首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《CMAJ》1923,13(2):123-124
  相似文献   

3.
Children often make letter reversal errors when first learning to read and write, even for letters whose reversed forms do not appear in normal print. However, the brain basis of such letter reversal in children learning to read is unknown. The present study compared the neuroanatomical correlates (via functional magnetic resonance imaging) and the electrophysiological correlates (via event-related potentials or ERPs) of this phenomenon in children, ages 5–12, relative to young adults. When viewing reversed letters relative to typically oriented letters, adults exhibited widespread occipital, parietal, and temporal lobe activations, including activation in the functionally localized visual word form area (VWFA) in left occipito-temporal cortex. Adults exhibited significantly greater activation than children in all of these regions; children only exhibited such activation in a limited frontal region. Similarly, on the P1 and N170 ERP components, adults exhibited significantly greater differences between typical and reversed letters than children, who failed to exhibit significant differences between typical and reversed letters. These findings indicate that adults distinguish typical and reversed letters in the early stages of specialized brain processing of print, but that children do not recognize this distinction during the early stages of processing. Specialized brain processes responsible for early stages of letter perception that distinguish between typical and reversed letters may develop slowly and remain immature even in older children who no longer produce letter reversals in their writing.  相似文献   

4.
5.
6.
7.
8.
9.
Placebo analgesia (PA) is accompanied by decreased activity in pain-related brain regions, but also by greater prefrontal cortex (PFC) activation, which has been suggested to reflect increases in top-down cognitive control and regulation of pain. Here we test whether PA is associated with altered prefrontal monitoring functions that could adjust nociceptive processing to a mismatch between expected and experienced pain. We recorded event-related potentials to response errors in a go/nogo task during placebo vs. a matched control condition. Error commission was associated with two well-described components, the error-related negativity (ERN) and the error positivity (Pe). Results show that the Pe, but not the ERN, was amplified during placebo analgesia compared to the control condition, with neural sources in the lateral and medial PFC. This Pe increase was driven by participants showing a placebo-induced change in pain tolerance, but was absent in the group of non-responders. Our results shed new light on the possible functional mechanisms underlying PA, suggesting a placebo-induced transient change in prefrontal error monitoring and control functions.  相似文献   

10.
Learning the functional properties of objects is a core mechanism in the development of conceptual, cognitive and linguistic knowledge in children. The cerebral processes underlying these learning mechanisms remain unclear in adults and unexplored in children. Here, we investigated the neurophysiological patterns underpinning the learning of functions for novel objects in 10-year-old healthy children. Event-related fields (ERFs) were recorded using magnetoencephalography (MEG) during a picture-definition task. Two MEG sessions were administered, separated by a behavioral verbal learning session during which children learned short definitions about the “magical” function of 50 unknown non-objects. Additionally, 50 familiar real objects and 50 other unknown non-objects for which no functions were taught were presented at both MEG sessions. Children learned at least 75% of the 50 proposed definitions in less than one hour, illustrating children''s powerful ability to rapidly map new functional meanings to novel objects. Pre- and post-learning ERFs differences were analyzed first in sensor then in source space. Results in sensor space disclosed a learning-dependent modulation of ERFs for newly learned non-objects, developing 500–800 msec after stimulus onset. Analyses in the source space windowed over this late temporal component of interest disclosed underlying activity in right parietal, bilateral orbito-frontal and right temporal regions. Altogether, our results suggest that learning-related evolution in late ERF components over those regions may support the challenging task of rapidly creating new semantic representations supporting the processing of the meaning and functions of novel objects in children.  相似文献   

11.
Sumbul S  Bano B 《Neurochemical research》2006,31(11):1327-1336
Cystatin are thiol proteinase inhibitors ubiquitously present in mammalian body and serve various important physiological functions. In the present study two cystatins were isolated from goat brain using alkaline treatment, ammonium sulphate fractionation, gel filtration and ion exchange chromatography. The high molecular mass cystatin of 70.8 kDa was named as HM-GBC (high molecular mass goat brain cystatin) and the low molecular mass cystatin of 12.72 kDa was named as LM-GBC (low molecular mass goat brain cystatin). The molecular mass determined by SDS-PAGE was found to be 70.8 and 12.88 kDa for HM-GBC and LM-GBC, respectively, however with gel filtration the masses were found to be 70.8 and 12.58 kDa. Both the cystatins were found to be stable in broad range of pH and temperature. HM-GBC was found to have 2% carbohydrate content while LM-GBC lacks any carbohydrate content. Both cystatins were found to be devoid of any sulphydryl content. Stoke's radii of 36 and 16 A, and diffusion coefficient of 6.189 x 10(-15) and 1.392 x 10(-14) cm(2)/s were calculated for HM-GBC and LM-GBC. K (i) values with papain were found to be 1.875 x 10(-8) and 3.125 x 10(-8) M for HM-GBC and LM-GBC, respectively. K (+1), K (-1) and half-life calculated along with K (i) values obtained showed that HM-GBC inhibited papain more specifically as compared to LM-GBC. The IC(50) values obtained for HM-GBC and LM-GBC also showed that HM-GBC binds more effectively to papain than LM-GBC. Ultraviolet and fluorescence spectra indicated that upon formation of papain-HM-GBC/LM-GBC complex there is significant conformational change after interaction in one or both the proteins of the complex.  相似文献   

