共查询到20条相似文献,搜索用时 15 毫秒
1.
Y.G. Kim 《Free radical research》2013,47(12):1243-1250
Laser therapy has gained wide acceptance applications to many medical disciplines. The side effect-effects from laser therapy involve the potential for interaction with cellular and extracellular matrix molecules to generate reactive oxygen species and reactive nitrogen species which in turn can initiate lipid peroxidation, protein damage or DNA modification. These issues are addressed in this short overview in the context of experimental models of laser-induced thrombosis. 相似文献
2.
《Bioscience, biotechnology, and biochemistry》2013,77(12):3100-3106
We examined the preventive activity of naturally occurring antioxidants against three reactive oxygen species using a protein degradation assay. The hydroxyl, hypochlorite, and peroxynitrite radicals are typical reactive oxygen species generated in human body. Previously, we found that hydrophobic botanical antioxidants exhibited specific antioxidant activity against hydroxyl radicals, whereas anserine and carnosine mixture, purified from chicken extract and vitamin C, exhibited antioxidant activities against hypochlorite and peroxynitrite radicals respectively. Since ethanol, used as a solvent in the experiments, also showed an antioxidant action against the hydroxyl radical, we re-assessed antioxidant activities using aqueous solutions of botanical antioxidants. Among the seven hydrophobic antioxidants examined, ferulic acid exhibited the strongest antioxidant activity against the hydroxyl radical. An antioxidant preparation of anserine-carnosine mixture, vitamin C, and ferulic acid prevented oxidative stress by reactive oxygen species. Loss of deformability in human erythrocytes and protein degradation caused by reactive oxygen species were completely inhibited. 相似文献
3.
Parvin Shahrestani Hung-Tat Leung Phung Khanh Le William L. Pak Stephanie Tse Karen Ocorr Taosheng Huang 《PloS one》2009,4(8)
Optic Atrophy 1 (OPA1) is a ubiquitously expressed dynamin-like GTPase in the inner mitochondrial membrane. It plays important roles in mitochondrial fusion, apoptosis, reactive oxygen species (ROS) and ATP production. Mutations of OPA1 result in autosomal dominant optic atrophy (DOA). The molecular mechanisms by which link OPA1 mutations and DOA are not fully understood. Recently, we created a Drosophila model to study the pathogenesis of optic atrophy. Heterozygous mutation of Drosophila OPA1 (dOpa1) by P-element insertion results in no obvious morphological abnormalities, whereas homozygous mutation is embryonic lethal. In eye-specific somatic clones, homozygous mutation of dOpa1 causes rough (mispatterning) and glossy (decreased lens deposition) eye phenotypes in adult Drosophila. In humans, heterozygous mutations in OPA1 have been associated with mitochondrial dysfunction, which is predicted to affect multiple organs. In this study, we demonstrated that heterozygous dOpa1 mutation perturbs the visual function and an ERG profile of the Drosophila compound eye. We independently showed that antioxidants delayed the onset of mutant phenotypes in ERG and improved larval vision function in phototaxis assay. Furthermore, heterozygous dOpa1 mutation also caused decreased heart rate, increased heart arrhythmia, and poor tolerance to stress induced by electrical pacing. However, antioxidants had no effects on the dysfunctional heart of heterozygous dOpa1 mutants. Under stress, heterozygous dOpa1 mutations caused reduced escape response, suggesting abnormal function of the skeletal muscles. Our results suggest that heterozygous mutation of dOpa1 shows organ-specific pathogenesis and is associated with multiple organ abnormalities in an age-dependent and organ-specific manner. 相似文献
4.
《Free radical research》2013,47(4-5):181-193
The mechanism underlying demyelination in inflammatory canine distemper encephalitis is uncertain. Macrophages and their secretory products are thought to play an important effector role in this lesion. Recently, we have shown that anti-canine distemper virus antibodies, known to occur in chronic inflammatory lesions, stimulate macrophages leading to the secretion of reactive oxygen species (ROS). To investigate whether ROS could be involved in demyelination, dog glial cell cultures were exposed to xanthine/xanthine oxidase (X/XO), a system capable of generating O,. This treatment resulted in a specific time-dependent degeneration and loss of oligodendrocytes, the myelin producing cells of the central nervous system. Initial degeneration was not associated with a decrease in viability of oligodendrocytes as judged by trypan blue and propidium iodide exclusion. Astrocytes and brain macrophages were not affected morphologically by this treatment. Further, an evaluation of the effect of several ROS scavengers, transition metal chelators and inhibitors of poly (ADP-ribose) polymerase suggests that a metal dependent formation of OH or a similar highly oxidizing species could be responsible for the observed selective damage to oligodendrocytes. 相似文献
5.
