首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
全球森林土壤N2O排放通量的影响因子   总被引:1,自引:0,他引:1  
韩琳  王鸽  王伟  赵熙 《生态学杂志》2012,31(2):446-452
森林生态系统在全球变暖格局下的地位和作用,尤其是土壤氮库对大气氮沉降增加的响应逐渐成为全球变化研究的热点。本文通过对已有文献资料的调研和整理,分析了1984—2009年间全球38个森林土壤N2O排放通量的野外原位观测结果的分布特征,评估了森林土壤N2O年排放累积通量对大气氮素沉降量和水热条件等因子变化的响应。结果表明,全球森林土壤N2O排放通量的平均值为0.47kgN·hm-2·a-1,而且土壤N2O释放通量随着纬度增加逐渐降低。作为一个复杂的生态过程,土壤N2O累积释放量同样受到年均温、年降水量以及土壤属性的显著影响。其中全球森林土壤N2O释放温度敏感性系数(Q10值)约为1.5。另外,森林土壤N2O排放通量也随着氮沉降量的增加而显著增大,大气氮沉降量可解释土壤N2O排放通量在不同区域之间53%的差异;土壤pH、年均温和大气氮沉降量可以解释区域森林土壤N2O排放通量变化的55%。  相似文献   

2.
寒温带兴安落叶松林土壤温室气体通量的时间变异   总被引:2,自引:0,他引:2  
采用静态箱/气相色谱(GC)法,对寒温带兴安落叶松林区6-9月生长季土壤CO2、CH4和N2O通量进行原位测定,研究了土壤温室气体通量的季节和昼夜变化及其与环境因子的关系.结果表明:在生长季,兴安落叶松林土壤为大气CH4的汇,吸收通量为22.3~107.8 μg CH4-C·m-2·h-1,6-9月月均甲烷吸收通量为(34.0±7.1)、(71.4±9.4)、(86.3±7.9)和(40.7-±6.2) μg·m-2·h-1;不同季节土壤CH4昼夜通量的变化规律相同,一天中均在10:00达到最大吸收高峰.土壤CO2日通量呈明显的双峰曲线,月均CO2通量大小顺序为7月>8月>6月>9月.土壤N2O通量变异较大,在-9.1 ~31.7μg·m-2·h-1之间.土壤温度和湿度是影响CO2和CH4通量的重要因子,N2O通量主要受温度的影响.在兴安落叶松林区,10:00左右观测获得的温室气体地-气交换通量,经矫正后可以代表当日气体通量.  相似文献   

3.
采用静态箱法,现场监测黏土和砂土覆盖层生活垃圾填埋场N2O释放通量的春夏季节及昼夜变化,研究渗滤液灌溉、覆土土质对填埋场N2O释放的影响.结果表明:砂土和黏土覆盖层填埋场N2O夏季的释放通量均值分别为(242±576)和(591±767) μg N2ON·m-2·h-1,是春季[分别为(74.4±314)和(269±335) μg N2ON·m-2·h-1]的3.2(P>0.05)和2.2倍(P<0.05).渗滤液灌溉促进了砂土填埋场覆土N2O的释放,填埋场中灌溉区N2O的释放通量为无灌溉区的2倍(P>0.05).渗滤液灌溉的砂土覆盖层填埋场N2O春夏两季释放通量均值[(211±460) μg N2ON·m-2·h-1]仅为无渗滤液灌溉的黏土覆盖层填埋场[(430±605) μg N2ON·m-2·h-1]的1/2(P>0.05).无论渗滤液灌溉与否,选择贫瘠的砂性覆盖土均有助于减少生活垃圾填埋场N2O释放.  相似文献   

