首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
【目的】沿海滩涂耐盐植物重金属抗性内生细菌的筛选及其促生长潜在能力的研究有助于我们获得一些能够耐受并促进耐盐植物在被Cd2+、Pb2+、Hg2+、Cu2+,Zn2+等重金属离子污染的贫瘠的沿海滩涂上正常生长的菌株,达到既能够利用广袤的滩涂生物资源产生经济价值又能够净化生态环境的目的。【方法】以江苏南通沿海滩涂地区的4种耐盐植物为材料,采用稀释平板涂布法从中分离得到45株内生细菌,从中挑取23株代表性的菌株,对其进行抗重金属Cu2+、Pb2+、Cd2+、Zn2+,Hg2+的活性筛选;固氮、解磷、吲哚乙酸(IAA)的产生、1-氨基环丙烷-1-羧酸(ACC)脱氨酶活性等促生指标以及NaCl耐受能力的筛选。【结果】发现分离所得的大多数细菌能够耐受高浓度的Cu2+以及Pb2+,但是对Cd2+、Zn2+,Hg2+的耐受能力则较弱;26.1%的细菌具有固氮能力,21.7%的细菌具有解磷能力,60.9%的细菌能够产生IAA,39.1%的细菌含有ACC脱氨酶。对他们进行16S rRNA基因鉴定后发现,他们分属于芽胞杆菌属(Bacillus)、喜盐芽胞杆菌属(Halobacillus)、海洋芽胞杆菌属(Oceanobacillus)、微小杆菌属(Exiguobacterium)、沙雷氏菌属(Serratia)、短波单胞菌属(Brevundimonas)、弧菌属(Vibrio)、葡萄球菌属(Staphylococcus)共8个属,显示了丰富的多样性。其中菌株KLBMP 2432以及菌株KLBMP 2447为潜在的新种。【结论】沿海滩涂地区的耐盐植物内生细菌具有丰富多样的生物多样性以及促生长能力,且存在潜在的新种资源,并对重金属Cu2+,Pb2+具有较强的抗性。  相似文献   

3.
以野外调查和室内分析相结合,采用相关分析、主成分分析、回归分析、通径分析等多种分析方法,对秦岭太白山区不同生境下野生普通鹿蹄草有效成分(总黄酮、单宁、金丝桃苷、槲皮素和抗氧化活性(DPPHIC50)与其根际和非根际土壤性质的关系做了研究。结论如下:(1)根际土壤速效钾、pH和脲酶与单个有效成分含量之间呈现出显著或极显著作用,而非根际土壤速效钾与5种有效成分均达到显著或极显著正相关。(2)根际土壤速效钾、pH、转化酶和脲酶是影响普通鹿蹄草有效成分含量的主导因子,而非根际土壤有效氮、速效钾、pH和转化酶是综合影响其含量的主导因子。(3)根际土壤速效钾是影响普通鹿蹄草有效成分含量的主要决策因素,而pH、转化酶和脲酶是其主要限制因素;非根际土壤有效氮和速效钾是影响普通鹿蹄草有效成分含量的主要决策因素,而pH和转化酶是其主要限制因素。由此得出,普通鹿蹄草有效成分含量受根际和非根际多种土壤因子的综合影响,且土壤速效钾含量、pH、转化酶是影响其含量的共同因子。  相似文献   

4.
浑善达克沙地植物群落物种多样性与土壤因子的关系   总被引:15,自引:0,他引:15  
2004年8月,以浑善达克沙地植物群落样方调查资料为基础,对流动-半流动沙丘、固定沙丘、丘间低地和淖尔边缘4种生境的21种群落类型的物种丰富度指数、物种多样性指数、生态优势度指数和均匀度指数进行比较分析,并通过相关分析对各种指数与土壤因子的关系进行了研究.结果表明:分布在流动-半流动沙丘的植物群落的物种丰富度指数和物种多样性指数最低,生态优势度指数较高,群落均匀度指数高于其它3种生境;固定沙丘的物种丰富度指数、物种多样性指数最高,优势度指数最低;丘间低地和淖尔边缘的植物群落的丰富度指数和多样性指数低于固定沙丘,但高于流动-半流动沙丘,优势度指数高于固定沙丘,均匀度指数低于流动-半流动沙丘.相关分析表明,均匀度指数与土壤pH以及全氮含量显著相关,丰富度指数与有机质含量显著相关.  相似文献   