6.
7.
BackgroundRheumatoid arthritis (RA) is an autoimmune inflammatory disorder. Highly reactive oxygen free radicals are believed to be involved in the pathogenesis of the disease. In this study, RA patients were sub-grouped depending upon the presence or absence of rheumatoid factor, disease activity score and disease duration. RA Patients (120) and healthy controls (53) were evaluated for the oxidant—antioxidant status by monitoring ROS production, biomarkers of lipid peroxidation, protein oxidation and DNA damage. The level of various enzymatic and non-enzymatic antioxidants was also monitored. Correlation analysis was also performed for analysing the association between ROS and various other parameters.MethodsIntracellular ROS formation, lipid peroxidation (MDA level), protein oxidation (carbonyl level and thiol level) and DNA damage were detected in the blood of RA patients. Antioxidant status was evaluated by FRAP assay, DPPH reduction assay and enzymatic (SOD, catalase, GST, GR) and non-enzymatic (vitamin C and GSH) antioxidants.ResultsRA patients showed a higher ROS production, increased lipid peroxidation, protein oxidation and DNA damage. A significant decline in the ferric reducing ability, DPPH radical quenching ability and the levels of antioxidants has also been observed. Significant correlation has been found between ROS and various other parameters studied.ConclusionRA patients showed a marked increase in ROS formation, lipid peroxidation, protein oxidation, DNA damage and decrease in the activity of antioxidant defence system leading to oxidative stress which may contribute to tissue damage and hence to the chronicity of the disease. 相似文献
8.
Background
Endothelial control of vascular smooth muscle plays a major role in the resulting vasoreactivity implicated in physiological or pathological circulatory processes. However, a comprehensive understanding of endothelial (EC)/smooth muscle cells (SMC) crosstalk is far from complete. Here, we have examined the role of gap junctions and reactive oxygen species (ROS) in this crosstalk and we demonstrate an active contribution of SMC to endothelial control of vasomotor tone.Methodology/Principal Findings
In small intrapulmonary arteries, quantitative RT-PCR, Western Blot analyses and immunofluorescent labeling evidenced connexin (Cx) 37, 40 and 43 in EC and/or SMC. Functional experiments showed that the Cx-mimetic peptide targeted against Cx 37 and Cx 43 (37,43Gap27) (1) reduced contractile and calcium responses to serotonin (5-HT) simultaneously recorded in pulmonary arteries and (2) abolished the diffusion in SMC of carboxyfluorescein-AM loaded in EC. Similarly, contractile and calcium responses to 5-HT were decreased by superoxide dismutase and catalase which, catabolise superoxide anion and H2O2, respectively. Both Cx- and ROS-mediated effects on the responses to 5-HT were reversed by L-NAME, a NO synthase inhibitor or endothelium removal. Electronic paramagnetic resonance directly demonstrated that 5-HT-induced superoxide anion production originated from the SMC. Finally, whereas 5-HT increased NO production, it also decreased cyclic GMP content in isolated intact arteries.Conclusions/Significance
These data demonstrate that agonist-induced ROS production in SMC targeting EC via myoendothelial gap junctions reduces endothelial NO-dependent control of pulmonary vasoreactivity. Such SMC modulation of endothelial control may represent a signaling pathway controlling vasoreactivity under not only physiological but also pathological conditions that often implicate excessive ROS production. 相似文献9.