4.
不同施肥方式对土壤氨挥发和氧化亚氮排放的影响   总被引:43,自引:0,他引:43  
采用密闭室间歇通气法和静态箱法对不同施肥方式(撒施后翻耕、条施后覆土、撒施后灌水)下的土壤氨挥发和氧化亚氮排放进行了研究.结果表明:不同施肥方式显著影响了土壤中的氨挥发和氧化亚氮排放.撒施后灌水处理明显促进了氨挥发,其最大氨挥发速率明显高于其它处理,氨挥发累计达2.465 kg N·hm-2.不同施肥方式下氧化亚氮排放通量存在显著差异(P《0.05),且峰值出现时间也不同.施肥后第2天,撒施后灌水处理达到峰值,为193.66 μg·m-2·h-1,而条施后覆土处理在施肥后第5天才出现峰值,为51.13 μg·m-2·h-1,且其排放峰值在3种施肥方式中最低.撒施后灌水处理的氧化亚氮累积净排放量达121.55 g N·hm-2,显著大于撒施后翻耕和条施后覆土处理.撒施后翻耕和条施后覆土处理能有效抑制氨挥发和氧化亚氮排放损失,是较为合理的施肥方式.  相似文献   

5.
紫色土菜地生态系统土壤N2O排放及其主要影响因素   总被引:3,自引:0,他引:3  
于亚军  王小国  朱波 《生态学报》2012,32(6):1830-1838
应用静态箱/气相色谱法对种菜历史超过20a的紫色土菜地进行了一年N2O排放的定位观测, 分析了菜地N2O排放特征及施氮、土壤温度、土壤湿度和蔬菜参与对N2O排放的影响. 结果表明, 紫色土菜地生态系统在不施氮和施氮(N150kg?hm-2)情况下N2O平均排放通量为50.713.3和168.437.3g?m-2?h-1, N2O排放系数为1.86%. 菜地生态系统N2O排放强度高于当地粮食作物农田,其主要原因在于菜地较高的养分水平和频繁的施肥、浇水等田间管理措施. 从菜地N2O排放总量的季节分配来看, 有64%的N2O排放量来自于土壤水热条件较好的夏秋季蔬菜生长期, 冬春季蔬菜生长期N2O排放量较少, 仅占34%. 因此, 土壤水热条件不同是造成菜地N2O排放量季节分配差异的重要原因. 氮肥对增加N2O排放的效应因蔬菜生育期内单位时间施肥强度不同而异, 蔬菜生育期越短, 施氮对增加N2O排放的效应越明显.不施氮和常规施氮菜地N2O排放通量与地下5cm处土壤温度呈显著的正相关, 但不种蔬菜的空地两者之间的关系不显著, 并且常规施氮菜地土壤温度(T)对N2O排放通量(F)的影响可用指数方程F=11.465e0.032T(R=0.26, p<0.01)表示. 土壤湿度对菜地N2O排放的影响存在阈值效应, 当土壤含水空隙率(WFPS)介于60%-75%时更易引发N2O高排放. 因此, 依据蔬菜生育期特点, 结合土壤水分状况调节施肥量与施肥时间可能会减少菜地N2O排放.  相似文献   

6.
春季解冻期北方森林土壤释放出大量的N2O,是大气温室气体的主要来源之一.本研究将分布于塔河(52°31′ N)、松岭(50°43′ N)、孙吴(49°13′ N)和带岭(47°05′ N)4个纬度上林分状况相似的兴安落叶松林样地(包括幼树、地被物和A、B层土壤)移置至其自然分布区南缘,模拟气候暖化,分析春季解冻期土壤N2O通量的时间动态及其影响因子.结果表明:各处理的土壤N2O释放高峰均出现在解冻中后期.带岭、孙吴、松岭和塔河样地土壤解冻期的土壤N2O平均通量分别为(66.5±9.3)、(54.3±5.6)、(44.3±5.3)和(33.5±3.7) μg·m-2·h-1;土壤N2O通量与5 cm土壤温度和0~10 cm土壤微生物生物量碳呈显著正相关,但与土壤含水率的相关性不显著.解冻期4个处理的土壤N2O释放差异显著,其平均通量和累积释放量均随纬度升高而下降.这种差异主要是由于不同纬度土壤的微生物活性和土壤物理性质的差异引起的.  相似文献   