5.
Abstract Invasive exotic plants are a significant threat to areas of conservation value, with endangered ecological communities being especially vulnerable. We assessed the role of different anthropogenic disturbances in determining the success of exotic plants in the endangered Cumberland Plain Woodland community of western Sydney and examined the impact of these disturbances on soil characteristics that are likely to impact on vegetation, including total P, pH, water retention capacity, organic matter content and electrical conductivity. The disturbance types were: (i) land use incorporating clearing, agriculture and grazing by stock; (ii) creeks draining a developed catchment; and (iii) roads. Remnants that had been cleared and grazed had higher exotic and lower native species richness and cover than all other disturbance types. Areas that had been grazed but not cleared did not have more exotic species richness or cover than uncleared/ungrazed areas, thus retaining high conservation value. Areas within 2 m of a creek edge had higher exotic species richness and cover than areas further from the creek edge. Areas downslope of sealed roads had significantly higher exotic species richness and cover than areas below unsealed roads. No single soil attribute or combination of soil attributes was consistently able to account for variation in exotic species cover under the different disturbance types. Thus it appears that other factors such as site history and propagule pressure may be more important in determining exotic species success than soil characteristics alone, in this vegetation community.  相似文献   

6.
7.
Summary Finger millet or locally known asragi (Eleusine coracana Gaertn.), sorghum (Sorghum vulgare Pers.), greengram (Phaseolus aureus Roxb.) and soybean (Glycine max L.) plants were raised on sterilized, sterilized and reinoculated with soil microflora and unsterile sandy loam soil in pots for 45 days. Qualitative studies on the edaphosphere microflora indicated the continuation of rhizosphere effect beyond the root surface (rhizosphere) region. Increased microbial population in the sterilized soil was attributed to the effect of sterilization in favour of faster establishment of added microorganisms. In general, steam sterilization had detrimental effects, whereas crop growth had beneficial effects on the soil physical properties. Ragi and greengram were found superior to sorghum and soybean in improving soil structure as evidenced by increased aggregate stability and hydraulic conductivity and decreased dispersion. Soil aggregates of less than 2.00 mm size were found to be increased due to crop growth. The rhizosphere microflora in association with roots of the growing plants is suggested to play a pivotal role in improving soil structure.  相似文献   

8.
重金属胁迫下土壤微生物和微生物过程研究进展   总被引:31,自引:6,他引:31  
通过对重金属胁迫下土壤微生物和微生物过程研究的进程和研究进展的归纳综述,分析了该研究尚存在的问题,并阐述了其可能原因.认为土壤微生物和微生物学过程的重金属胁迫研究存在如下问题:一是从实验室、田间试验和实地监测得到的结果间无法进行比较,从而使实验室和田间试验的研究丧失了其科学指导意义,并且在实地监测研究中缺乏相应的“精确”对照;二是在重金属的胁迫下土壤微生物不但数量有消长,而且区系结构上也发生了变化,但是用于校园微生物区系结构变化的手段(PLFA、BI-OLOG和DNA等方法)尚处在探索阶段并需要昂贵的设备,难以普及,需发展一些可广泛普及的新方法来代替传统的平板分离法分析土壤微生物结构;三是重金属对土壤微生物和微生物过程产生胁迫的形态、离子效应和根际效应尚未得到有效的研究和探讨;四是土壤微生物和微生物过程重金属胁迫的表征体系尚未建立.  相似文献   

9.
Roots naturally exert axial and radial pressures during growth, which alter the structural arrangement of soil at the root–soil interface. However, empirical models suggest soil densification, which can have negative impacts on water and nutrient uptake, occurs at the immediate root surface with decreasing distance from the root. Here, we spatially map structural gradients in the soil surrounding roots using non‐invasive imaging, to ascertain the role of root growth in early stage formation of soil structure. X‐ray computed tomography provided a means not only to visualize a root system in situ and in 3‐D but also to assess the precise root‐induced alterations to soil structure close to, and at selected distances away from the root–soil interface. We spatially quantified the changes in soil structure generated by three common but contrasting plant species (pea, tomato, and wheat) under different soil texture and compaction treatments. Across the three plant types, significant increases in porosity at the immediate root surface were found in both clay loam and loamy sand soils and not soil densification, the currently assumed norm. Densification of the soil was recorded, at some distance away from the root, dependent on soil texture and plant type. There was a significant soil texture × bulk density × plant species interaction for the root convex hull, a measure of the extent to which root systems explore the soil, which suggested pea and wheat grew better in the clay soil when at a high bulk density, compared with tomato, which preferred lower bulk density soils. These results, only revealed by high resolution non‐destructive imagery, show that although the root penetration mechanisms can lead to soil densification (which could have a negative impact on growth), the immediate root–soil interface is actually a zone of high porosity, which is very important for several key rhizosphere processes occurring at this scale including water and nutrient uptake and gaseous diffusion.  相似文献   

