首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this report we highlight the latest trends in phasing methods used to solve alpha helical membrane protein structures and analyze the use of heavy atom metals for the purpose of experimental phasing. Our results reveal that molecular replacement is emerging as the most successful method for phasing alpha helical membrane proteins, with the notable exception of the transporter family, where experimentally derived phase information still remains the most effective method. To facilitate selection of heavy atoms salts for experimental phasing an analysis of these was undertaken and indicates that organic mercury salts are still the most successful heavy atoms reagents. Interestingly the use of seleno‐l ‐methionine incorporated protein has increased since earlier studies into membrane protein phasing, so too the use of SAD and MAD as techniques for phase determination. Taken together this study provides a brief snapshot of phasing methods for alpha helical membrane proteins and suggests possible routes for heavy atom selection and phasing methods based on currently available data.  相似文献   

2.
Experimental phasing of macromolecular crystal structures relies on the accurate measurement of two or more sets of reflections from isomorphous crystals, where the scattering power of a few atoms is different for each set. Recently, it was demonstrated that X-ray-induced intensity differences can also contain phasing information, exploiting specific structural changes characteristic of X-ray damage. This method (radiation damage-induced phasing; RIP) has the advantage that it can be performed on a single crystal of the native macromolecule. However, a drawback is that X-rays introduce many small changes to both solvent and macromolecule. In this study, ultraviolet (UV) radiation has been used to induce specific changes in the macromolecule alone, leading to a larger contrast between radiation-susceptible and nonsusceptible sites. Unlike X-ray RIP, UV RIP does not require the use of a synchrotron. The method has been demonstrated for a series of macromolecules.  相似文献   

3.
4.
Sequence-dependent intrinsic curvature of DNA influences looping by regulatory proteins such as LacI and NtrC. Curvature can enhance stability and control shape, as observed in LacI loops formed with three designed sequences with operators bracketing an A-tract bend. We explore geometric, topological, and energetic effects of curvature with an analysis of a family of highly bent sequences, using the elastic rod model from previous work. A unifying straight-helical-straight representation uses two phasing parameters to describe sequences composed of two straight segments that flank a common helically supercoiled segment. We exercise the rod model over this two-dimensional space of phasing parameters to evaluate looping behaviors. This design space is found to comprise two subspaces that prefer parallel versus anti-parallel binding topologies. The energetic cost of looping varies from 4 to 12 kT. Molecules can be designed to yield distinct binding topologies as well as hyperstable or hypostable loops and potentially loops that can switch conformations. Loop switching could be a mechanism for control of gene expression. Model predictions for linking numbers and sizes of LacI-DNA loops can be tested using multiple experimental approaches, which coupled with theory could address whether proteins or DNA provide the observed flexibility of protein-DNA loops.  相似文献   

5.
Crystals of the small ribosomal subunit from Thermus thermophilus diffract to 3A and exhibit reasonable isomorphism and moderate resistance to irradiation. A 5A MIR map of this particle shows a similar shape to the part assigned to this particle within the cryo-EM reconstructions of the whole ribosome and contains regions interpretable either as RNA chains or as protein motifs. To assist phasing at higher resolution we introduced recombinant methods aimed at extensive selenation for MAD phasing. We are focusing on several ribosomal proteins that can be quantitatively detached by chemical means. These proteins can be modified and subsequently reconstituted into depleted ribosomal cores. They also can be used for binding heavy atoms, by incorporating chemically reactive binding sites, such as -SH groups, into them. In parallel we are co-crystallizing the ribosomal particles with tailor made ligands, such as antibiotics or cDNA to which heavy-atoms have been attached or diffuse the latter compounds into already formed crystals.  相似文献   

6.
Abstract

Crystals of the small ribosomal subunit from Thermus thermophilus diffract to 3Å and exhibit reasonable isomorphism and moderate resistance to irradiation. A 5Å MIR map of this particle shows a similar shape to the part assigned to this particle within the cryo-EM reconstructions of the whole ribosome and contains regions interpretable either as RNA chains or as protein motifs. To assist phasing at higher resolution we introduced recombinant methods aimed at extensive selenation for MAD phasing. We are focusing on several ribosomal proteins that can be quantitatively detached by chemical means. These proteins can be modified and subsequently reconstituted into depleted ribosomal cores. They also can be used for binding heavy atoms, by incorporating chemically reactive binding sites, such as -SH groups, into them. In parallel we are co-crystallizing the ribosomal particles with tailor made ligands, such as antibiotics or cDNA to which heavy-atoms have been attached or diffuse the latter compounds into already formed crystals.  相似文献   

