R-848 and its derivatives may be useful as vaccine adjuvants or as ex vivo stimulators of dendritic cells for cellular immunotherapy.  相似文献   

10.
Toll-like receptors (TLRs) play a fundamental role in the recognition of bacteria and viruses. TLR3 is activated by viral dsRNA and polyinosinic-polycytidylic acid (poly(I:C)), a synthetic mimetic of viral RNA. We show that NK cells, known for their capacity to eliminate virally infected cells, express TLR3 and up-regulate TLR3 mRNA upon poly(I:C) stimulation. Treatment of highly purified NK cells with poly(I:C) significantly augments NK cell-mediated cytotoxicity. Poly(I:C) stimulation also leads to up-regulation of activation marker CD69 on NK cells. Furthermore, NK cells respond to poly(I:C) by producing proinflammatory cytokines like IL-6 and IL-8, as well as the antiviral cytokine IFN-gamma. The induction of cytokine production by NK cells was preceded by activation of NF-kappaB. We conclude that the ability of NK cells to directly recognize and respond to viral products is important in mounting effective antiviral responses.  相似文献   

11.
It is widely believed that the alveolar epithelium is unresponsive to LPS, in the absence of serum, due to low expression of TLR4 and CD14. Furthermore, the responsiveness of the epithelium to TLR-2 ligands is also poorly understood. We hypothesised that human alveolar type I (ATI) and type II (ATII) epithelial cells were responsive to TLR2 and TLR4 ligands (MALP-2 and LPS respectively), expressed the necessary TLRs and co-receptors (CD14 and MD2) and released distinct profiles of cytokines via differential activation of MAP kinases. Primary ATII cells and alveolar macrophages and an immortalised ATI cell line (TT1) elicited CD14 and MD2-dependent responses to LPS which did not require the addition of exogenous soluble CD14. TT1 and primary ATII cells expressed CD14 whereas A549 cells did not, as confirmed by flow cytometry. Following LPS and MALP-2 exposure, macrophages and ATII cells released significant amounts of TNFα, IL-8 and MCP-1 whereas TT1 cells only released IL-8 and MCP-1. P38, ERK and JNK were involved in MALP-2 and LPS-induced cytokine release from all three cell types. However, ERK and JNK were significantly more important than p38 in cytokine release from macrophages whereas all three were similarly involved in LPS-induced mediator release from TT1 cells. In ATII cells, JNK was significantly more important than p38 and ERK in LPS-induced MCP-1 release. MALP-2 and LPS exposure stimulated TLR4 protein expression in all three cell types; significantly more so in ATII cells than macrophages and TT1 cells. In conclusion, this is the first study describing the expression of CD14 on, and TLR2 and 4 signalling in, primary human ATII cells and ATI cells; suggesting that differential activation of MAP kinases, cytokine secretion and TLR4 expression by the alveolar epithelium and macrophages is important in orchestrating a co-ordinated response to inhaled pathogens.  相似文献   

12.
This study examines the effect of fixed AK-5 tumour cells on rat NK cells. Co-culture of NK cells with fixed tumour cells augmented the cytotoxicity of NK cells against NK-sensitive targets, YAC-1 and AK-5, and induced the secretion of IFN-gamma by NK cells. Antibody against IFN-gamma suppressed the anti-tumour activity of NK cells, whereas the addition of T cells during co-culture enhanced this activity. However, macrophages and B cells had no significant effect when present during co-culture with NK cells. All the inducible cytotoxicity was contained within the NK (CD161+) and NKT (CD3+, CD161+) subsets of lymphocytes. However, in the presence of T cells, the cytolytic potential of NKT cells was higher than that of NK cells alone. The augmentation of cytotoxic activity of NK cells by AK-5 cells in presence of T cells was dependent on IL-2 and IFN-gamma secretion. NK cell activation was blocked by specific antibodies to IL-2 and IFN-gamma in the presence of T cells. Interaction between fixed AK-5 cells with NK and T cell populations induced the expression of Fas-L and perforin in NK cells. These data demonstrate that fixed AK-5 cells initiated cytokine synthesis by NK cells, and the enhanced cytotoxic activity in the presence of T cells was induced as a consequence of the products secreted by activated T lymphocytes. The present observations reflect the possible interactions taking place in vivo after the transplantation of AK-5 tumour in animals. They also suggest direct activation of NK cells after their interaction with the tumour cells.  相似文献   

13.
NKG2D is an activation receptor on NK cells and has been demonstrated as a primary cytotoxicity receptor for mouse NK cells. Primary rejection of class I-deficient RMA-S lymphoma cells expressing the NKG2D ligand, retinoic acid early inducible-1beta, was critically dependent upon NK cell perforin and occurred independently of T cells. NKG2D-triggered NK cell rejection of RMA-S-retinoic acid early inducible-1beta tumor primed a secondary tumor-specific T cell response mediated by both CD4+ and CD8+ T cells in the effector phase. Surprisingly, during the priming phase, CD4+ T cells, but not CD8+ T cells, were also required to generate this secondary T cell immunity; however, T cell priming was independent of Th1 cytokines, such as IFN-gamma and IL-12. These data imply a novel pathway for priming T cell immunity, that is, stimulated upon NK cell-mediated cytotoxicity of NKG2D ligand-expressing tumor cells, dependent upon CD4+ T cells in the primary phase, and independent of conventional Th1-type immunity.  相似文献   

