首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Simultaneous detection of multiple QTLs (quantitative trait loci) may allow more accurate estimation of genetic effects. We have analyzed outbred commercial pig populations with different single and multiple models to clarify their genetic properties and in addition, we have investigated pleiotropy among growth and obesity traits based on allelic correlation within a gamete.

Methods

Three closed populations, (A) 427 individuals from a Yorkshire and Large White synthetic breed, (B) 547 Large White individuals and (C) 531 Large White individuals, were analyzed using a variance component method with one-QTL and two-QTL models. Six markers on chromosome 4 and five to seven markers on chromosome 7 were used.

Results

Population A displayed a high test statistic for the fat trait when applying the two-QTL model with two positions on two chromosomes. The estimated heritabilities for polygenic effects and for the first and second QTL were 19%, 17% and 21%, respectively. The high correlation of the estimated allelic effect on the same gamete and QTL test statistics suggested that the two separate QTL which were detected on different chromosomes both have pleiotropic effects on the two fat traits. Analysis of population B using the one-QTL model for three fat traits found a similar peak position on chromosome 7. Allelic effects of three fat traits from the same gamete were highly correlated suggesting the presence of a pleiotropic QTL. In population C, three growth traits also displayed similar peak positions on chromosome 7 and allelic effects from the same gamete were correlated.

Conclusion

Detection of the second QTL in a model reduced the polygenic heritability and should improve accuracy of estimated heritabilities for both QTLs.  相似文献   

2.

Background

Ear size and shape are distinct conformation characteristics of pig breeds. Previously, we identified a significant quantitative trait locus (QTL) influencing ear surface on pig chromosome 5 in a White Duroc × Erhualian F2 resource population. This QTL explained more than 17% of the phenotypic variance.

Methods

Four new markers on pig chromosome 5 were genotyped across this F2 population. RT-PCR was performed to obtain expression profiles of different candidate genes in ear tissue. Standard association test, marker-assisted association test and F-drop test were applied to determine the effects of single nucleotide polymorphisms (SNP) on ear size. Three synthetic commercial lines were also used for the association test.

Results

We refined the QTL to an 8.7-cM interval and identified three positional candidate genes i.e. HMGA2, SOX5 and PTHLH that are expressed in ear tissue. Seven SNP within these three candidate genes were selected and genotyped in the F2 population. Of the seven SNP, HMGA2 SNP (JF748727: g.2836 A > G) showed the strongest association with ear size in the standard association test and marker-assisted association test. With the F-drop test, F value decreased by more than 97% only when the genotypes of HMGA2 g.2836 A > G were included as a fixed effect. Furthermore, the significant association between g.2836 A > G and ear size was also demonstrated in the synthetic commercial Sutai pig line. The haplotype-based association test showed that the phenotypic variance explained by HMGA2 was similar to that explained by the QTL and at a much higher level than by SOX5. More interestingly, HMGA2 is also located within the dog orthologous chromosome region, which has been shown to be associated with ear type and size.

Conclusions

HMGA2 was the closest gene with a potential functional effect to the QTL or marker for ear size on chromosome 5. This study will contribute to identify the causative gene and mutation underlying this QTL.  相似文献   

3.

Background

Multi-trait genomic models in a Bayesian context can be used to estimate genomic (co)variances, either for a complete genome or for genomic regions (e.g. per chromosome) for the purpose of multi-trait genomic selection or to gain further insight into the genomic architecture of related traits such as mammary disease traits in dairy cattle.

Methods

Data on progeny means of six traits related to mastitis resistance in dairy cattle (general mastitis resistance and five pathogen-specific mastitis resistance traits) were analyzed using a bivariate Bayesian SNP-based genomic model with a common prior distribution for the marker allele substitution effects and estimation of the hyperparameters in this prior distribution from the progeny means data. From the Markov chain Monte Carlo samples of the allele substitution effects, genomic (co)variances were calculated on a whole-genome level, per chromosome, and in regions of 100 SNP on a chromosome.

