首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The entry of T cell progenitors to the thymus marks the beginning of a multistage developmental process that culminates in the generation of self-MHC-restricted CD4(+) and CD8(+) T cells. Although multiple factors including the chemokine receptors CCR7 and CCR9 are now defined as important mediators of progenitor recruitment and colonization in both the fetal and adult thymi, the heterogeneity of thymus-colonizing cells that contribute to development of the T cell pool is complex and poorly understood. In this study, in conjunction with lineage potential assays, we perform phenotypic and genetic analyses on thymus-settling progenitors (TSP) isolated from the embryonic mouse thymus anlagen and surrounding perithymic mesenchyme, including simultaneous gene expression analysis of 14 hemopoietic regulators using single-cell multiplex RT-PCR. We show that, despite the known importance of CCL25-CCR9 mediated thymic recruitment of T cell progenitors, embryonic PIR(+)c-Kit(+) TSP can be subdivided into CCR9(+) and CCR9(-) subsets that differ in their requirements for a functional thymic microenvironment for thymus homing. Despite these differences, lineage potential studies of purified CCR9(+) and CCR9(-) TSP reveal a common bias toward T cell-committed progenitors, and clonal gene expression analysis reveals a genetic consensus that is evident between and within single CCR9(+) and CCR9(-) TSP. Collectively, our data suggest that although the earliest T cell progenitors may display heterogeneity with regard to their requirements for thymus colonization, they represent a developmentally homogeneous progenitor pool that ensures the efficient generation of the first cohorts of T cells during thymus development.  相似文献   

3.
4.
Expression of chemokine receptors by tumors, specifically CCR4 on cutaneous T cell lymphomas, is often associated with a poor disease outcome. To test the hypothesis that chemokine receptor-expressing tumors can be successfully controlled by delivering toxins through their chemokine receptors, we have generated fusion proteins designated chemotoxins: chemokines fused with toxic moieties that are nontoxic unless delivered into the cell cytosol. We demonstrate that chemokines fused with human RNase eosinophil-derived neurotoxin or with a truncated fragment of Pseudomonas exotoxin 38 are able to specifically kill tumors in vitro upon internalization through their respective chemokine receptors. Moreover, treatment with the thymus and activation-regulated chemokine (CCL17)-expressing chemotoxin efficiently eradicated CCR4-expressing cutaneous T cell lymphoma/leukemia established in NOD-SCID mice. Taken together, this work represents a novel concept that may allow control of growth and dissemination of tumors that use chemokine receptors to metastasize and circumvent immunosurveillance.  相似文献   

5.
A sequence encoding a CXC - type chemokine from rainbow trout was found to most resemble members of the CXCL9/CXCL10/CXCL11 sub-family. In mammals, all 3 chemokines are regulated by IFN-gamma and are chemotactic for activated T lymphocytes. The trout chemokine (gammaIP1), with a message of 787 nucleotides, contains 100 amino acids in a typical non-ELR CXC chemokine arrangement. A second sequence (gammaIP2), with 6 nucleotide differences in the coding region when compared to the first, was also identified although it is not known whether this is a second functional gene or a second allele. The gene is separated onto 4 exons, and the introns intervene in conserved positions according to the mammalian equivalents. The sequence encoded by the second exon shares the highest amino acid identity (37%) with CXCL10, with lower values of identity to other CXC chemokines (17-31%). Furthermore, phylogenetic analysis groups the trout chemokine with mammalian CXCL9, CXCL10 and CXCL11 peptides. Constitutive expression of gammaIP is seen in trout gill and low level expression in spleen, head kidney and liver. In RTS-11 cells, gammaIP expression can be induced with poly I:C, but not by LPS, suggesting virus-mediated regulation of gammaIP. Intraperitoneal injection of recombinant trout TNF-alpha caused elevation in gammaIP mRNA levels in trout head kidney.  相似文献   

