首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optic Atrophy 1 (OPA1) is a ubiquitously expressed dynamin-like GTPase in the inner mitochondrial membrane. It plays important roles in mitochondrial fusion, apoptosis, reactive oxygen species (ROS) and ATP production. Mutations of OPA1 result in autosomal dominant optic atrophy (DOA). The molecular mechanisms by which link OPA1 mutations and DOA are not fully understood. Recently, we created a Drosophila model to study the pathogenesis of optic atrophy. Heterozygous mutation of Drosophila OPA1 (dOpa1) by P-element insertion results in no obvious morphological abnormalities, whereas homozygous mutation is embryonic lethal. In eye-specific somatic clones, homozygous mutation of dOpa1 causes rough (mispatterning) and glossy (decreased lens deposition) eye phenotypes in adult Drosophila. In humans, heterozygous mutations in OPA1 have been associated with mitochondrial dysfunction, which is predicted to affect multiple organs. In this study, we demonstrated that heterozygous dOpa1 mutation perturbs the visual function and an ERG profile of the Drosophila compound eye. We independently showed that antioxidants delayed the onset of mutant phenotypes in ERG and improved larval vision function in phototaxis assay. Furthermore, heterozygous dOpa1 mutation also caused decreased heart rate, increased heart arrhythmia, and poor tolerance to stress induced by electrical pacing. However, antioxidants had no effects on the dysfunctional heart of heterozygous dOpa1 mutants. Under stress, heterozygous dOpa1 mutations caused reduced escape response, suggesting abnormal function of the skeletal muscles. Our results suggest that heterozygous mutation of dOpa1 shows organ-specific pathogenesis and is associated with multiple organ abnormalities in an age-dependent and organ-specific manner.  相似文献   

2.
Y.G. Kim 《Free radical research》2013,47(12):1243-1250
Laser therapy has gained wide acceptance applications to many medical disciplines. The side effect-effects from laser therapy involve the potential for interaction with cellular and extracellular matrix molecules to generate reactive oxygen species and reactive nitrogen species which in turn can initiate lipid peroxidation, protein damage or DNA modification. These issues are addressed in this short overview in the context of experimental models of laser-induced thrombosis.  相似文献   

3.
We examined the preventive activity of naturally occurring antioxidants against three reactive oxygen species using a protein degradation assay. The hydroxyl, hypochlorite, and peroxynitrite radicals are typical reactive oxygen species generated in human body. Previously, we found that hydrophobic botanical antioxidants exhibited specific antioxidant activity against hydroxyl radicals, whereas anserine and carnosine mixture, purified from chicken extract and vitamin C, exhibited antioxidant activities against hypochlorite and peroxynitrite radicals respectively. Since ethanol, used as a solvent in the experiments, also showed an antioxidant action against the hydroxyl radical, we re-assessed antioxidant activities using aqueous solutions of botanical antioxidants. Among the seven hydrophobic antioxidants examined, ferulic acid exhibited the strongest antioxidant activity against the hydroxyl radical. An antioxidant preparation of anserine-carnosine mixture, vitamin C, and ferulic acid prevented oxidative stress by reactive oxygen species. Loss of deformability in human erythrocytes and protein degradation caused by reactive oxygen species were completely inhibited.  相似文献   

4.
5.
《Free radical research》2013,47(4-5):181-193
The mechanism underlying demyelination in inflammatory canine distemper encephalitis is uncertain. Macrophages and their secretory products are thought to play an important effector role in this lesion. Recently, we have shown that anti-canine distemper virus antibodies, known to occur in chronic inflammatory lesions, stimulate macrophages leading to the secretion of reactive oxygen species (ROS). To investigate whether ROS could be involved in demyelination, dog glial cell cultures were exposed to xanthine/xanthine oxidase (X/XO), a system capable of generating O,. This treatment resulted in a specific time-dependent degeneration and loss of oligodendrocytes, the myelin producing cells of the central nervous system. Initial degeneration was not associated with a decrease in viability of oligodendrocytes as judged by trypan blue and propidium iodide exclusion. Astrocytes and brain macrophages were not affected morphologically by this treatment. Further, an evaluation of the effect of several ROS scavengers, transition metal chelators and inhibitors of poly (ADP-ribose) polymerase suggests that a metal dependent formation of OH or a similar highly oxidizing species could be responsible for the observed selective damage to oligodendrocytes.  相似文献   