Results

Genomic proportions of the total variance differed between traits. Genomic correlations were lower than pedigree-based genetic correlations and they were highest between general mastitis and pathogen-specific traits because of the part-whole relationship between these traits. The chromosome-wise genomic proportions of the total variance differed between traits, with some chromosomes explaining higher or lower values than expected in relation to chromosome size. Few chromosomes showed pleiotropic effects and only chromosome 19 had a clear effect on all traits, indicating the presence of QTL with a general effect on mastitis resistance. The region-wise patterns of genomic variances differed between traits. Peaks indicating QTL were identified but were not very distinctive because a common prior for the marker effects was used. There was a clear difference in the region-wise patterns of genomic correlation among combinations of traits, with distinctive peaks indicating the presence of pleiotropic QTL.

Conclusions

The results show that it is possible to estimate, genome-wide and region-wise genomic (co)variances of mastitis resistance traits in dairy cattle using multivariate genomic models.  相似文献   

4.

Background

Improving digestive efficiency is a major goal in poultry production, to reduce production costs, make possible the use of alternative feedstuffs and decrease the volume of manure produced. Since measuring digestive efficiency is difficult, identifying molecular markers associated with genes controlling this trait would be a valuable tool for selection. Detection of QTL (quantitative trait loci) was undertaken on 820 meat-type chickens in a F2 cross between D- and D+ lines divergently selected on low or high AMEn (apparent metabolizable energy value of diet corrected to 0 nitrogen balance) measured at three weeks in animals fed a low-quality diet. Birds were measured for 13 traits characterizing digestive efficiency (AMEn, coefficients of digestive utilization of starch, lipids, proteins and dry matter (CDUS, CDUL, CDUP, CDUDM)), anatomy of the digestive tract (relative weights of the proventriculus, gizzard and intestine and proventriculus plus gizzard (RPW, RGW, RIW, RPGW), relative length and density of the intestine (RIL, ID), ratio of proventriculus and gizzard to intestine weight (PG/I); and body weight at 23 days of age. Animals were genotyped for 6000 SNPs (single nucleotide polymorphisms) distributed on 28 autosomes, the Z chromosome and one unassigned linkage group.

Results

Nine QTL for digestive efficiency traits, 11 QTL for anatomy-related traits and two QTL for body weight at 23 days of age were detected. On chromosome 20, two significant QTL at the genome level co-localized for CDUS and CDUDM, i.e. two traits that are highly correlated genetically. Moreover, on chromosome 16, chromosome-wide QTL for AMEn, CDUS, CDUDM and CDUP, on chromosomes 23 and 26, chromosome-wide QTL for CDUS, on chromosomes 16 and 26, co-localized QTL for digestive efficiency and the ratio of intestine length to body weight and on chromosome 27 a chromosome-wide QTL for CDUDM were identified.

Conclusions

This study identified several regions of the chicken genome involved in the control of digestive efficiency. Further studies are necessary to identify the underlying genes and to validate these in commercial populations and breeding environments.  相似文献   

5.

Background

Detecting a QTL is only the first step in genetic improvement programs. When a QTL with desirable characteristics is found, e.g. in a wild or unimproved population, it may be interesting to introgress the detected QTL into the commercial population. One approach to shorten the time needed for introgression is to combine both QTL identification and introgression, into a single step. This combines the strengths of fine mapping and backcrossing and paves the way for introgression of desirable but unknown QTL into recipient animal and plant lines.

Methods

The method consisting in combining QTL mapping and gene introgression has been extended from inbred to outbred populations in which QTL allele frequencies vary both in recipient and donor lines in different scenarios and for which polygenic effects are included in order to model background genes. The effectiveness of the combined QTL detection and introgression procedure was evaluated by simulation through four backcross generations.

Results

The allele substitution effect is underestimated when the favourable QTL allele is not fixed in the donor line. This underestimation is proportional to the frequency differences of the favourable QTL allele between the lines. In most scenarios, the estimates of the QTL location are unbiased and accurate. The retained donor chromosome segment and linkage drag are similar to expected values from other published studies.

Conclusions

In general, our results show that it is possible to combine QTL detection and introgression even in outbred species. Separating QTL mapping and introgression processes is often thought to be longer and more costly. However, using a combined process saves at least one generation. With respect to the linkage drag and obligatory drag, the results of the combined detection and introgression scheme are very similar to those of traditional introgression schemes.  相似文献   

6.