10.
Rhizosphere microbial communities are important for plant nutrition and plant health. Using the culture-independent method of PCR-DGGE of 16S rDNA for community analyses, we conducted several experiments to investigate the importance of pH, soil type, soil amendment, nutritional status of the plant, plant species and plant age on the structure of the bacterial community in the rhizosphere. At the same time, we assessed the spatial variability of bacterial communities in different root zone locations. Our results showed that the bacterial community structure is influenced by soil pH and type of P fertilization. In a short-term experiment (15–22 days) with cucumber and barley growing in a N deficient or a P deficient soil, the bacterial community structure in the rhizosphere was affected by soil type and fertilization but not by plant species. In a 7.5-week experiment with three plant species (chickpea, canola, Sudan grass) growing in three different soils (a sand, a loam and a clay), the complex interactions between soil and plant effects on the rhizosphere community were apparent. In the sand and the loam, the three plant species had distinct rhizosphere communities while in the clay soil the rhizosphere community structures of canola and Sudan grass were similar and differed from those of chickpea. In all soils, the rhizosphere community structures of the root tip were different from those in the mature root zone. In white lupin, the bacterial community structure of the non-cluster roots differed from those of the cluster roots. As plants matured, different cluster root age classes (young, mature, old) had distinct rhizosphere communities. We conclude that many different factors will contribute to shaping the species composition in the rhizosphere, but that the plant itself exerts a highly selective effect that is at least as great as that of the soil. Root exudate amount and composition are the key drivers for the differences in community structure observed in this study.  相似文献   

11.
球囊霉素相关土壤蛋白(glomalin-related soil protein, GRSP)在土壤物理结构调节和土壤碳库稳定性中发挥着重要作用,但植物多样性和优势种如何影响GRSP还缺乏系统性研究。本研究依托东北林业大学哈尔滨实验林场的72块样地, 对1 m深土壤剖面分5层采样, 测定土壤易提取球囊霉素(easily extractable GRSP, EEG)、总提取球囊霉素(total GRSP, TG)及土壤理化性质, 并同时计算植物多样性指数及优势种重要值(importance value, IV), 进一步通过相关分析和冗余排序分析判断影响GRSP的主要因素与贡献。结果表明: (1)在整个土壤剖面上均表现为TG和EEG与土壤有机碳(SOC)正相关, 在部分土层深度与全氮(total nitrogen, TN)和含水量(moisture content, MC)正相关, 而与电导率(electrical conductivity, EC)和pH值负相关。(2)部分土层TG和EEG与黑皮油松(Pinus tabuliformis var. mukdensis)、樟子松(P. sylvestris var. mongolica)、胡桃楸(Juglans mandshurica)、黄檗(Phellodendron amurense)、榆树(Ulmus pumila)优势种重要值显著相关, 表现为黑皮油松重要值越高, 而黄檗、榆树重要值越小, 越有利于EEG的积累, 并且伴随EEG-C/SOC (EEG中C占SOC比例)增加、EEG/TG增大; 群落中胡桃楸、黄檗、榆树更有利于TG积累, 黑皮油松、落叶松(Larix gmelinii)、樟子松不利于TG的积累。(3)植物Simpson指数、Shannon-Wiener指数、物种丰富度与EEG、TG、EEG/TG无显著相关性, 而与EEG-C/SOC、EEG-N/TN (EEG中N占TN的比例)、TG-C/SOC (TG中C占SOC比例)、TG-N/TN (TG中N占TN的比例)显著负相关; 土壤EEG/TG和EEG-N/TN与植物均匀度指数显著正相关, 在1 m土壤不同土层趋势类似。(4)方差分解分析表明: 生物因子对GRSP变化的解释率是20.2%, 土壤理化因子解释率为7.8%, 而生物因子中植物优势种重要值的解释率最大(16.4%), 而植物物种多样性指数解释率仅为0.4%。冗余排序发现常绿针叶树种(黑皮油松和樟子松)越多且阔叶树种越少时, GRSP含量和GRSP对土壤碳氮的贡献越高(P < 0.01), 其机制可能与树种菌根类型有关: 外生菌根树种重要值与TG显著负相关, 丛枝菌根树种重要值与TG显著正相关。本研究解析了植物物种多样性对GRSP含量的重要影响, 并强调未来土壤管理和评估可以通过调整优势物种而不是树种多样性来促进GRSP积累。  相似文献   