6.
Temperature (T) reduction increases lifespan, but the mechanisms are not understood. Because reactive oxygen species (ROS) contribute to aging, we hypothesized that lowering T might decrease mitochondrial ROS production. We measured respiratory response and ROS production in isolated mitochondria at 32, 35, and 37 °C. Lowering T decreased the rates of resting (state 4) and phosphorylating (state 3) respiration phases. Surprisingly, this respiratory slowdown was associated with an increase of ROS production and hydrogen peroxide release and with elevation of the mitochondrial membrane potential, ΔΨm. We also found that at lower T mitochondria produced more carbon-centered lipid radicals, a species known to activate uncoupling proteins. These data indicate that reduced mitochondrial ROS production is not one of the mechanisms mediating lifespan extension at lower T. They suggest instead that increased ROS leakage may mediate mitochondrial responses to hypothermia.  相似文献   

7.
8.
植物中活性氧的产生及清除机制   总被引:145,自引:1,他引:145  
环境胁迫使植物细胞中积累大量的活性氧,从而导致蛋白质、膜脂、DNA及其它细胞组分的严重损伤。植物体内有效清除活性氧的保护机制分为酶促和非酶促两类。酶促脱毒系统包括超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX)等。非酶类抗氧化剂包括抗坏血酸、谷胱甘肽、甘露醇和类黄酮。利用基因工程策略增加这些物质在植物体内的含量,从而获得耐逆转基因植物已取得一定的进展。  相似文献   

9.
BackgroundRheumatoid arthritis (RA) is an autoimmune inflammatory disorder. Highly reactive oxygen free radicals are believed to be involved in the pathogenesis of the disease. In this study, RA patients were sub-grouped depending upon the presence or absence of rheumatoid factor, disease activity score and disease duration. RA Patients (120) and healthy controls (53) were evaluated for the oxidant—antioxidant status by monitoring ROS production, biomarkers of lipid peroxidation, protein oxidation and DNA damage. The level of various enzymatic and non-enzymatic antioxidants was also monitored. Correlation analysis was also performed for analysing the association between ROS and various other parameters.MethodsIntracellular ROS formation, lipid peroxidation (MDA level), protein oxidation (carbonyl level and thiol level) and DNA damage were detected in the blood of RA patients. Antioxidant status was evaluated by FRAP assay, DPPH reduction assay and enzymatic (SOD, catalase, GST, GR) and non-enzymatic (vitamin C and GSH) antioxidants.ResultsRA patients showed a higher ROS production, increased lipid peroxidation, protein oxidation and DNA damage. A significant decline in the ferric reducing ability, DPPH radical quenching ability and the levels of antioxidants has also been observed. Significant correlation has been found between ROS and various other parameters studied.ConclusionRA patients showed a marked increase in ROS formation, lipid peroxidation, protein oxidation, DNA damage and decrease in the activity of antioxidant defence system leading to oxidative stress which may contribute to tissue damage and hence to the chronicity of the disease.  相似文献   

10.

Background

Endothelial control of vascular smooth muscle plays a major role in the resulting vasoreactivity implicated in physiological or pathological circulatory processes. However, a comprehensive understanding of endothelial (EC)/smooth muscle cells (SMC) crosstalk is far from complete. Here, we have examined the role of gap junctions and reactive oxygen species (ROS) in this crosstalk and we demonstrate an active contribution of SMC to endothelial control of vasomotor tone.

Methodology/Principal Findings

In small intrapulmonary arteries, quantitative RT-PCR, Western Blot analyses and immunofluorescent labeling evidenced connexin (Cx) 37, 40 and 43 in EC and/or SMC. Functional experiments showed that the Cx-mimetic peptide targeted against Cx 37 and Cx 43 (37,43Gap27) (1) reduced contractile and calcium responses to serotonin (5-HT) simultaneously recorded in pulmonary arteries and (2) abolished the diffusion in SMC of carboxyfluorescein-AM loaded in EC. Similarly, contractile and calcium responses to 5-HT were decreased by superoxide dismutase and catalase which, catabolise superoxide anion and H2O2, respectively. Both Cx- and ROS-mediated effects on the responses to 5-HT were reversed by L-NAME, a NO synthase inhibitor or endothelium removal. Electronic paramagnetic resonance directly demonstrated that 5-HT-induced superoxide anion production originated from the SMC. Finally, whereas 5-HT increased NO production, it also decreased cyclic GMP content in isolated intact arteries.