Background

The present availability of sequence data gives new opportunities to narrow down from QTL (quantitative trait locus) regions to causative mutations. Our objective was to decrease the number of candidate causative mutations in a QTL region. For this, a concordance analysis was applied for a leg conformation trait in dairy cattle. Several QTL were detected for which the QTL status (homozygous or heterozygous for the QTL) was inferred for each individual. Subsequently, the inferred QTL status was used in a concordance analysis to reduce the number of candidate mutations.

Methods

Twenty QTL for rear leg set side view were mapped using Bayes C. Marker effects estimated during QTL mapping were used to infer the QTL status for each individual. Subsequently, polymorphisms present in the QTL regions were extracted from the whole-genome sequences of 71 Holstein bulls. Only polymorphisms for which the status was concordant with the QTL status were kept as candidate causative mutations.

Results

QTL status could be inferred for 15 of the 20 QTL. The number of concordant polymorphisms differed between QTL and depended on the number of QTL statuses that could be inferred and the linkage disequilibrium in the QTL region. For some QTL, the concordance analysis was efficient and narrowed down to a limited number of candidate mutations located in one or two genes, while for other QTL a large number of genes contained concordant polymorphisms.

Conclusions

For regions for which the concordance analysis could be performed, we were able to reduce the number of candidate mutations. For part of the QTL, the concordant analyses narrowed QTL regions down to a limited number of genes, of which some are known for their role in limb or skeletal development in humans and mice. Mutations in these genes are good candidates for QTN (quantitative trait nucleotides) influencing rear leg set side view.  相似文献   

7.

Background

Coccidiosis is a major parasitic disease that causes huge economic losses to the poultry industry. Its pathogenicity leads to depression of body weight gain, lesions and, in the most serious cases, death in affected animals. Genetic variability for resistance to coccidiosis in the chicken has been demonstrated and if this natural resistance could be exploited, it would reduce the costs of the disease. Previously, a design to characterize the genetic regulation of Eimeria tenella resistance was set up in a Fayoumi × Leghorn F2 cross. The 860 F2 animals of this design were phenotyped for weight gain, plasma coloration, hematocrit level, intestinal lesion score and body temperature. In the work reported here, the 860 animals were genotyped for a panel of 1393 (157 microsatellites and 1236 single nucleotide polymorphism (SNP) markers that cover the sequenced genome (i.e. the 28 first autosomes and the Z chromosome). In addition, with the aim of finding an index capable of explaining a large amount of the variance associated with resistance to coccidiosis, a composite factor was derived by combining the variables of all these traits in a single variable. QTL detection was performed by linkage analysis using GridQTL and QTLMap. Single and multi-QTL models were applied.

Results

Thirty-one QTL were identified i.e. 27 with the single-QTL model and four with the multi-QTL model and the average confidence interval was 5.9 cM. Only a few QTL were common with the previous study that used the same design but focused on the 260 more extreme animals that were genotyped with the 157 microsatellites only. Major differences were also found between results obtained with QTLMap and GridQTL.

Conclusions

The medium-density SNP panel made it possible to genotype new regions of the chicken genome (including micro-chromosomes) that were involved in the genetic control of the traits investigated. This study also highlights the strong variations in QTL detection between different models and marker densities.  相似文献   

8.

Background

Accurate QTL mapping is a prerequisite in the search for causative mutations. Bayesian genomic selection models that analyse many markers simultaneously should provide more accurate QTL detection results than single-marker models. Our objectives were to (a) evaluate by simulation the influence of heritability, number of QTL and number of records on the accuracy of QTL mapping with Bayes Cπ and Bayes C; (b) estimate the QTL status (homozygous vs. heterozygous) of the individuals analysed. This study focussed on the ten largest detected QTL, assuming they are candidates for further characterization.

Methods

Our simulations were based on a true dairy cattle population genotyped for 38 277 phased markers. Some of these markers were considered biallelic QTL and used to generate corresponding phenotypes. Different numbers of records (4387 and 1500), heritability values (0.1, 0.4 and 0.7) and numbers of QTL (10, 100 and 1000) were studied. QTL detection was based on the posterior inclusion probability for individual markers, or on the sum of the posterior inclusion probabilities for consecutive markers, estimated using Bayes C or Bayes Cπ. The QTL status of the individuals was derived from the contrast between the sums of the SNP allelic effects of their chromosomal segments.