6.
Fish beta-galactoside binding lectin (galectin) cDNA was cloned from the cDNA library of rainbow trout (Oncorhynchus mykiss) head kidney. The clone contained a single open reading frame encoding 341 amino acids (aa) (38 kDa protein), including the initiator methionine. Significant sequence homology to mammalian galectin-9 (40-55% identity) was observed. Its amino acid sequence showed two distinct N- and C-terminal domains (148 and 130 aa, respectively) connected by a peptide linker (63 aa). The galectin contains two consensus WG-E-R/K motifs thought to play an essential role in sugar-binding, indicating that this lectin is a member of the tandem-repeat type galectins which have not been identified in fish. The 1.6 kDa mRNA of the lectin was found by Northern blot analyses to be widely expressed in the spleen, head kidney, thymus, peritoneal exudate cells, ovary, gills and heart. Southern blot analyses with the probe for C-terminal of the lectin showed the existence of two hybridising genes. These results suggest that rainbow trout has at least one tandem-repeat type galectin as well as proto-type galectin.  相似文献   

7.
8.
Extensive molecular characterization of mammalian beta-adrenoceptors has revealed complex modes of regulation and interaction. Relatively little attention, however, has focused on adrenoceptors from early branching vertebrates such as fish. Using an RT-PCR approach we have cloned a rainbow trout beta2-adrenoceptor gene that codes for a 409-amino-acid protein with the same seven transmembrane domain structure as its mammalian counterparts. This rainbow trout beta2-adrenoceptor shares a high degree of amino-acid sequence conservation with other vertebrate beta2-adrenoceptors. The conclusion that this sequence is a rainbow trout beta2-adrenoceptor is further supported by phylogenetic analysis of vertebrate beta-adrenoceptor sequences and competitive pharmacological binding data. RNase protection assays demonstrate that the rainbow trout beta2-adrenoceptor gene is highly expressed in the liver and red and white muscle, with lower levels of expression in the gills, heart, kidney and spleen of the rainbow trout. The lack of regulatory phosphorylation sites within the G-protein-binding domain of the rainbow trout beta2-adrenoceptor sequence suggests that the in vivo control of trout beta2-adrenoceptor signaling differs substantially from that of mammals.  相似文献   

9.
We isolated cDNAs for a chemokine receptor-related protein having the database designation GPR-9-6. Two classes of cDNAs were identified from mRNAs that arose by alternative splicing and that encode receptors that we refer to as CCR9A and CCR9B. CCR9A is predicted to contain 12 additional amino acids at its N terminus as compared with CCR9B. Cells transfected with cDNAs for CCR9A and CCR9B responded to the chemokine CC chemokine ligand 25 (CCL25)/thymus-expressed chemokine (TECK)/chemokine beta-15 (CK beta-15) in assays for both calcium flux and chemotaxis. No other chemokines tested produced responses specific for the cDNA-transfected cells. mRNA for CCR9A/B is expressed predominantly in the thymus, coincident with the expression of CCL25, and highest expression for CCR9A/B among thymocyte subsets was found in CD4+CD8+ cells. mRNAs encoding the A and B forms of the receptor were expressed at a ratio of approximately 10:1 in immortalized T cell lines, in PBMC, and in diverse populations of thymocytes. The EC50 of CCL25 for CCR9A was lower than that for CCR9B, and CCR9A was desensitized by doses of CCL25 that failed to silence CCR9B. CCR9 is the first example of a chemokine receptor in which alternative mRNA splicing leads to proteins of differing activities, providing a mechanism for extending the range of concentrations over which a cell can respond to increments in the concentration of ligand. The study of CCR9A and CCR9B should enhance our understanding of the role of the chemokine system in T cell biology, particularly during the stages of thymocyte development.  相似文献   

10.
Chemokines are small proteins (70-100 amino acids) which play an important role in recruitment and activation of leucocytes to migrate to the site of inflammation. Based on the position of the first two conserved cysteines, chemokines are classified into four subfamilies: C, CC, CXC and CX3C. To date, many members of CC and CXC have been found and studied extensively [1]. Chemokines exert effects on their target cell via chemokine receptors, which are G-protein coupled receptors containing seven transmembrane domains with an extracellular N-terminus and an intracellular C-terminus [2]. Interleukin 8 (IL-8) belongs to the CXC chemokine subfamily. It can activate and attract migratory neutrophils to an inflammation site. Two IL-8 receptors, CXCR1 and CXCR2, have been identified in mammals [3-6]; both of these receptors have high affinity for IL-8 and are expressed on the neutrophil. CXCR1 just binds IL-8; however, CXCR2 binds IL-8 and other structurally related chemokines such as growth-related oncogene (GRO) a, GRObeta, GROgamma, neutrophil-activating peptide-2 (NAP-2) and epithelial cell-derived neutrophil activating peptide-78 (ENA-78) [7, 8]. Several studies on fish chemokine receptors have been reported [9-11]. Thus far, however, IL-8 and CXCR1 and CXCR2 proteins from rainbow trout have not been reported: however, the sequence of a rainbow trout IL-8 has been noted (GenBank Accession No. AJ279069 [12]). Cloning of the IL-8 receptor is important to study the function of IL-8/CXCR1 and (CXCR2) in inflammation and signal transduction in fish. This paper reports the molecular cloning and genomic structure of an IL-8 receptor-like gene from four homozygous clones of rainbow trout: Oregon State University (OSU), Hot Creek (HC), Arlee (AR) and Swanson (SW).  相似文献   