7.
氢醌和双氰胺对种稻土壤N2O和CH4排放的影响   总被引:14,自引:1,他引:13  
通过盆栽试验,研究了脲酶抑制剂氢醌(HQ)、硝化抑制剂双氰胺(DCD)及二者的组合(HQ+DCD)对种稻土壤N2O和CH4排放的影响.结果表明,在未施麦秸粉时,所有施抑制剂的处理均较单施尿素的能显著减少水稻生长期供试土壤N2O和CH4的排放.特别是HQ+DCD处理,其N2O和CH4排放总量分别约为对照的1/3和1/2.而在施麦秸粉后,该处理的N2O排放总量为对照的1/2,但CH4排放总量却较少差别.不论是N2O还是CH4的排放总量,施麦秸粉的都比未施的高出1倍和更多.因此,单从土壤源温室气体排放的角度看,将未腐熟的有机物料与尿素共施,并不是一种适宜的施肥制度.供试土壤的N2O排放通量,与水稻植株的NO-3N含量和土表水层中的矿质N量分别呈显著的指数正相关和线性正相关;CH4的排放通量则与水稻植株的生长量和土表水层中的矿质N量呈显著的线性负相关.在N2O与CH4的排放间,未施麦秸粉时存在着定量的相互消长关系;施麦秸粉后,虽同样存在所述关系,但难以定量化.  相似文献   

8.
等氮滴灌对宿根蔗产量及土壤氧化亚氮排放的影响   总被引:1,自引:0,他引:1  
为得到合理的水肥管理措施,研究等氮量下不同滴灌施肥比例对宿根蔗产量以及不同生育期蔗田土壤氧化亚氮(N2 O)通量和无机氮含量的影响,并分析蔗田土壤N2 O通量与无机氮含量之间的关系.该文以自然降雨W0为对照,设置2种滴灌灌水量水平W1(田间持水量的75%)和W2(田间持水量的85%),等量氮肥(N 300 kg·hm-...  相似文献   

9.
Climate and land‐use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2) and nitrous oxide (N2O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2) and six (N2O) orders of magnitude. Maximal CO2 and N2O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2O fluxes and altered their temperature sensitivities (Q10) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2O flux, while significantly depressing the Q10 for CO2, and having no effect on the Q10 for N2O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions.  相似文献   

10.
三江平原春小麦农田生态系统氧化亚氮通量特征   总被引:4,自引:0,他引:4  
利用静态暗箱-气相色谱法对三江平原春小麦农田生态系统N2O排放通量进行连续2.5年的田间原位观测.结果表明:三江平原春小麦农田生态系统N2O排放通量具有较明显的季节变化和年际变化,并主要与年际间降水及田间水分管理差异有关;春小麦农田生态系统N2O排放日变化与气温及地下5 cm温度变化有关.生长期N2O的排放较强,休耕期N2O排放量显著下降,冰冻期N2O的排放较微弱,融冻时N2O排放缓慢增强.生长期N2O平均排放通量为0.190 mg.m-2.h-1,收割后到冰冻期间为0.077 mg.m-2.h-1,冻融期间为0.017 mg.m-2.h-1.  相似文献   

11.
使用封闭式箱法,对大豆和玉米两种植物在苗期的N2O释放速率日变化及其同光强、气温的相关性进行了研究,同时对遮光、外加碳源和还原力对N2O释放速率的影响进行了分析.结果表明,两种植物苗期N2O释放速率在日间有两个释放高峰,分别出现在10:30和14:30.遮光处理实验结果证明,遮光后植物的N2O释放速率明显增加;相关性分析表明,苗期大豆在光强低于11345Lx时,N2O释放速率与光强呈正相关关系(R^2=0.7332),光强高于11345Lx时,呈负相关关系(R^2=0.7755),而苗期玉米在光强低于20000Lx时,N2O释放速率与光强呈正相关关系(R^2=0.8711),光强高于11345Lx时,呈负相关关系(R^2=0.8972).加入一定量的碳源(葡萄糖),可使遮光植物N2O的释放速率明显下降,由于同化力(NADH)的介入,在一定程度上影响了N2O的排放通量,同样使得N2O的释放量下降.  相似文献   