Results

The proportion of markers with null effect (π) frequently did not reach convergence, leading to poor results for Bayes Cπ in QTL detection. Fixing π led to better results. Detection of the largest QTL was most accurate for medium to high heritability, for low to moderate numbers of QTL, and with a large number of records. The QTL status was accurately inferred when the distribution of the contrast between chromosomal segment effects was bimodal.

Conclusions

QTL detection is feasible with Bayes C. For QTL detection, it is recommended to use a large dataset and to focus on highly heritable traits and on the largest QTL. QTL statuses were inferred based on the distribution of the contrast between chromosomal segment effects.  相似文献   

9.

Background

Understanding the genetic mechanisms that underlie meat quality traits is essential to improve pork quality. To date, most quantitative trait loci (QTL) analyses have been performed on F2 crosses between outbred pig strains and have led to the identification of numerous QTL. However, because linkage disequilibrium is high in such crosses, QTL mapping precision is unsatisfactory and only a few QTL have been found to segregate within outbred strains, which limits their use to improve animal performance. To detect QTL in outbred pig populations of Chinese and Western origins, we performed genome-wide association studies (GWAS) for meat quality traits in Chinese purebred Erhualian pigs and a Western Duroc × (Landrace × Yorkshire) (DLY) commercial population.

Methods

Three hundred and thirty six Chinese Erhualian and 610 DLY pigs were genotyped using the Illumina PorcineSNP60K Beadchip and evaluated for 20 meat quality traits. After quality control, 35 985 and 56 216 single nucleotide polymorphisms (SNPs) were available for the Chinese Erhualian and DLY datasets, respectively, and were used to perform two separate GWAS. We also performed a meta-analysis that combined P-values and effects of 29 516 SNPs that were common to Erhualian, DLY, F2 and Sutai pig populations.

Results

We detected 28 and nine suggestive SNPs that surpassed the significance level for meat quality in Erhualian and DLY pigs, respectively. Among these SNPs, ss131261254 on pig chromosome 4 (SSC4) was the most significant (P = 7.97E-09) and was associated with drip loss in Erhualian pigs. Our results suggested that at least two QTL on SSC12 and on SSC15 may have pleiotropic effects on several related traits. All the QTL that were detected by GWAS were population-specific, including 12 novel regions. However, the meta-analysis revealed seven novel QTL for meat characteristics, which suggests the existence of common underlying variants that may differ in frequency across populations. These QTL regions contain several relevant candidate genes.

Conclusions

These findings provide valuable insights into the molecular basis of convergent evolution of meat quality traits in Chinese and Western breeds that show divergent phenotypes. They may contribute to genetic improvement of purebreds for crossbred performance.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0120-x) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Quantitative trait loci (QTL) analyses in pig have revealed numerous individual QTL affecting growth, carcass composition, reproduction and meat quality, indicating a complex genetic architecture. In general, statistical QTL models consider only additive and dominance effects and identification of epistatic effects in livestock is not yet widespread. The aim of this study was to identify and characterize epistatic effects between common and novel QTL regions for carcass composition and meat quality traits in pig.

Methods

Five hundred and eighty five F2 pigs from a Duroc × Pietrain resource population were genotyped using 131 genetic markers (microsatellites and SNP) spread over the 18 pig autosomes. Phenotypic information for 26 carcass composition and meat quality traits was available for all F2 animals. Linkage analysis was performed in a two-step procedure using a maximum likelihood approach implemented in the QxPak program.

Results

A number of interacting QTL was observed for different traits, leading to the identification of a variety of networks among chromosomal regions throughout the porcine genome. We distinguished 17 epistatic QTL pairs for carcass composition and 39 for meat quality traits. These interacting QTL pairs explained up to 8% of the phenotypic variance.

Conclusions

Our findings demonstrate the significance of epistasis in pigs. We have revealed evidence for epistatic relationships between different chromosomal regions, confirmed known QTL loci and connected regions reported in other studies. Considering interactions between loci allowed us to identify several novel QTL and trait-specific relationships of loci within and across chromosomes.  相似文献   

11.