11.
Recently a number of cytokine homologs have been cloned in teleost fish, including several that resemble chemokines, but to date few have been confirmed using functional assays. Chemokines are a family of cytokines that are able to induce chemotaxis in leucocytes. In this study CK-1, a rainbow trout chemokine, was functionally characterised. Recombinant CK-1 is able to attract rainbow trout peripheral blood leucocytes (PBL) in a micro-chemotaxis chamber. A greater number of PBLs migrated in response to CK-1 than to negative controls, either media alone or equivalent concentrations of beta2M, while comparable numbers migrated to the positive control, recombinant human C5a. The tissue distribution of CK-1 mRNA was also assessed by Northern blotting of RT-PCR and showed that expression is constitutive in the liver and gut, and is inducible by intraperitoneal injection of phytohemagglutinin in PBL and the head-kidney. Continuous cell lines generated from the gut and pituitary gland of the rainbow trout also express CK-1 message, whilst Southern analysis shows that CK-1 is a single copy gene. Finally, CK-1 shows the greatest amino acid similarity CCL20/LARC/Mip-3alpha as well as similar gene structure and expression pattern.  相似文献   

12.
Liu L  Fujiki K  Dixon B  Sundick RS 《Cytokine》2002,17(2):71-81
An activation-specific cDNA library was made from phytohaemagglutinin (PHA)-activated haematopoietic cells of the rainbow trout (Oncorhynchus mykiss) using the technique of suppression subtractive hybridization. Several immune system genes were identified, including an interleukin (IL)1 receptor related protein and two invariant chain-like proteins. Many clones showed no similarity by BLAST search, but had AU-rich elements. These fragments were labelled and used for hybridization with a PHA-activated head kidney cDNA library. Several immune system genes were isolated by this technique, including a tumour necrosis factor (TNF) decoy receptor and a novel chemokine, designated trout chemokine 2. The TNF receptor is 285 amino acids in length and is 32-36% identical to a brook trout and human homologue. The CC chemokine is 44% identical at the amino acid level to a carp CC chemokine and approximately 20% identical to several mammalian CC chemokines. However, it has a 91 amino acid stalk-like structure at its COOH end, which is similar to the glycosylated stalk of fractalkine, a mammalian CX(3)C chemokine. In summary, AU-rich fragments obtained from an activation-specific library proved useful as hybridization probes for isolating trout immune system genes.  相似文献   

13.
14.
15.
A marine isolate of viral haemorrhagic septicaemia virus (VHSV) (860/94) was passaged in triplicate through sequential batches of rainbow trout via an intra-peritoneal infection route, without amplification in tissue culture. Following 5 passages, the VHSV glycoprotein gene was amplified directly from fish tissue homogenates and the consensus sequence compared to that of the original tissue culture isolate. Virus was also recovered directly from pools of kidney and spleen material after 5 passage events, and its virulence compared to that of unpassaged material by intra-peritoneal infection. Following passage in rainbow trout, isolate 860/94 exhibited a higher virulence for rainbow trout than unpassaged material. Sequence comparisons identified no difference in the consensus sequence of the glycoprotein gene following in vivo passage. The mechanisms responsible for the observed increase in virulence of isolate 860/94 following passage in rainbow trout thus remain unknown. The possibility that viral isolates may exhibit an increased virulence following passage in novel host species does, however, have important implications with regard to the epidemiology of this important fish pathogen.  相似文献   