12.
Male orangutans (Pongo spp.) display an unusual characteristic for mammals in that some adult males advance quickly to full secondary sexual development while others can remain in an adolescent-like form for a decade or more past the age of sexual maturity. Remarkably little is understood about how and why differences in developmental timing occur. While fully-developed males are known to produce higher androgen levels than arrested males, the longer-term role of steroid hormones in male life history variation has not been examined. We examined variation in testosterone and cortisol production among 18 fully-developed (“flanged”) male orangutans in U.S. captive facilities. Our study revealed that while testosterone levels did not vary significantly according to current age, housing condition, and species origin, males that had undergone precocious development had higher testosterone levels than males that had experienced developmental arrest. While androgen variation had previously been viewed as a state-dependent characteristic of male developmental status, our study reveals that differences in the physiology of early and late developing males are detectable long past the developmental transition and may instead be trait-level characteristics associated with a male’s life history strategy. Further studies are needed to determine how early in life differences in testosterone levels emerge and what consequences this variation may have for male behavioral strategies.  相似文献   

13.

Background

Patients with aluminum hydroxide adjuvant-induced macrophagic myofasciitis (MMF) complain of arthromyalgias, chronic fatigue and cognitive deficits. This study aimed to characterize brain perfusion in these patients.

Methods

Brain perfusion SPECT was performed in 76 consecutive patients (aged 49±10 y) followed in the Garches-Necker-Mondor-Hendaye reference center for rare neuromuscular diseases. Images were acquired 30 min after intravenous injection of 925 MBq 99mTc-ethylcysteinate dimer (ECD) at rest. All patients also underwent a comprehensive battery of neuropsychological tests, within 1.3±5.5 mo from SPECT. Statistical parametric maps (SPM12) were obtained for each test using linear regressions between each performance score and brain perfusion, with adjustment for age, sex, socio-cultural level and time delay between brain SPECT and neuropsychological testing.

Results

SPM analysis revealed positive correlation between neuropsychological scores (mostly exploring executive functions) and brain perfusion in the posterior associative cortex, including cuneus/precuneus/occipital lingual areas, the periventricular white matter/corpus callosum, and the cerebellum, while negative correlation was found with amygdalo-hippocampal/entorhinal complexes. A positive correlation was also observed between brain perfusion and the posterior associative cortex when the time elapsed since last vaccine injection was investigated.

Conclusions

Brain perfusion SPECT showed a pattern of cortical and subcortical changes in accordance with the MMF-associated cognitive disorder previously described. These results provide a neurobiological substrate for brain dysfunction in aluminum hydroxide adjuvant-induced MMF patients.  相似文献   

14.
Serum malondialdehyde (MDA) levels are increased in human immunodeficiency virus (HIV)-infected children, as it happens also in infected adult individuals. Introduction of high activity antiretroviral therapy (HAART) has promoted an intense decline in morbidity and mortality of these patients. Here we present data on the effect of HAART on serum MDA of HIV+ children and compare them with levels prior to HAART. MDA levels reflect, as other markers do, the HAART-induced clinical improvement and probably also the pro-oxidant/antioxidant side effects of the different drugs used. The results herein allow the proposal of including serum MDA levels as an additional parameter for the clinical management of HIV+ children.  相似文献   

15.

Background

Attention deficit hyperactivity disorder (ADHD) is a common comorbidity of childhood epilepsy, but the neuroanatomical correlates of ADHD in epilepsy have yet to be comprehensively characterized.

Methods

Children with new and recent-onset epilepsy with (n = 18) and without (n = 36) ADHD, and healthy controls (n = 46) underwent high resolution MRI. Measures of cortical morphology (thickness, area, volume, curvature) and subcortical and cerebellar volumes were compared between the groups using the program FreeSurfer 5.1.