Masahiko Takahashi Masaya Higuchi Hideaki Matsuki Manami Yoshita Toshiaki Ohsawa Masayasu Oie Masahiro Fujii 《Molecular and cellular biology》2013,33(4):815-829
Cells can undergo two alternative fates following exposure to environmental stress: they either induce apoptosis or inhibit apoptosis and then repair the stress-induced alterations. These processes minimize cell loss and prevent the survival of cells with aberrant DNA and protein alterations. These two alternative fates are partly controlled by stress granules (SGs). While arsenite, hypoxia, and heat shock induce the formation of SGs that inhibit apoptosis, X-ray irradiation and genotoxic drugs do not induce SGs, and they are more prone to trigger apoptosis. However, it is unclear precisely how SGs control apoptosis. This study found that SGs suppress the elevation of reactive oxygen species (ROS), and this suppression is essential for inhibiting ROS-dependent apoptosis. This antioxidant activity of SGs is controlled by two SG components, GTPase-activating protein SH3 domain binding protein 1 (G3BP1) and ubiquitin-specific protease 10 (USP10). G3BP1 elevates the steady-state ROS level by inhibiting the antioxidant activity of USP10. However, following exposure to arsenite, G3BP1 and USP10 induce the formation of SGs, which uncovers the antioxidant activity of USP10. We also found that the antioxidant activity of USP10 requires the protein kinase activity of ataxia telangiectasia mutated (ATM). This work reveals that SGs are critical redox regulators that control cell fate under stress conditions. 相似文献
10.
Reactive oxygen species include a number of molecules that damage DNA and RNA and oxidize proteins and lipids (lipid peroxydation). These reactive molecules contain an oxygen and include H2O2 (hydrogen peroxide), NO (nitric oxide), O2- (oxide anion), peroxynitrite (ONOO-), hydrochlorous acid (HOCl), and hydroxyl radical (OH-).Oxidative species are produced not only under pathological situations (cancers, ischemic/reperfusion, neurologic and cardiovascular pathologies, infectious diseases, inflammatory diseases 1, autoimmune diseases 2, etc…) but also during physiological (non-pathological) situations such as cellular metabolism 3, 4. Indeed, ROS play important roles in many cellular signaling pathways (proliferation, cell activation 5, 6, migration 7 etc..). ROS can be detrimental (it is then referred to as "oxidative and nitrosative stress") when produced in high amounts in the intracellular compartments and cells generally respond to ROS by upregulating antioxidants such as superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH) that protects them by converting dangerous free radicals to harmless molecules (i.e. water). Vitamins C and E have also been described as ROS scavengers (antioxidants).Free radicals are beneficial in low amounts 3. Macrophage and neutrophils-mediated immune responses involve the production and release of NO, which inhibits viruses, pathogens and tumor proliferation 8. NO also reacts with other ROS and thus, also has a role as a detoxifier (ROS scavenger). Finally NO acts on vessels to regulate blood flow which is important for the adaptation of muscle to prolonged exercise 9, 10. Several publications have also demonstrated that ROS are involved in insulin sensitivity 11, 12.Numerous methods to evaluate ROS production are available. In this article we propose several simple, fast, and affordable assays; these assays have been validated by many publications and are routinely used to detect ROS or its effects in mammalian cells. While some of these assays detect multiple ROS, others detect only a single ROS.Download video file.(43M, mov) 相似文献
11.
The Regulation of Reactive Oxygen Species Production during Programmed Cell Death 总被引:22,自引:0,他引:22
下载免费PDF全文

Shirlee Tan Yutaka Sagara Yuanbin Liu Pamela Maher David Schubert 《The Journal of cell biology》1998,141(6):1423-1432
Reactive oxygen species (ROS) are thought to be involved in many forms of programmed cell death. The role of ROS in cell death caused by oxidative glutamate toxicity was studied in an immortalized mouse hippocampal cell line (HT22). The causal relationship between ROS production and glutathione (GSH) levels, gene expression, caspase activity, and cytosolic Ca2+ concentration was examined. An initial 5–10-fold increase in ROS after glutamate addition is temporally correlated with GSH depletion. This early increase is followed by an explosive burst of ROS production to 200–400-fold above control values. The source of this burst is the mitochondrial electron transport chain, while only 5–10% of the maximum ROS production is caused by GSH depletion. Macromolecular synthesis inhibitors as well as Ac-YVAD-cmk, an interleukin 1β–converting enzyme protease inhibitor, block the late burst of ROS production and protect HT22 cells from glutamate toxicity when added early in the death program. Inhibition of intracellular Ca2+ cycling and the influx of extracellular Ca2+ also blocks maximum ROS production and protects the cells. The conclusion is that GSH depletion is not sufficient to cause the maximal mitochondrial ROS production, and that there is an early requirement for protease activation, changes in gene expression, and a late requirement for Ca2+ mobilization. 相似文献
12.
Gerco den Hartog Ranajoy Chattopadhyay Amber Ablack Emily H. Hall Lindsay D. Butcher Asima Bhattacharyya Lars Eckmann Paul R. Harris Soumita Das Peter B. Ernst Sheila E. Crowe 《PLoS pathogens》2016,12(1)
Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections. 相似文献
13.