12.
Abstract

The objective of this paper was to study the response of rhizosphere ammonia‐oxidizing bacterial (AOB) populations during phytoextraction. Hybrid poplars were grown in compartmented root containers with an aged heavy metal (HM)‐contaminated soil for 13 weeks. Bulk and poplar rhizosphere soils were analyzed by denaturing gradient gel electrophoresis (DGGE) of amoA gene fragments. DGGE patterns revealed that amoA‐containing populations in the contaminated soils were markedly different from those in the uncontaminated soils. AmoA profiles appeared to be stable over time in the bulk soils. In contrast, contaminated rhizosphere soils revealed a clear shift of populations with removal of HMs. Rhizosphere AOB populations of the HM‐contaminated soils became similar to the populations of the uncontaminated soils during phytoextraction. The effect of phytoextraction was, however, not evident in the bulk samples, which still contained large amounts of HMs. This study suggests that rhizosphere AOB populations are able to recover after the relief of HM stress by phytoextraction practices.  相似文献   

13.
14.
山地是高寒草甸的主要分布区,地形变化引起了土壤温湿度和物种的差异性分布,进而影响到草地生态系统生产功能。为明晰高寒草甸山地环境因子(土壤温湿度)和物种多样性(丰富度、多度、均匀度、优势度)与初级生产力的关系,本研究以青藏高原东北缘马牙雪山支脉的高寒草甸山体为研究对象,选择阶地、阴坡、山脊和阳坡与3个海拔梯度段,调查了189个样方的植物群落组成和土壤温湿度。采用线性回归法分析土壤温湿度和物种多样性与初级生产力之间的关系。结果表明:(1)以山地高寒草甸整体为研究单元,初级生产力只随物种多度的增加而显著增加(R~2=0.07 P=0.01)。(2)坡向影响初级生产力的因素不同,阴坡初级生产力与物种丰富度正线性相关;山脊初级生产力与土壤湿度正线性相关,也随物种丰富度增加而显著增加;阳坡初级生产力与物种多度正线性相关;阶地初级生产力随均匀度增加而显著增加,随优势度增加而显著降低。(3)只有低海拔区(2860-2910 m)初级生产力随物种多度和丰富度的增加而显著增加。综上所述,山地高寒草甸土壤温湿度和物种多样性与初级生产力关系受坡向比海拔的影响更大,且物种多样性对初级生产力的影响大于土壤温湿度。建议山地高寒草甸生态系统生产和生态管理过程中要重点考虑坡向对植物多样性和初级生产力的影响。  相似文献   

15.
The macrofungus, Tricholoma lobynsis, was chosen to remedy Zn–Cd–Pb contaminated soil. To enhance its metal-extracting efficiency, two heavy metal resistant microbes M6 and K1 were applied owing to their excellent abilities to solubilize heavy metal salts. The two isolated microbial strains could also produce indole acetic acid (IAA), siderophore and solubilize inorganic phosphate, but neither of them showed 1-aminocyclopropane-1-carboxylate deaminase activity. The strains M6 and K1 were identified as Serratia marcescens and Rhodotorula mucilaginosa based on 16S rDNA and ITS sequence analysis respectively. Pot experiment showed that spraying to T. lobynsis-inoculated soil with M6 and K1 respectively could increase total Cd accumulations of this mushroom by 216 and 61%, and Zn by 153 and 49% compared to the uninoculated control. Pb accumulation however, was too low (<1 mg kg−1) to be determined. The results illustrated that special microbes and macrofungi can work together to remedy polluted soil as plant and plant growth promoting microbes do, probably because of excellent metal-accumulating abilities of macrofungi and IAA-siderophore production, phosphate solubilization abilities of the assisted-microbes. This kind of macrofungi-microbe interaction can be developed into a novel bioremediation strategy.  相似文献   