Background

A fresh, good quality egg has a firm and gelatinous albumen that anchors the yolk and restricts growth of microbiological pathogens. As the egg ages, the gel-like structure collapses, resulting in thin and runny albumen. Occasionally thin albumen is found in a fresh egg, giving the impression of a low quality product. A mapping population consisting of 1599 F2 hens from a cross between White Rock and Rhode Island Red lines was set up, to identify loci controlling albumen quality. The phenotype for albumen quality was evaluated by albumen height and in Haugh units (HU) measured on three consecutive eggs from each F2 hen at the age of 40 weeks. For the fine-mapping analysis, albumen height and HU were used simultaneously to eliminate contribution of the egg size to the phenotype.

Results

Linkage analysis in a small population of seven half-sib families (668 F2) with 162 microsatellite markers spread across 27 chromosomes revealed two genome-wide significant regions with additive effects for HU on chromosomes 7 and Z. In addition, two putative genome-wide quantitative trait loci (QTL) regions were identified on chromosomes 4 and 26. The QTL effects ranged from 2 to 4% of the phenotypic variance. The genome-wide significant QTL regions on chromosomes 7 and Z were selected for fine-mapping in the full set composed of 16 half-sib families. In addition, their existence was confirmed by an association analysis in an independent commercial Hy-Line pure line.

Conclusions

We identified four chicken genomic regions that affect albumen quality. Our results also suggest that genes that affect albumen quality act both directly and indirectly through several different mechanisms. For instance, the QTL regions on both fine-mapped chromosomes 7 and Z overlapped with a previously reported QTL for eggshell quality, indicating that eggshell membranes may play a role in albumen quality.  相似文献   

12.

Background

For ruminants reared on grazing systems, gastrointestinal nematode (GIN) parasite infections represent the class of diseases with the greatest impact on animal health and productivity. Among the many possible strategies for controlling GIN infection, the enhancement of host resistance through the selection of resistant animals has been suggested by many authors. Because of the difficulty of routinely collecting phenotypic indicators of parasite resistance, information derived from molecular markers may be used to improve the efficiency of classical genetic breeding.

Methods

A total of 181 microsatellite markers evenly distributed along the 26 sheep autosomes were used in a genome scan analysis performed in a commercial population of Spanish Churra sheep to detect chromosomal regions associated with parasite resistance. Following a daughter design, we analysed 322 ewes distributed in eight half-sib families. The phenotypes studied included two faecal egg counts (LFEC0 and LFEC1), anti-Teladorsagia circumcincta LIV IgA levels (IgA) and serum pepsinogen levels (Peps).

Results

The regression analysis revealed one QTL at the 5% genome-wise significance level on chromosome 6 for LFEC1 within the marker interval BM4621-CSN3. This QTL was found to be segregating in three out of the eight families analysed. Four other QTL were identified at the 5% chromosome-wise level on chromosomes 1, 10 and 14. Three of these QTL influenced faecal egg count, and the other one had an effect on IgA levels.

Conclusion

This study has successfully identified segregating QTL for parasite resistance traits in a commercial population. For some of the QTL detected, we have identified interesting coincidences with QTL previously reported in sheep, although most of those studies have been focused on young animals. Some of these coincidences might indicate that some common underlying loci affect parasite resistance traits in different sheep breeds. The identification of new QTL may suggest the existence of complex host-parasite relationships that have unique features depending on the host-parasite combination, perhaps due to the different mechanisms underlying resistance in adult sheep (hypersensitivity reactions) and lambs (immunity). The most significant QTL identified on chromosome 6 for LFEC1 may be the target for future fine-mapping research efforts.  相似文献   

13.

Background

Numerous quantitative trait loci (QTL) have been detected in pigs over the past 20 years using microsatellite markers. However, due to the low density of these markers, the accuracy of QTL location has generally been poor. Since 2009, the dense genome coverage provided by the Illumina PorcineSNP60 BeadChip has made it possible to more accurately map QTL using genome-wide association studies (GWAS). Our objective was to perform high-density GWAS in order to identify genomic regions and corresponding haplotypes associated with production traits in a French Large White population of pigs.

Methods

Animals (385 Large White pigs from 106 sires) were genotyped using the PorcineSNP60 BeadChip and evaluated for 19 traits related to feed intake, growth, carcass composition and meat quality. Of the 64 432 SNPs on the chip, 44 412 were used for GWAS with an animal mixed model that included a regression coefficient for the tested SNPs and a genomic kinship matrix. SNP haplotype effects in QTL regions were then tested for association with phenotypes following phase reconstruction based on the Sscrofa10.2 pig genome assembly.