Conclusions/Significance

These data demonstrate that agonist-induced ROS production in SMC targeting EC via myoendothelial gap junctions reduces endothelial NO-dependent control of pulmonary vasoreactivity. Such SMC modulation of endothelial control may represent a signaling pathway controlling vasoreactivity under not only physiological but also pathological conditions that often implicate excessive ROS production.  相似文献   

11.
Cells can undergo two alternative fates following exposure to environmental stress: they either induce apoptosis or inhibit apoptosis and then repair the stress-induced alterations. These processes minimize cell loss and prevent the survival of cells with aberrant DNA and protein alterations. These two alternative fates are partly controlled by stress granules (SGs). While arsenite, hypoxia, and heat shock induce the formation of SGs that inhibit apoptosis, X-ray irradiation and genotoxic drugs do not induce SGs, and they are more prone to trigger apoptosis. However, it is unclear precisely how SGs control apoptosis. This study found that SGs suppress the elevation of reactive oxygen species (ROS), and this suppression is essential for inhibiting ROS-dependent apoptosis. This antioxidant activity of SGs is controlled by two SG components, GTPase-activating protein SH3 domain binding protein 1 (G3BP1) and ubiquitin-specific protease 10 (USP10). G3BP1 elevates the steady-state ROS level by inhibiting the antioxidant activity of USP10. However, following exposure to arsenite, G3BP1 and USP10 induce the formation of SGs, which uncovers the antioxidant activity of USP10. We also found that the antioxidant activity of USP10 requires the protein kinase activity of ataxia telangiectasia mutated (ATM). This work reveals that SGs are critical redox regulators that control cell fate under stress conditions.  相似文献   

12.
Reactive oxygen species (ROS) are thought to be involved in many forms of programmed cell death. The role of ROS in cell death caused by oxidative glutamate toxicity was studied in an immortalized mouse hippocampal cell line (HT22). The causal relationship between ROS production and glutathione (GSH) levels, gene expression, caspase activity, and cytosolic Ca2+ concentration was examined. An initial 5–10-fold increase in ROS after glutamate addition is temporally correlated with GSH depletion. This early increase is followed by an explosive burst of ROS production to 200–400-fold above control values. The source of this burst is the mitochondrial electron transport chain, while only 5–10% of the maximum ROS production is caused by GSH depletion. Macromolecular synthesis inhibitors as well as Ac-YVAD-cmk, an interleukin 1β–converting enzyme protease inhibitor, block the late burst of ROS production and protect HT22 cells from glutamate toxicity when added early in the death program. Inhibition of intracellular Ca2+ cycling and the influx of extracellular Ca2+ also blocks maximum ROS production and protects the cells. The conclusion is that GSH depletion is not sufficient to cause the maximal mitochondrial ROS production, and that there is an early requirement for protease activation, changes in gene expression, and a late requirement for Ca2+ mobilization.  相似文献   

13.
Reactive oxygen species include a number of molecules that damage DNA and RNA and oxidize proteins and lipids (lipid peroxydation). These reactive molecules contain an oxygen and include H2O2 (hydrogen peroxide), NO (nitric oxide), O2- (oxide anion), peroxynitrite (ONOO-), hydrochlorous acid (HOCl), and hydroxyl radical (OH-).Oxidative species are produced not only under pathological situations (cancers, ischemic/reperfusion, neurologic and cardiovascular pathologies, infectious diseases, inflammatory diseases 1, autoimmune diseases 2, etc…) but also during physiological (non-pathological) situations such as cellular metabolism 3, 4. Indeed, ROS play important roles in many cellular signaling pathways (proliferation, cell activation 5, 6, migration 7 etc..). ROS can be detrimental (it is then referred to as "oxidative and nitrosative stress") when produced in high amounts in the intracellular compartments and cells generally respond to ROS by upregulating antioxidants such as superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH) that protects them by converting dangerous free radicals to harmless molecules (i.e. water). Vitamins C and E have also been described as ROS scavengers (antioxidants).Free radicals are beneficial in low amounts 3. Macrophage and neutrophils-mediated immune responses involve the production and release of NO, which inhibits viruses, pathogens and tumor proliferation 8. NO also reacts with other ROS and thus, also has a role as a detoxifier (ROS scavenger). Finally NO acts on vessels to regulate blood flow which is important for the adaptation of muscle to prolonged exercise 9, 10. Several publications have also demonstrated that ROS are involved in insulin sensitivity 11, 12.Numerous methods to evaluate ROS production are available. In this article we propose several simple, fast, and affordable assays; these assays have been validated by many publications and are routinely used to detect ROS or its effects in mammalian cells. While some of these assays detect multiple ROS, others detect only a single ROS.Download video file.(43M, mov)  相似文献   