12.
采用静态箱-气相色谱法对菜地、旱地、林地、果园、水改旱土壤N2O排放特征及其相关影响因子进行研究.结果表明:不同土地利用方式下土壤N2O的排放通量在-21~435 μg·m-2·h-1之间变化,N2O年排放总量为菜地>果园>旱地>水改旱>林地,分别为447.14、313.57、167.00、124.87和7.24 mg·m-2.土壤N2O排放通量呈现明显的季节性变化,以春夏季最高,秋季次之,冬季最低,并与对应的大气及土壤温度的变化趋势基本一致.N2O排放通量与5 cm土壤温度及土壤硝态氮含量呈显著或极显著正相关,与土壤水分及土壤铵态氮含量无明显相关关系.  相似文献   

13.
An empirical model of nitrous oxide emission from agricultural soils has been developed. It is based on the relationship between N2O and three soil parameters – soil mineral N (ammonium plus nitrate) content in the topsoil, soil water‐filled pore space and soil temperature – determined in a study on a fertilized grassland in 1992 and 1993. The model gave a satisfactory prediction of seasonal fluxes in other seasons when fluxes were much higher, and also from other grassland sites and from cereal and oilseed rape crops, over a wide flux range (< 1 to > 20 kg N2O‐N ha?1 y?1). However, the model underestimated emissions from potato and broccoli crops; possible reasons for this are discussed. This modelling approach, based as it is on well‐established and widely used soil measurements, has the potential to provide flux estimates from a much wider range of agricultural sites than would be possible by direct measurement of N2O emissions.  相似文献   

14.
We modeled the expected range of seasonal and annual N2O flux from temperate, grain agroecosystems using Monte Carlo sampling of N2O flux field observations. This analysis is complimentary to mechanistic biogeochemical model outcomes and provides an alternative method of estimating N2O flux. Our analysis produced a range of annual N2O gas flux estimates with mean values overlapping with results from an intermodel comparison of mechanistic models. Mean seasonal N2O flux was 1–4% of available N, while median seasonal N2O flux was less than 2% of available N across corn, soybean, wheat, ryegrass, legume, and bare fallow systems. The 25th–75th percentile values for simulated average annualized N2O flux rates ranged from 1 to 12.2 kg N ha?1 in the conventional system, from 1.3 to 8.8 kg N ha?1 in the cover crop rotation, and from 0.8 to 9.3 kg N ha?1 in the legume rotation. Although these modeling techniques lack the seasonal resolution of mechanistic models, model outcomes are based on measured field observations. Given the large variation in seasonal N gas flux predictions resulting from the application of mechanistic simulation models, this data-derived approach is a complimentary benchmark for assessing the impact of agricultural policy on greenhouse gas emissions.  相似文献   