Results

Twenty-three QTL regions were identified on autosomes and their effects ranged from 0.25 to 0.75 phenotypic standard deviation units for feed intake and feed efficiency (four QTL), carcass (12 QTL) and meat quality traits (seven QTL). The 10 most significant QTL regions had effects on carcass (chromosomes 7, 10, 16, 17 and 18) and meat quality traits (two regions on chromosome 1 and one region on chromosomes 8, 9 and 13). Thirteen of the 23 QTL regions had not been previously described. A haplotype block of 183 kb on chromosome 1 (six SNPs) was identified and displayed three distinct haplotypes with significant (0.0001 < P < 0.03) associations with all evaluated meat quality traits.

Conclusions

GWAS analyses with the PorcineSNP60 BeadChip enabled the detection of 23 QTL regions that affect feed consumption, carcass and meat quality traits in a LW population, of which 13 were novel QTL. The proportionally larger number of QTL found for meat quality traits suggests a specific opportunity for improving these traits in the pig by genomic selection.  相似文献   

14.

Background

Since the pig is one of the most important livestock animals worldwide, mapping loci that are associated with economically important traits and/or traits that influence animal welfare is extremely relevant for efficient future pig breeding. Therefore, the purpose of this study was a genome-wide mapping of quantitative trait loci (QTL) associated with nine body composition and bone mineral traits: absolute (Fat, Lean) and percentage (FatPC, LeanPC) fat and lean mass, live weight (Weight), soft tissue X-ray attenuation coefficient (R), absolute (BMC) and percentage (BMCPC) bone mineral content and bone mineral density (BMD).

Methods

Data on the nine traits investigated were obtained by Dual-energy X-ray absorptiometry for 551 pigs that were between 160 and 200 days old. In addition, all pigs were genotyped using Illumina’s PorcineSNP60 Genotyping BeadChip. Based on these data, a genome-wide combined linkage and linkage disequilibrium analysis was conducted. Thus, we used 44 611 sliding windows that each consisted of 20 adjacent single nucleotide polymorphisms (SNPs). For the middle of each sliding window a variance component analysis was carried out using ASReml. The underlying mixed linear model included random QTL and polygenic effects, with fixed effects of sex, housing, season and age.

Results

Using a Bonferroni-corrected genome-wide significance threshold of P < 0.001, significant peaks were identified for all traits except BMCPC. Overall, we identified 72 QTL on 16 chromosomes, of which 24 were significantly associated with one trait only and the remaining with more than one trait. For example, a QTL on chromosome 2 included the highest peak across the genome for four traits (Fat, FatPC, LeanPC and R). The nearby gene, ZNF608, is known to be associated with body mass index in humans and involved in starvation in Drosophila, which makes it an extremely good candidate gene for this QTL.

Conclusions

Our QTL mapping approach identified 72 QTL, some of which confirmed results of previous studies in pigs. However, we also detected significant associations that have not been published before and were able to identify a number of new and promising candidate genes, such as ZNF608.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0068-2) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Although simulation studies show that combining multiple breeds in one reference population increases accuracy of genomic prediction, this is not always confirmed in empirical studies. This discrepancy might be due to the assumptions on quantitative trait loci (QTL) properties applied in simulation studies, including number of QTL, spectrum of QTL allele frequencies across breeds, and distribution of allele substitution effects. We investigated the effects of QTL properties and of including a random across- and within-breed animal effect in a genomic best linear unbiased prediction (GBLUP) model on accuracy of multi-breed genomic prediction using genotypes of Holstein-Friesian and Jersey cows.

Methods

Genotypes of three classes of variants obtained from whole-genome sequence data, with moderately low, very low or extremely low average minor allele frequencies (MAF), were imputed in 3000 Holstein-Friesian and 3000 Jersey cows that had real high-density genotypes. Phenotypes of traits controlled by QTL with different properties were simulated by sampling 100 or 1000 QTL from one class of variants and their allele substitution effects either randomly from a gamma distribution, or computed such that each QTL explained the same variance, i.e. rare alleles had a large effect. Genomic breeding values for 1000 selection candidates per breed were estimated using GBLUP modelsincluding a random across- and a within-breed animal effect.