16.
Onmy-UBA is a polymorphic classical major histocompatibility (MHC) class I locus in rainbow trout (Oncorhynchus mykiss). A common allomorph is Onmy-UBA*501, which has been detected in several wildtype strains, in the clonal homozygous rainbow trout C25 and, in the current study, in the rainbow trout gonad cell line RTG-2. The extracellular domain of this allomorph was expressed in E. coli and a murine monoclonal antibody designated H9 was generated against the recombinant protein. In Western blot analysis Mab H9 specifically recognised an n-glycosylated protein of 45 kDa in leucocytes and erythrocytes of C25 fish and in RTG-2 cells. The level of Onmy-UBA*501 expression in erythrocytes was very low. Immunocytochemistry of isolated cells indicated expression in lymphocytes, macrophages, neutrophils, erythrocytes, RTG-2 cells and Onmy-UBA *501 transfected CHO cells, but not in untransfected CHO cells. Immunohistochemistry using frozen sections of C25 fish indicated that Onmy-UBA*501 expression is strong in the lymphoid organs (thymus, head kidney and spleen) and in the epithelia and endothelia of several organs. No significant expression was observed in muscle fibres, hepatocytes or neurons. These observations demonstrate that in jawed fish, the lowest phylogenetic group possessing an MHC system, the classical MHC class I molecules are expressed in similar cell types as in higher vertebrates.  相似文献   

17.
Peptidylarginine deiminase (PADI)-like cDNA sequence was isolated from rainbow trout (Oncorhynchus mykiss). It consists of a 111-bp 5′-untranslated region, a 731-bp 3′-UTR, and a 2,010-bp open reading frame encoding a protein of 669 amino acids. In the presence of calcium ions, PADI enzymes catalyze the post-translational modification reaction generating citrulline residues. Mammalian PADI enzymes are involved in a number of regulatory processes during cell differentiation and development such as skin keratinization, myelin maturation, and histone deimination. Though five PADI isotypes have been isolated from mammals, in bony fish only one PADI enzyme is present, which contains conserved amino acid residues responsible for catalysis and calcium ion-binding. Sequence identity of piscine PADI protein sequences available at gene databases exceeds 67%. Phylogenetic analyses revealed that not only piscine, but also amphibian and avian PADI-like proteins share most identical amino acid residues with mammalian PADI2. mRNA level of trout PADI-like gene is high in skin, fin, gills, brain, and spleen of rainbow trout. Quantitative Real-Time RT-PCR revealed that PADI gene is differentially expressed in liver, trunk kidney, and spleen of two trout strains, the freshwater-cultured STEELHEAD trout and the brackish water strain BORN.  相似文献   

18.
Chemokines are likely to play an important role in regulating the trafficking of developing T cells within the thymus. By using anti-CD3varepsilon treatment of recombinase-activating gene 2 (Rag2-/-) mice to mimic pre-TCR signaling and drive thymocyte development to the double positive stage, we have identified murine GPR-9-6 as a chemokine receptor whose expression is strongly induced following pre-TCR signaling. GPR-9-6 mRNA is present at high levels in the thymus, and by RT-PCR analysis its expression is induced as normal thymocytes undergo the double negative to double positive transition. Furthermore we show that TECK (thymus-expressed chemokine), a chemokine produced by thymic medullary dendritic cells, is a functional ligand for GPR-9-6. TECK specifically induces a calcium flux and chemotaxis of GPR-9-6-transfected cells. In addition, TECK stimulates the migration of normal double positive thymocytes, as well as Rag2-/- thymocytes following anti-CD3varepsilon treatment. Hence, GPR-9-6 has been designated as CC chemokine receptor 9 (CCR9). Our results suggest that TECK delivers signals through CCR9 important for the navigation of developing thymocytes.  相似文献   

19.
A number of orphan G-protein coupled receptors (GPR) have been reported as putative chemokine receptors. One previously reported orphan receptor is an incomplete PCR clone, called GPR2. Here we report the cloning of full-length human (h)GPR2 and mouse (m)GPR2 cDNAs, and the identification of GPR2 as a receptor for a novel CC chemokine called ESkine. hGPR2 is expressed at high levels in testis and small intestine, and at lower levels in other tissues. mGPR2 was expressed at high levels in small intestine, colon, lymph nodes, and Peyer's patches and at lower levels in thymus and spleen. Stimulation of L1.2/hGPR2 transfectants with hESkine induced their migration and resulted in intracellular calcium mobilization. These results provide evidence that GPR2 is a specific receptor for ESkine. We propose that GPR2 be renamed as CCR10. The expression pattern of mGPR2/CCR10 suggests that it may play a role in the homing/trafficking of leukocytes within intestinal and lymphoid environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号