Results

Compared to the control group, children with epilepsy and ADHD exhibited diffuse bilateral thinning in the frontal, parietal and temporal lobes, with volume reductions in the brainstem and subcortical structures (bilateral caudate, left thalamus, right hippocampus). There were very few group differences across measures of cortical volume, area or curvature.

Conclusions

Children with epilepsy and comorbid ADHD exhibited a pattern of bilateral and widespread decreased cortical thickness as well as decreased volume of subcortical structures and brainstem. These anatomic abnormalities were evident early in the course of epilepsy suggesting the presence of antecedent neurodevelopmental changes, the course of which remains to be determined.  相似文献   

16.
Analysis of the character and systemic organization of cerebral reactions to external effects aids in adequate evaluation of functional and adaptive human capabilities in norm and pathology. Changes in the spatiotemporal organization of the EEG (according to visual and spectral coherence analyses, as well as localization of equivalent dipole sources of pathological EEG phenomena) and the electrooculogram in response to afferent stimuli at different stages of postcomatose recovery of mental activity were studied in 84 patients with severe brain injury in a prolonged postcomatose unconscious state. Both standard indifferent (a rhythmically flashing light and an acoustic tone) and functionally significant (a moving contrasting black-and-white strip, a red spot, the mother’s voice, music, etc.) afferent stimuli were used. Functionally different reactive changes in the EEG were detected even in deep inhibition of consciousness (a vegetative state). EEG reactions including a strengthening of pathological foci in the CNS with dominant features suggested a poor prognosis. In the absence of such foci, a positive activating effect on mental recovery was found for afferent stimulation, in particular, functionally significant stimulation. Selective sensitivity of the CNS to certain external stimuli was observed for certain unconscious states.__________Translated from Fiziologiya Cheloveka, Vol. 31, No. 3, 2005, pp. 5–15.Original Russian Text Copyright © 2005 by Sharova.  相似文献   

17.
As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external) data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge.  相似文献   

18.
Theory predicts a close structural relation of formal languages with natural languages. Both share the aspect of an underlying grammar which either generates (hierarchically) structured expressions or allows us to decide whether a sentence is syntactically correct or not. The advantage of rule-based communication is commonly believed to be its efficiency and effectiveness. A particularly important class of formal languages are those underlying the mathematical syntax. Here we provide brain-imaging evidence that the syntactic processing of abstract mathematical formulae, written in a first order language, is, indeed efficient and effective as a rule-based generation and decision process. However, it is remarkable, that the neural network involved, consisting of intraparietal and prefrontal regions, only involves Broca''s area in a surprisingly selective way. This seems to imply that despite structural analogies of common and current formal languages, at the neural level, mathematics and natural language are processed differently, in principal.  相似文献   

19.
The ability to control/regulate emotions is an important coping mechanism in the face of emotionally stressful situations. Although significant progress has been made in understanding conscious/deliberate emotion regulation (ER), less is known about non-conscious/automatic ER and the associated neural correlates. This is in part due to the problems inherent in the unitary concepts of automatic and conscious processing1. Here, we present a protocol that allows investigation of the neural correlates of both deliberate and automatic ER using functional magnetic resonance imaging (fMRI). This protocol allows new avenues of inquiry into various aspects of ER. For instance, the experimental design allows manipulation of the goal to regulate emotion (conscious vs. non-conscious), as well as the intensity of the emotional challenge (high vs. low). Moreover, it allows investigation of both immediate (emotion perception) and long-term effects (emotional memory) of ER strategies on emotion processing. Therefore, this protocol may contribute to better understanding of the neural mechanisms of emotion regulation in healthy behaviour, and to gaining insight into possible causes of deficits in depression and anxiety disorders in which emotion dysregulation is often among the core debilitating features.Download video file.(86M, mov)  相似文献   

20.
A psychophysiological study of the mechanisms underlying writing and reading difficulties at elementary school included assessment of the actual level of speech development, language abilities, intellectual functions, visual memory, visuomotor coordination, and neuropsychological parameters of first- and third- or fourth-grade students. The leading mechanisms of writing and reading difficulties were identified for different stages of skill formation. The role of factors determining the efficiency of learning changed accordingly. From the first to the third (fourth) grade, a decrease was observed in the role of the factors of speech development, formation of motor skills, visual perception, and visual memory, while the voluntary organization of activity, working capacity, and fatigability became the most significant factors. At all stages of teaching writing and reading, the rate of teaching activity must correspond to the functional and adaptive capabilities of schoolchildren.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号