7.
Resolution of the two haplotypes present in an individual that is heterozygous at a locus has been a difficult problem for nucleotide sequence-based population genetic studies. Here, we demonstrate a method in which allele-specific polymerase chain reaction (AS-PCR) and computational phasing are combined for relatively high-throughput, efficient resolution of phase in resequencing studies. Using data from multiple loci that were fully experimentally phased, we demonstrate that the popular computational tool PHASE can accurately phase heterozygous individuals with common SNPs (single nucleotide polymorphisms) and/or common haplotypes. However, we also demonstrate that experimental phasing with AS-PCR can efficiently supplement computational phasing, providing a rapid means to phase individuals with rare SNPs or haplotypes and with heterozygous insertion/deletion polymorphisms. By following simple stepwise procedures, AS-PCR can result in much more efficient and accurate experimental phasing of haplotypes than is possible with traditional methods such as cloning.  相似文献   

8.
Liu X  Zhang H  Wang XJ  Li LF  Su XD 《PloS one》2011,6(9):e24227
The crystal structures of two proteins, a putative pyrazinamidase/nicotinamidase from the dental pathogen Streptococcus mutans (SmPncA) and the human caspase-6 (Casp6), were solved by de novo arsenic single-wavelength anomalous diffraction (As-SAD) phasing method. Arsenic (As), an uncommonly used element in SAD phasing, was covalently introduced into proteins by cacodylic acid, the buffering agent in the crystallization reservoirs. In SmPncA, the only cysteine was bound to dimethylarsinoyl, which is a pentavalent arsenic group (As (V)). This arsenic atom and a protein-bound zinc atom both generated anomalous signals. The predominant contribution, however, was from the As anomalous signals, which were sufficient to phase the SmPncA structure alone. In Casp6, four cysteines were found to bind cacodyl, a trivalent arsenic group (As (III)), in the presence of the reducing agent, dithiothreitol (DTT), and arsenic atoms were the only anomalous scatterers for SAD phasing. Analyses and discussion of these two As-SAD phasing examples and comparison of As with other traditional heavy atoms that generate anomalous signals, together with a few arsenic-based de novo phasing cases reported previously strongly suggest that As is an ideal anomalous scatterer for SAD phasing in protein crystallography.  相似文献   

9.
The Seattle Structural Genomics Center for Infectious Disease (SSGCID) focuses on the structure elucidation of potential drug targets from class A, B, and C infectious disease organisms. Many SSGCID targets are selected because they have homologs in other organisms that are validated drug targets with known structures. Thus, many SSGCID targets are expected to be solved by molecular replacement (MR), and reflective of this, all proteins are expressed in native form. However, many community request targets do not have homologs with known structures and not all internally selected targets readily solve by MR, necessitating experimental phase determination. We have adopted the use of iodide ion soaks and single wavelength anomalous dispersion (SAD) experiments as our primary method for de novo phasing. This method uses existing native crystals and in house data collection, resulting in rapid, low cost structure determination. Iodide ions are non-toxic and soluble at molar concentrations, facilitating binding at numerous hydrophobic or positively charged sites. We have used this technique across a wide range of crystallization conditions with successful structure determination in 16 of 17 cases within the first year of use (94% success rate). Here we present a general overview of this method as well as several examples including SAD phasing of proteins with novel folds and the combined use of SAD and MR for targets with weak MR solutions. These cases highlight the straightforward and powerful method of iodide ion SAD phasing in a high-throughput structural genomics environment.  相似文献   

10.
The use of Seleno‐methionine (SeMet) incorporated protein crystals for single or multi‐wavelength anomalous diffraction (SAD or MAD) to facilitate phasing has become almost synonymous with modern X‐ray crystallography. The anomalous signals from SeMets can be used for phasing as well as sequence markers for subsequent model building. The production of large quantities of SeMet incorporated recombinant proteins is relatively straightforward when expressed in Escherichia coli. In contrast, production of SeMet substituted recombinant proteins expressed in the insect cells is not as robust due to the toxicity of SeMet in eukaryotic systems. Previous protocols for SeMet‐incorporation in the insect cells are laborious, and more suited for secreted proteins. In addition, these protocols have generally not addressed the SeMet toxicity issue, and typically result in low recovery of the labeled proteins. Here we report that SeMet toxicity can be circumvented by fully infecting insect cells with baculovirus. Quantitatively controlling infection levels using our Titer Estimation of Quality Control (TEQC) method allow for the incorporation of substantial amounts of SeMet, resulting in an efficient and optimal production of labeled recombinant protein complexes. With the method described here, we were able to consistently reach incorporation levels of about 75% and protein yield of 60–90% compared with native protein expression.  相似文献   