15.
Temperate pastures are often managed with P fertilizers and N2-fixing legumes to maintain and increase pasture productivity which may lead to greater nitrous oxide (N2O) emissions and reduced methane (CH4) uptake. However, the diel and inter-daily variation in N2O and CH4 flux in pastures is poorly understood, especially in relation to key environmental drivers. We investigated the effect of pasture productivity, rainfall, and changing soil moisture and temperature upon short-term soil N2O and CH4 flux dynamics during spring in sheep grazed pasture systems in southeastern Australia. N2O and CH4 flux was measured continuously in a High P (23 kg P ha?1 yr?1) and No P pasture treatment and in a sheep camp area in a Low P (4 kg P ha?1 yr?1) pasture for a four week period in spring 2005 using an automated trace gas system. Although pasture productivity was three-fold greater in the High P than No P treatment, mean CH4 uptake was similar (?6.3?±?SE 0.3 to ?8.6?±?0.4 μg C m?2 hr?1) as were mean N2O emissions (6.5 to 7.9?±?0.8 μg N m?2 hr?1), although N2O flux in the No P pasture did not respond to changing soil water conditions. N2O emissions were greatest in the Low P sheep camp (12.4 μg?±?1.1 N m?2 hr?1) where there were also net CH4 emissions of 5.2?±?0.5 μg C m?2 hr?1. There were significant, but weak, relationships between soil water and N2O emissions, but not between soil water and CH4 flux. The diel temperature cycle strongly influenced CH4 and N2O emissions, but this was often masked by the confounding covariate effects of changing soil water content. There were no consistently significant differences in soil mineral N or gross N transformation rates, however, measurements of substrate induced respiration (SIR) indicated that soil microbial processes in the highly productive pasture are more N limited than P limited after >20 years of P fertilizer addition. Increased productivity, through P fertilizer and legume management, did not significantly increase N2O emissions, or reduce CH4 uptake, during this 4 week measurement period, but the lack of an N2O response to rainfall in the No P pasture suggests this may be evident over a longer measurement period. This study also suggests that small compacted and nutrient enriched areas of grazed pastures may contribute greatly to the overall N2O and CH4 trace gas balance.  相似文献   

16.
Grazing ruminants urinate and deposit N onto pastoral soils at rates up to 1,000 kg ha?1, with most of this deposited N present as urea. In urine patches, nitrous oxide (N2O) emissions can increase markedly. Soil derived CO2 fluxes can also increase due to priming effects.While N2O fluxes are affected by temperature, no studies have examined the interaction of pasture plants, urine and temperature on N2O fluxes and the associated CO2 fluxes. We postulated the response of N2O emissions to bovine urine application would be affected by plants and temperature. Dairy cattle urine was collected, labelled with 15N, and applied at 590 kg N ha?1 to a sub-tropical soil,with and without pasture plants at 11°, 19°, and 23°C. Over the experimental period (28 days), 0.2% (11°C with plants) to 2.2% (23°C with plants) of the applied N was emitted as N2O. At 11°C, plants had no effect on cumulative N2O-N fluxes, whereas at 23°C, the presence of plants significantly increased the flux, suggesting plant-derived C supply affected the N2O producing microbes. In contrast, a significant urine application effect on the cumulative CO2 flux was not affected by varying temperature from 11?C23°C or by growing plants in the soil. This study has shown that plants and their responses to temperature affect N2O emissions from ruminant urine deposition. The results have significant implications for forecasting and understanding the effect of elevated soil temperatures on N2O emissions and CO2 fluxes from grazed pasture systems.  相似文献   

17.
The mixture of other broadleaf species into beech forests in Central Europe leads to an increase of tree species diversity, which may alter soil biochemical processes. This study was aimed at 1) assessing differences in gross rates of soil N cycling among deciduous stands of different beech (Fagus sylvatica L.) abundance in a limestone area, 2) analyzing the relationships between gross rates of soil N cycling and forest stand N cycling, and 3) quantifying N2O emission and determining its relationship with gross rates of soil N cycling. We used 15N pool dilution techniques for soil N transformation measurement and chamber method for N2O flux measurement. Gross rates of mineral N production in the 0–5 cm mineral soil increased across stands of decreasing beech abundance and increasing soil clay content. These rates were correlated with microbial biomass which, in turn, was influenced by substrate quantity, quality and soil fertility. Leaf litter-N, C:N ratio and base saturation in the mineral soil increased with decreasing beech abundance. Soil mineral N production and assimilation by microbes were tightly coupled, resulting in low N2O emissions. Annual N2O emissions were largely contributed by the freeze-thaw event emissions, which were correlated with the amount of soil microbial biomass. Our results suggest that soil N availability may increase through the mixture of broadleaf species into beech forests.  相似文献   