Results

For all three classes of QTL allele frequency spectra, accuracies of genomic prediction were not affected by the addition of 2000 individuals of the other breed to a reference population of the same breed as the selection candidates. Accuracies of both single- and multi-breed genomic prediction decreased as MAF of QTL decreased, especially when rare alleles had a large effect. Accuracies of genomic prediction were similar for the models with and without a random within-breed animal effect, probably because of insufficient power to separate across- and within-breed animal effects.

Conclusions

Accuracy of both single- and multi-breed genomic prediction depends on the properties of the QTL that underlie the trait. As QTL MAF decreased, accuracy decreased, especially when rare alleles had a large effect. This demonstrates that QTL properties are key parameters that determine the accuracy of genomic prediction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0124-6) contains supplementary material, which is available to authorized users.  相似文献   

16.
Wang C  Chen Y  Ku L  Wang T  Sun Z  Cheng F  Wu L 《PloS one》2010,5(11):e14068

Background

An understanding of the genetic determinism of photoperiod response of flowering is a prerequisite for the successful exchange of germplasm across different latitudes. In order to contribute to resolve the genetic basis of photoperiod sensitivity in maize, a set of 201 recombinant inbred lines (RIL), derived from a temperate and tropical inbred line cross were evaluated in 5 field trials spread in short- and long-day environments.

Methodology/Principal Findings

Firstly, QTL analyses for flowering time and photoperiod sensitivity in maize were conducted in individual photoperiod environments separately, and then, the total genetic effect was partitioned into additive effect (A) and additive-by-environment interaction effect (AE) by using a mixed-model-based composite interval mapping (MCIM) method.

Conclusions/Significance

Seven putative QTL were found associated with DPS thermal time based on the data estimated in individual environments. Nine putative QTL were found associated with DPS thermal time across environments and six of them showed significant QTL×enviroment (QE) interactions. Three QTL for photoperiod sensitivity were identified on chromosome 4, 9 and 10, which had the similar position to QTL for DPS thermal time in the two long-day environment. The major photoperiod sensitive loci qDPS10 responded to both short and long-day photoperiod environments and had opposite effects in different photoperiod environment. The QTL qDPS3, which had the greatest additive effect exclusively in the short-day environment, were photoperiod independent and should be classified in autonomous promotion pathway.  相似文献   

17.

Introduction

Tonic immobility (TI) is fear-induced freezing that animals may undergo when confronted by a threat. It is principally observed in prey species as defence mechanisms. In our preliminary research, we detected large inter-individual variations in the frequency and duration of freezing behavior among newly hatched domestic chicks (Gallus gallus). In this study we aim to identify the copy number variations (CNVs) in the genome of chicks as genetic candidates that underlie the behavioral plasticity to fearful stimuli.

Methods

A total of 110 domestic chicks were used for an association study between TI responses and copy number polymorphisms. Array comparative genomic hybridization (aCGH) was conducted between chicks with high and low TI scores using an Agilent 4×180 custom microarray. We specifically focused on 3 genomic regions (>60 Mb) of chromosome 1 where previous quantitative trait loci (QTL) analysis showed significant F-values for fearful responses.

Results

ACGH successfully detected short CNVs within the regions overlapping 3 QTL peaks. Eleven of these identified loci were validated by real-time quantitative polymerase chain reaction (qPCR) as copy number polymorphisms. Although there wkas no significant p value in the correlation analysis between TI scores and the relative copy number within each breed, several CNV loci showed significant differences in the relative copy number between 2 breeds of chicken (White Leghorn and Nagoya) which had different quantitative characteristics of fear-induced responses.

Conclusion

Our data shows the potential CNVs that may be responsible for innate fear response in domestic chicks.  相似文献   

18.

Background

Numerous QTL mapping resource populations are available in livestock species. Usually they are analysed separately, although the same founder breeds are often used. The aim of the present study was to show the strength of analysing F2-crosses jointly in pig breeding when the founder breeds of several F2-crosses are the same.