11.
In only a few years, multiple wavelength anomalous diffraction (MAD) phasing has advanced from an esoteric technique used in only a few favorable cases to the method of choice for solving new macromolecular structures. Before 1994, MAD phasing had been used for fewer than a dozen new structure determinations. In 1999 alone, well over 100 new structures were determined by MAD phasing. The meteoric rise in MAD applications resulted from the availability of new synchrotron beamlines, equipped with low bandpass optics, fast readout detectors, cryogenic cooling and user-friendly interfaces. The power of MAD phasing has been amplified by the availability of new computer programs for locating the positions of the anomalous scattering atoms and for calculating phases from the experimental data. Phasing by anomalous scattering techniques has been applied to structures as large as 640 kDa and 120 selenium atoms in the asymmetric unit. The practical size limitation for application of MAD phasing techniques has not yet been encountered.  相似文献   

12.
Recombinant techniques are routinely used for the preparation of protein samples for structural studies including X-ray crystallography. Among other benefits, these methods allow for a vast increase in the amount of obtained protein as compared to purification from source tissues, ease of purification when fusion proteins containing affinity tags are used, introduction of SeMet for phasing, and the opportunity to modify the protein to enhance its crystallizability. Protein engineering may involve removal of flexible regions including termini and interior loops, as well as replacement of residues that affect solubility. Moreover, modification of the protein surface to induce crystal growth may include rational engineering of surface patches that can readily mediate crystal contacts. The latter approach can be used to obtain proteins of crystals recalcitrant to crystallization or to obtain well-diffracting crystals in lieu of wild-type crystals yielding data to limited resolution. This review discusses recent advances in the field and describes a number of examples of diverse protein engineering techniques used in crystallographic investigations.  相似文献   

13.
Determination of haplotype phase is becoming increasingly important as we enter the era of large-scale sequencing because many of its applications, such as imputing low-frequency variants and characterizing the relationship between genetic variation and disease susceptibility, are particularly relevant to sequence data. Haplotype phase can be generated through laboratory-based experimental methods, or it can be estimated using computational approaches. We assess the haplotype phasing methods that are available, focusing in particular on statistical methods, and we discuss the practical aspects of their application. We also describe recent developments that may transform this field, particularly the use of identity-by-descent for computational phasing.  相似文献   

14.
A novel, multiple DNA phasing analysis is described in which three sequence motifs associated with bent DNA are clustered together in oligomers of identical base composition, but with different phasing relationships of these motifs to each other. Synthetic oligonucleotides containing different combinations of AAAAA(A), GGGCCC and GAGAG sequence motifs were ligated and analyzed by gel mobility and cyclization experiments to determine their global curvature. These assays were used to obtain relative bending contributions of the analyzed sequence motifs. The experimental results also provide a rigorous test of predictive models for DNA bending. We report, using molecular modeling, that none of the most widely used dinucleotide (nearest neighbor) models can accurately describe the conformational properties of these DNA sequences and that more complex models, at least at the trinucleotide level, are required.  相似文献   

15.
The misidentification of a protein sample, or contamination of a sample with the wrong protein, may be a potential reason for the non‐reproducibility of experiments. This problem may occur in the process of heterologous overexpression and purification of recombinant proteins, as well as purification of proteins from natural sources. If the contaminated or misidentified sample is used for crystallization, in many cases the problem may not be detected until structures are determined. In the case of functional studies, the problem may not be detected for years. Here several procedures that can be successfully used for the identification of crystallized protein contaminants, including: (i) a lattice parameter search against known structures, (ii) sequence or fold identification from partially built models, and (iii) molecular replacement with common contaminants as search templates have been presented. A list of common contaminant structures to be used as alternative search models was provided. These methods were used to identify four cases of purification and crystallization artifacts. This report provides troubleshooting pointers for researchers facing difficulties in phasing or model building.  相似文献   