16.
A study was conducted to establish whether the wild thyme [Thymus polytrichus A. Kerner ex Borbás ssp. britannicus (Ronn.) Kerguelen (Lamiaceae)] growing in the metal-contaminated soils along the River South Tyne, United Kingdom, is colonised by arbuscular mycorrhizal (AM) fungi, and whether the degree of colonisation increases (perhaps suggesting increasing mycorrhizal dependence) or decreases (indicating possible inhibition of AM growth) with increasing degree of soil contamination. Seasonal changes in AM colonisation were also assessed. The AM fungal communities colonising T. polytrichus were also investigated, using the polymerase chain reaction with restriction fragment length polymorphism and sequencing of fungal DNA to establish whether AM species richness varied between sites, and whether fungal ecotypes specific to sites with different amounts of metal contamination could be identified. All plants examined were heavily colonised by AM fungi, and mean percentage root length colonised did not increase significantly with increasing soil metal contamination. However, AM vesicle abundance (percentage of mycorrhizal root length containing vesicles) at the most contaminated site was significantly greater than at the other sites. No significant seasonal variation in degree of colonisation or vesicle abundance was found. Glomus was the predominant AM genus detected at all sites. The number of AM genotypes colonising T. polytrichus roots was similar at all sites but, although some were common to all sites, certain strains appeared to be specific to either the most- or the least-contaminated site. This variation in species may account for the difference in vesicle abundance between sites. The consistently heavy AM colonisation of T. polytrichus found suggests that these fungi are not inhibited by soil heavy metals at these sites, and that the host derives some benefit from its AM symbiont.  相似文献   

17.
18.
The pigment composition of leaves from a number of different plant species collected from field sites in the region of Sheffield, UK, have been compared using high-performance liquid chromatography. Expression of pigment content per unit leaf area was dominated by variation in the total leaf chlorophyll. Neither chlorophyll per unit area nor the chlorophyll a/b ratio were found to be correlated with the habitat from which the plants originated. When the amounts of different carotenoids were expressed relative to the total carotenoid pool, it was found that whilst neither total carotene (α- +β-carotene) nor neoxanthin correlated with ability to grow in shade, the leaf content of both lutein and the total xanthophyll cycle carotenoids (zeaxanthin, anther-axanthin and violaxanthin) did, with lutein content being high in shade species and xanthophyll cycle intermediates low. There was a strong negative correlation between the relative amounts of each of these groups of carotenoids. The ratio of lutein to xanthophyll cycle carotenoids was strongly correlated to an index of shade tolerance.  相似文献   

19.
We assessed the effects of phytoextraction on the dynamics of Pseudomonas spp. and ammonia-oxidizing bacterial populations in a heavy metal (HM) polluted soil. Hybrid poplars were grown in two-compartment root containers with a medium history (> 4 years) of HM pollution for 13 weeks. Bulk and poplar rhizosphere soils were analysed by denaturing gradient gel electrophoresis (DGGE) of Pseudomonas (sensu stricto) 16S rRNA and amoA gene fragments. DGGE patterns revealed that Pseudomonas and amoA-containing populations in the contaminated soils were markedly different from those in the uncontaminated soils. Pseudomonas and amoA profiles appeared to be stable over time in the bulk soils. In contrast, contaminated rhizosphere soils revealed a clear shift of populations with removal of HM becoming similar or at least shifted to the populations of the uncontaminated soils. The effect of phytoextraction was, however, not evident in the bulk samples, which still contained large amounts of HM. Cloning and sequencing of dominant DGGE bands revealed that Pseudomonas were phylogenetically related to the Pseudomonas fluorescens cluster and the amoA sequences to Nitrosospira spp. At the last sampling, major prominent band sequences from contaminated rhizosphere soils were identical to sequences obtained from uncontaminated rhizosphere soils, indicating that the populations were dominated by the same phylotypes. This study suggests that two taxonomically different populations are able to recover after the relief of HM stress by phytoextraction practices, whereas bulk microbial activities still remained depressed.  相似文献   

20.
The rhizosphere is a complex environment where roots interact with physical, chemical and biological properties of soil. Structural and functional characteristics of roots contribute to rhizosphere processes and both have significant influence on the capacity of roots to acquire nutrients. Roots also interact extensively with soil microorganisms which further impact on plant nutrition either directly, by influencing nutrient availability and uptake, or indirectly through plant (root) growth promotion. In this paper, features of the rhizosphere that are important for nutrient acquisition from soil are reviewed, with specific emphasis on the characteristics of roots that influence the availability and uptake of phosphorus and nitrogen. The interaction of roots with soil microorganisms, in particular with mycorrhizal fungi and non-symbiotic plant growth promoting rhizobacteria, is also considered in relation to nutrient availability and through the mechanisms that are associated with plant growth promotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号