14.
Although CD4+CD25+ Treg (Treg) cells are known to modulate NK cell functions, the modulation mechanism of these cells in cord blood has not been fully clarified. The purpose of this study was to clarify the mechanism whereby cord blood Treg cells modulate cord NK cells. By performing various cultures of purified NK cells with or without autologous Treg cells, diminished inhibitory effects of cord Treg cells towards cord NK cell functions, including activation, cytokine production, and cytotoxicity, were observed. We also observed lower secretion of sTGF-beta1 and lower expression of mTGF-beta1 by cord Treg cells than by adult Treg cells. These data revealed the capability of adult Treg cells to suppress rhIL-2-stimulated NK cell function by TGF-beta1, both membrane-bound and soluble types. The reduced inhibitory capabilities of cord Treg cells compared with adult Treg cells is thought to be due to insufficient expression of TGF-beta1.  相似文献   

15.
16.
There is growing interest in HIV-specific antibody-dependent cellular cytotoxicity (ADCC) as an effective immune response to prevent or control HIV infection. ADCC relies on innate immune effector cells, particularly NK cells, to mediate control of virus-infected cells. The activation of NK cells (i.e., expression of cytokines and/or degranulation) by ADCC antibodies in serum is likely subject to the influence of other factors that are also present. We observed that the HIV-specific ADCC antibodies, within serum samples from a panel of HIV-infected individuals induced divergent activation profiles of NK cells from the same donor. Some serum samples primarily induced NK cell cytokine expression (i.e., IFNγ), some primarily initiated NK cell expression of a degranulation marker (CD107a) and others initiated a similar magnitude of responses across both effector functions. We therefore evaluated a number of HIV-relevant soluble factors for their influence on the activation of NK cells by HIV-specific ADCC antibodies. Key findings were that the cytokines IL-15 and IL-10 consistently enhanced the ability of NK cells to respond to HIV-specific ADCC antibodies. Furthermore, IL-15 was demonstrated to potently activate "educated" KIR3DL1(+) NK cells from individuals carrying its HLA-Bw4 ligand. The cytokine was also demonstrated to activate "uneducated" KIR3DL1(+) NK cells from HLA-Bw6 homozygotes, but to a lesser extent. Our results show that cytokines influence the ability of NK cells to respond to ADCC antibodies in vitro. Manipulating the immunological environment to enhance the potency of NK cell-mediated HIV-specific ADCC effector functions could be a promising immunotherapy or vaccine strategy.  相似文献   

17.
Resistin is an adipokine whose physiologic role in obesity, type II diabetes mellitus, and inflammatory diseases has been a subject of debate because while it is expressed in adipocytes and adipose tissue in mouse, it is expressed in leukocytes, such as macrophages, in human. In the present study, we attempt to define the effect of resistin on human dendritic cells (DCs) derived from CD14+ monocytes. When DCs were stimulated with lipoteichoic acid (LTA) and treated with various concentrations of resistin, antigen-uptake process and the endocytic capacity of DCs were decreased. It is intriguing that resistin attenuated cytokine production in LTA-primed DCs. Consequently, T cell activity was reduced when lymphocytes were mixed with Staphylococcus aureus-primed autologous DCs treated with resistin compared to S. aureus-primed DCs without resistin. Our results suggest that resistin interferes with the efficacy of immune responses activated by Gram-positive bacterial infection in human DCs.  相似文献   

18.
Engagement of CD40 on antigen presenting cells (APC) is central to the initiation of cell-mediated immune response. Here, we investigated the ability of CD40 ligation on APC to induce NK cell-mediated cytotoxicity in the human system and the mechanism(s) underlying this process. We showed that APC (consisting in adherent peripheral blood mononuclear cells) (PBMC), pre-stimulated with anti-CD40 monoclonal antibodies and co-cultured with autologous non-adherent PBMC for 5-9 days, induced CD3-/CD56+ NK cell-mediated cytotoxicity as well as CD3+/CD56+ T cell-mediated unrestricted cytotoxic activity. The generation of NK cell-mediated cytotoxicity was independent on cell-to-cell contact between CD40-triggered APC and NK cells. Moreover, we found that IL-12 did not play a role in NK cells induction by anti-CD40 priming, while IL-2 and IL-15 did play a role. Our results provide an insight into the mechanism by which NK cells are activated in peripheral blood and useful informations for therapeutic application of anti-CD40 antibodies.  相似文献   

19.
NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms.  相似文献   

20.
In this study we have analyzed the interaction between in vitro cultured bone marrow stromal cells (BMSC) and NK cells. Ex vivo-isolated NK cells neoexpressed the activation Ag CD69 and released IFN-gamma and TNF-alpha upon binding with BMSC. Production of these proinflammatory cytokines was dependent on ligation of ICAM1 expressed on BMSC and its receptor LFA1 on NK cells. Furthermore, the NKp30, among natural cytotoxicity receptors, appeared to be primarily involved in triggering NK cells upon interaction with BMSC. Unexpectedly, autologous IL-2-activated NK cells killed BMSC. Again, LFA1/ICAM1 interaction plays a key role in NK/BMSC interaction; this interaction is followed by a strong intracellular calcium increase in NK cells. More importantly, NKG2D/MHC-I-related stress-inducible molecule A and/or NKG2D/UL-16 binding protein 3 engagement is responsible for the delivery of a lethal hit. It appears that HLA-I molecules do not protect BMSC from NK cell-mediated injury. Thus, NK cells, activated upon binding with BMSC, may regulate BMSC survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号