Methods

Three porcine F2-crosses were generated from three founder breeds (i.e. Meishan, Pietrain and wild boar). The crosses were analysed jointly, using a flexible genetic model that estimated an additive QTL effect for each founder breed allele and a dominant QTL effect for each combination of alleles derived from different founder breeds. The following traits were analysed: daily gain, back fat and carcass weight. Substantial phenotypic variation was observed within and between crosses. Multiple QTL, multiple QTL alleles and imprinting effects were considered. The results were compared to those obtained when each cross was analysed separately.

Results

For daily gain, back fat and carcass weight, 13, 15 and 16 QTL were found, respectively. For back fat, daily gain and carcass weight, respectively three, four, and five loci showed significant imprinting effects. The number of QTL mapped was much higher than when each design was analysed individually. Additionally, the test statistic plot along the chromosomes was much sharper leading to smaller QTL confidence intervals. In many cases, three QTL alleles were observed.

Conclusions

The present study showed the strength of analysing three connected F2-crosses jointly. In this experiment, statistical power was high because of the reduced number of estimated parameters and the large number of individuals. The applied model was flexible and was computationally fast.  相似文献   

19.

Background

The theory of genomic selection is based on the prediction of the effects of quantitative trait loci (QTL) in linkage disequilibrium (LD) with markers. However, there is increasing evidence that genomic selection also relies on "relationships" between individuals to accurately predict genetic values. Therefore, a better understanding of what genomic selection actually predicts is relevant so that appropriate methods of analysis are used in genomic evaluations.

Methods

Simulation was used to compare the performance of estimates of breeding values based on pedigree relationships (Best Linear Unbiased Prediction, BLUP), genomic relationships (gBLUP), and based on a Bayesian variable selection model (Bayes B) to estimate breeding values under a range of different underlying models of genetic variation. The effects of different marker densities and varying animal relationships were also examined.

Results

This study shows that genomic selection methods can predict a proportion of the additive genetic value when genetic variation is controlled by common quantitative trait loci (QTL model), rare loci (rare variant model), all loci (infinitesimal model) and a random association (a polygenic model). The Bayes B method was able to estimate breeding values more accurately than gBLUP under the QTL and rare variant models, for the alternative marker densities and reference populations. The Bayes B and gBLUP methods had similar accuracies under the infinitesimal model.

Conclusions

Our results suggest that Bayes B is superior to gBLUP to estimate breeding values from genomic data. The underlying model of genetic variation greatly affects the predictive ability of genomic selection methods, and the superiority of Bayes B over gBLUP is highly dependent on the presence of large QTL effects. The use of SNP sequence data will outperform the less dense marker panels. However, the size and distribution of QTL effects and the size of reference populations still greatly influence the effectiveness of using sequence data for genomic prediction.  相似文献   

20.

Background

In the pig, multiple QTL associated with growth and fatness traits have been mapped to chromosome 2 (SSC2) and among these, at least one shows paternal expression due to the IGF2-intron3-G3072A substitution. Previously published results on the position and imprinting status of this QTL disagree between analyses from French and Dutch F2 crossbred pig populations obtained with the same breeds (Meishan crossed with Large White or Landrace).

Methods

To study the role of paternal and maternal alleles at the IGF2 locus and to test the hypothesis of a second QTL affecting backfat thickness on the short arm of SSC2 (SSC2p), a QTL mapping analysis was carried out on a combined pedigree including both the French and Dutch F2 populations, on the progeny of F1 males that were heterozygous (A/G) and homozygous (G/G) at the IGF2 locus. Simulations were performed to clarify the relations between the two QTL and to understand to what extent they can explain the discrepancies previously reported.

Results

The QTL analyses showed the segregation of at least two QTL on chromosome 2 in both pedigrees, i.e. the IGF2 locus and a second QTL segregating at least in the G/G F1 males and located between positions 30 and 51 cM. Statistical analyses highlighted that the maternally inherited allele at the IGF2 locus had a significant effect but simulation studies showed that this is probably a spurious effect due to the segregation of the second QTL.

Conclusions

Our results show that two QTL on SSC2p affect backfat thickness. Differences in the pedigree structures and in the number of heterozygous females at the IGF2 locus result in different imprinting statuses in the two pedigrees studied. The spurious effect observed when a maternally allele is present at the IGF2 locus, is in fact due to the presence of a second closely located QTL. This work confirms that pig chromosome 2 is a major region associated with fattening traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号