18.
四种温带森林土壤氧化亚氮通量及其影响因子   总被引:9,自引:0,他引:9  
以中国东北东部4种典型森林生态系统(人工红松林、落叶松林、天然次生蒙古栎林和硬阔叶林)为研究对象,采用静态暗箱-气相色谱法,比较其土壤N2O通量的季节动态及其影响因子.结果表明:在生长季, 4种森林生态系统土壤总体上表现为大气N2O的排放源, 其N2O通量大小顺序为:硬阔叶林(21.0±4.9 μg·m-2·h-1)> 红松林(17.6±4.6 μg·m-2·h-1)>落叶松林(9.8±5.9 μg·m-2·h-1)>蒙古栎林(1.6±12.6 μg·m-2·h-1).各生态系统的N2O通量没有明显的季节动态,只在夏初出现排放峰值(蒙古栎林为吸收峰).4种生态系统N2O通量均与10 cm深土壤含水量呈极显著正相关,与NO3--N呈显著负相关;N2O通量对土壤温度和NH4+-N的响应出现分异:针叶林N2O 通量与NH4+-N呈显著正相关,而与5 cm深土壤温度呈不相关;阔叶林与针叶林正相反.在较为干旱的2007年,土壤水分是影响4种林型土壤N2O通量的关键因子.植被类型与环境因子及氮素有效性对N2O通量的相互作用将是未来研究的重点.  相似文献   

19.
Increases in soil freezing associated with decreases in snow cover have been identified as a significant disturbance to nitrogen (N) cycling in northern hardwood forests. We created a range of soil freezing intensity through snow manipulation experiments along an elevation gradient at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains, NH USA in order to improve understanding of the factors regulating freeze effects on nitrate (NO3 ?) leaching, nitrous oxide (N2O) flux, potential and in situ net N mineralization and nitrification, microbial biomass carbon (C) and N content and respiration, and denitrification. While the snow manipulation treatment produced deep and persistent soil freezing at all sites, effects on hydrologic and gaseous losses of N were less than expected and less than values observed in previous studies at the HBEF. There was no relationship between frost depth, frost heaving and NO3 ? leaching, and a weak relationship between frost depth and winter N2O flux. There was a significant positive relationship between dissolved organic carbon (DOC) and NO3 ? concentrations in treatment plots but not in reference plots, suggesting that the snow manipulation treatment mobilized available C, which may have stimulated retention of N and prevented treatment effects on N losses. While the results support the hypothesis that climate change resulting in less snow and more soil freezing will increase N losses from northern hardwood forests, they also suggest that ecosystem response to soil freezing disturbance is affected by multiple factors that must be reconciled in future research.  相似文献   

20.
The application of organic materials to soil can recycle nutrients and increase organic matter in agricultural lands. Digestate can be used as a nutrient source for crop production but it has also been shown to stimulate greenhouse gas (GHG) emissions from amended soils. While edaphic factors, such as soil texture and pH, have been shown to be strong determinants of soil GHG fluxes, the impact of the legacy of previous management practices is less well understood. Here we aim to investigate the impact of such legacy effects and to contrast them against soil properties to identify the key determinants of soil GHG fluxes following digestate application. Soil from an already established field experiment was used to set up a pot experiment, to evaluate N2O, CH4 and CO2 fluxes from cattle‐slurry‐digestate amended soils. The soil had been treated with farmyard manure, green manure or synthetic N‐fertilizer, 18 months before the pot experiment was set up. Following homogenization and a preincubation stage, digestate was added at a concentration of 250 kg total N/ha eq. Soil GHG fluxes were then sampled over a 64 day period. The digestate stimulated emissions of the three GHGs compared to controls. The legacy of previous soil management was found to be a key determinant of CO2 and N2O flux while edaphic variables did not have a significant effect across the range of variables included in this experiment. Conversely, edaphic variables, in particular texture, were the main determinant of CH4 flux from soil following digestate application. Results demonstrate that edaphic factors and current soil management regime alone are not effective predictors of soil GHG flux response following digestate application. Knowledge of the site management in terms of organic amendments is required to make robust predictions of the likely soil GHG flux response following digestate application to soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号