16.
The interpretation of the heavy metal-labeled data can either be accomplished with the analysis of the observed intensity differences (Akers and Parsons) or with the analysis of the observed structure amplitude changes (Harker). Both methods of analysis give essentially the same results: that two possible electron density distributions are valid, within experimental error, depending on whether there are one or two metal-labeling sites within the membrane. At present, the correct choice must rest on either the introduction of additional physical and chemical data on the position of the proteins and lipids or on an independent phasing technique such as the Hosemann-Bagchi Q-function.  相似文献   

17.
In this study, for the first time, a comprehensive two-dimensional (2D) liquid-phase separation system, coupling strong cation exchange chromatography (SCX) to reversed-phase high performance liquid chromatography (RPLC), instead of specificity depletion method, was developed at the intact protein level for depletion of high-abundance proteins from rat liver. Proteins were prefractionated by SCX in the first dimensional separation, followed by RPLC with high resolution separation. UV absorption intensity was used to differentiate high-abundance proteins. The proteins with the absorbance intensity above 0.1 AU were defined as high abundance proteins and depleted. After removal of high-abundance proteins; other proteins were pooled, digested, and subsequently separated by capillary liquid chromatography coupled with MALDI-TOF/TOF mass spectrometry analysis. The high efficiency of the strategy was demonstrated by analyzing the soluble protein extracted from rat liver tissue. In total, 77 high-abundance proteins were depleted in one experiment flow. The ratio of depleted content of high-abundance proteins to that of total proteins was about 34.5%. In total, 1530 proteins were identified using the depletion strategy. Quantitative estimation of high-abundance proteins through liquid chromatography combined with UV absorption spectra was achieved. On the basis of the reproducible experimental results, a rapid and high-throughput depletion protocol was put forward. Along with depletion of the most (79.1%) high-abundance proteins and the separation of digested peptides, the total separation time could be less than 30 h. This strategy has no bias for depleting high-abundance proteins and enhances the number of identified proteins; therefore, it can be widely used in the global proteins analysis.  相似文献   

18.
A MAS solid state NMR approach for achieving efficient scalar coupling mediated through-bond (13)C chemical shift correlations of the aliphatic carbons in uniformly labelled peptides/proteins is described. The method involves the application of a continuous train of adiabatic inversion pulses, as in the adiabatic TOCSY experiments carried out in solution state NMR studies. While rotor synchronised application of adiabatic inversion pulses leads to dipolar correlations, it is shown here via numerical simulations and experimental measurements that asynchronous application of adiabatic pulses can facilitate the mapping of through-bond connectivities. The method employs a suitable phasing scheme for generating the desired isotropic mixing Hamiltonian and requires moderate (13)C RF field strength only.  相似文献   

19.
Phasing of lysozyme crystals using co-crystallized barium ions was performed using single-wavelength anomalous diffraction (SAD) method using Cu Ka radiation with in-house source of data collection. As the ion binding sites vary with respect to the pH of the buffer during crystallization, the highly isomorphic forms of lysozyme crystals grown at acidic and alkaline pH were used for the study. Intrinsic sulphur anomalous signal was also utilized with anomalous signal from lower occupancy ions for phasing. The study showed that to solve the structure by SAD technique, 2.8-fold data redundancy was sufficient when barium was used as an anomalous marker in the in-house copper X-ray radiation source for data collection. Therefore, co-crystallization of proteins with barium containing salt can be a powerful tool for structure determination using lab source.  相似文献   

20.
An important goal of structural studies of modular proteins is to determine the inter-module orientation, which often influences biological function. The N-terminal domain of human fibronectin (Fn) is composed of a string of five type 1 modules (F1). Despite their small size, to date F1 modules have proved intractable to X-ray structure solution, although there are several NMR structures available. Here, we present the first structures (two X-ray models and an NMR-derived model) of the (2)F1(3)F1 module pair, which forms part of the binding site for Fn-binding proteins from pathogenic bacteria. The crystallographic structure determination was aided by the novel technique of UV radiation damage-induced phasing. The individual module structures are very similar in all three models. In the NMR structure and one of the X-ray structures, a similar but smaller interdomain interface than that observed previously for (4)F1(5)F1 is seen. The other X-ray structure has a different interdomain orientation. This work underlines the benefits of combining X-ray and NMR data in the studies of multi-domain proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号