14.
Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections.  相似文献   

15.
16.
王棚涛  赵晶  余欢欢 《植物学报》2014,49(4):490-503
大量研究证明活性氧(ROS)在气孔运动中起信号分子的作用。保卫细胞中ROS的产生依赖于特定的酶, 其中NADPH氧化酶组分RBOH已得到深入研究, 并已证实其参与生物与非生物胁迫反应。植物激素包括脱落酸(ABA)、水杨酸(SA)、乙烯、生长素及细胞分裂素等, 它们均通过ROS的介导来调控气孔运动。生物胁迫(如毒性细菌和真菌)也会调控气孔运动。ROS参与这些调控过程。保卫细胞中存在多层次对ROS产生及其作用的调节, 抗氧化活性物质和ROS敏感蛋白(如蛋白激酶和磷酸酶)均可传递ROS信号并调节气孔运动。ROS对离子通道调节的证据也越来越多。保卫细胞由于可通过ROS整合复杂的信号途径, 已成为研究植物ROS信号转导过程的良好模式系统。  相似文献   

17.
Chitosan induced stomatal closure in wild type-plants and NADPH oxidase knock-out mutants (atrbohD atrbohF), and reactive oxygen species (ROS) production in wild-type guard cells. Closure and production were completely abolished by catalase and a peroxidase inhibitor. These results indicate that chitosan induces ROS production mediated by peroxidase, resulting in stomatal closure.  相似文献   

18.
大量研究证明活性氧(ROS)在气孔运动中起信号分子的作用。保卫细胞中ROS的产生依赖于特定的酶,其中NADPH氧化酶组分RBOH已得到深入研究,并已证实其参与生物与非生物胁迫反应。植物激素包括脱落酸(ABA)、水杨酸(SA)、乙烯、生长素及细胞分裂素等,它们均通过ROS的介导来调控气孔运动。生物胁迫(如毒性细菌和真菌)也会调控气孔运动。ROS参与这些调控过程。保卫细胞中存在多层次对ROS产生及其作用的调节,抗氧化活性物质和ROS敏感蛋白(如蛋白激酶和磷酸酶)均可传递ROS信号并调节气孔运动。ROS对离子通道调节的证据也越来越多。保卫细胞由于可通过ROS整合复杂的信号途径,已成为研究植物ROS信号转导过程的良好模式系统。  相似文献   

19.
20.
Besides giving structural support, Sertoli cells regulate the fate of germ cells by supplying a variety of factors. These factors include hormones, several pro- and anti-apoptotic agents and also energetic substrates. Lactate is one of the compounds produced by Sertoli cells, which is utilized as an energetic substrate by germ cells, particularly spermatocytes and spermatids. Beyond its function as an energy source, some studies have proposed a role of lactate in the regulation of gene expression not strictly related to the energetic state of the cells. The general hypothesis that motivated this investigation was that lactate affects male germ cell function, far beyond its well-known role as energetic substrate. To evaluate this hypothesis we investigated: 1) if lactate was able to regulate germ cell gene expression and if reactive oxygen species (ROS) participated in this regulation, 2) if different signal transduction pathways were modified by the production of ROS in response to lactate and 3) possible mechanisms that may be involved in lactate stimulation of ROS production. In order to achieve these goals, cultures of germ cells obtained from male 30-day old rats were exposed to 10 or 20 mM lactate. Increases in lactate dehydrogenase (LDH) C and monocarboxylate transporter (MCT)2 expression, in Akt and p38-MAPK phosphorylation levels and in ROS production were observed. These effects were impaired in the presence of a ROS scavenger. Lactate stimulated ROS production was also inhibited by a LDH inhibitor or a NAD(P)H oxidase (NOX) inhibitor. NOX4 expression was identified in male germ cells. The results obtained herein are consistent with a scenario where lactate, taken up by germ cells, becomes oxidized to pyruvate with the resultant increase in NADH, which is a substrate for NOX4. ROS, products of NOX4 activity, may act as second messengers regulating signal transduction pathways and gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号