大量研究证明活性氧(ROS)在气孔运动中起信号分子的作用。保卫细胞中ROS的产生依赖于特定的酶,其中NADPH氧化酶组分RBOH已得到深入研究,并已证实其参与生物与非生物胁迫反应。植物激素包括脱落酸(ABA)、水杨酸(SA)、乙烯、生长素及细胞分裂素等,它们均通过ROS的介导来调控气孔运动。生物胁迫(如毒性细菌和真菌)也会调控气孔运动。ROS参与这些调控过程。保卫细胞中存在多层次对ROS产生及其作用的调节,抗氧化活性物质和ROS敏感蛋白(如蛋白激酶和磷酸酶)均可传递ROS信号并调节气孔运动。ROS对离子通道调节的证据也越来越多。保卫细胞由于可通过ROS整合复杂的信号途径,已成为研究植物ROS信号转导过程的良好模式系统。 相似文献
14.
15.
《Bioscience, biotechnology, and biochemistry》2013,77(11):2313-2315
Chitosan induced stomatal closure in wild type-plants and NADPH oxidase knock-out mutants (atrbohD atrbohF), and reactive oxygen species (ROS) production in wild-type guard cells. Closure and production were completely abolished by catalase and a peroxidase inhibitor. These results indicate that chitosan induces ROS production mediated by peroxidase, resulting in stomatal closure. 相似文献
16.
17.
Depletion of the stratospheric ozone layer may result in an increase in the levels of potentially harmful UV-B radiation reaching the surface of the earth. We have found that UV-B is a potent inducer of the plant pathogenesis-related protein PR-1 in tobacco leaves. UV-B fluences required for PR-1 accumulation are similar to those of other UV-B-induced responses. The UV-B-induced PR-1 accumulation was confined precisely to the irradiated area of the leaf but displayed no leaf tissue specificity. A study of some of the possible components of the signal transduction pathway between UV-B and PR-1 induction showed that photosynthetic processes are not essential, and photoreversible DNA damage is not involved. Antioxidants and cycloheximide were able to block the induction of PR-1 by UV-B, and treatment of leaves with a generator of reactive oxygen resulted in the accumulation of PR-1 protein. These results demonstrate an absolute requirement for active oxygen species and protein synthesis in this UV-B signal transduction pathway. In contrast, we also show that other elicitors, notably salicylic acid, are able to elicit PR-1 via nonreactive oxygen species-requiring pathways. 相似文献
18.
主要对超氧阴离子自由基(O2-·)、过氧化氢(H2O2)等活性氧的检测方法,包括化学发光法、分光光度法、荧光染色法,EPR波谱学方法、DAB组织染色法和电子显微技术检测法等进行了综述,并简单介绍了最近发展起来的一些新技术。 相似文献
19.
One of the major constraints facing the large-scale production of cassava (Manihot esculenta) roots is the rapid postharvest physiological deterioration (PPD) that occurs within 72 h following harvest. One of the earliest recognized biochemical events during the initiation of PPD is a rapid burst of reactive oxygen species (ROS) accumulation. We have investigated the source of this oxidative burst to identify possible strategies to limit its extent and to extend cassava root shelf life. We provide evidence for a causal link between cyanogenesis and the onset of the oxidative burst that triggers PPD. By measuring ROS accumulation in transgenic low-cyanogen plants with and without cyanide complementation, we show that PPD is cyanide dependent, presumably resulting from a cyanide-dependent inhibition of respiration. To reduce cyanide-dependent ROS production in cassava root mitochondria, we generated transgenic plants expressing a codon-optimized Arabidopsis (Arabidopsis thaliana) mitochondrial alternative oxidase gene (AOX1A). Unlike cytochrome c oxidase, AOX is cyanide insensitive. Transgenic plants overexpressing AOX exhibited over a 10-fold reduction in ROS accumulation compared with wild-type plants. The reduction in ROS accumulation was associated with a delayed onset of PPD by 14 to 21 d after harvest of greenhouse-grown plants. The delay in PPD in transgenic plants was also observed under field conditions, but with a root biomass yield loss in the highest AOX-expressing lines. These data reveal a mechanism for PPD in cassava based on cyanide-induced oxidative stress as well as PPD control strategies involving inhibition of ROS production or its sequestration. 相似文献