首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current theories of plant invasion have been criticized for their limited heuristic and predictive value. We explore the heuristic and predictive potential of a model which explicitly simulates the mechanisms of plant invasion. The model, a spatially-explicit individual-based simulation, is applied to the invasion of pine trees (Pinus spp.; Pinaceae) in three vegetation types in the southern hemisphere. The model simulates factors which have been invoked as major determinants of invasive success: plant traits, environmental features and disturbance level. Results show that interactions between these determinants of invasive success are at least as important as the main effects. The complexity of invasions has promoted the belief that many factors must be invoked to explain invasions. This study shows that by incorporating interactions and mechanisms into our models we can potentially reduce the number of factors needed to predict plant invasions. The importance of interactions, however, means that predictions about invasions must be context-specific. The search for all-encompassing rules for invasions is therefore futile. The model presented here is of heuristic value since it improves our understanding of invasions, and of management value since it defines the data and models needed for predicting invasions.  相似文献   

2.
While exotic plant invasions are thought to lead to declines in native species, the long-term impacts of such invasions on community structure are poorly known. Furthermore, it is unknown how exotic plant invasions compare to invasions by native species. We present data from 40 yr of continuous vegetation sampling of 10 fields released from agriculture to examine the effects of invasions on species richness. The effects of both exotic and native species invasions on species richness were largely driven by variations among fields with most species not significantly affecting species richness. However, invasion and dominance by the exotics Agropyron repens, Lonicera japonica. Rosa multiflora. Trifolium pratense and the native Solidago canadensis were associated with declines in richness. Invasions by exotic and native species during old field succession have similar effects on species richness with dominance by species of either group being associated with loss of species richness. Exotic species invasions tended to have stronger effects on richness than native invasions. No evidence was found of residual effects of invasions because the impact of the invasion disappeared with the decline of the invading population. When pooled across species, heavy invasion by exotic species resulted in greater loss o species richness than invasion by native species. Studies of invasion that utilize multiple sites must account for variability among sites. In our study, had we no included field as a factor we would have incorrectly concluded that invasion consistently resulted in changes in species richness.  相似文献   

3.
Species introductions of anthropogenic origins are a major aspect of rapid ecological change globally. Research on biological invasions has generated a large literature on many different aspects of this phenomenon. Here, we describe and categorize some aspects of this literature, to better understand what has been studied and what we know, mapping well‐studied areas and important gaps. To do so, we employ the techniques of systematic reviewing widely adopted in other scientific disciplines, to further the use of approaches in reviewing the literature that are as scientific, repeatable, and transparent as those employed in a primary study. We identified 2398 relevant studies in a field synopsis of the biological invasions literature. A majority of these studies (58%) were concerned with hypotheses for causes of biological invasions, while studies on impacts of invasions were the next most common (32% of the publications). We examined 1537 papers in greater detail in a systematic review. Superior competitive abilities of invaders, environmental disturbance, and invaded community species richness were the most common hypotheses examined. Most studies examined only a single hypothesis. Almost half of the papers were field observational studies. Studies of terrestrial invasions dominate the literature, with most of these concerning plant invasions. The focus of the literature overall is uneven, with important gaps in areas of theoretical and practical importance.  相似文献   

4.
Trees act as ecosystem engineers and invasions by exotic tree species profoundly impact recipient communities. Recently, research on invasive trees has dramatically increased, enabling the assessment of general trends in tree invasion. Analysing 90 studies dealing with 45 invasive tree species, we conducted a quantitative review and a meta-analysis to estimate the relevance of eight leading hypotheses for explaining tree invasions. We also tested whether species functional traits (growth rate, density/cover, germination, biomass and survival) equally promote tree invasiveness. Overall, our results suggest that several hypotheses, linked to invasibility or invasiveness, are pertinent to explain tree invasions. Furthermore, more than one hypothesis has been supported for a given species, which indicates that multiple factors lead to the success of invasive tree species. In addition, growth rate appears to be the most efficient predictor of invasiveness for invasive trees and could thus be used as a means to identify potential alien tree invasions. We conclude that further investigations are needed to test the consistency of some hypotheses across a broader pool of invasive tree species, whilst experimental studies with the same tree species across a larger range of sites would help to reveal the full suite of factors that affect tree invasions.  相似文献   

5.
Most species introductions are not expected to result in invasion, and species that are invasive in one area are frequently not invasive in others. However, cases of introduced organisms that failed to invade are reported in many instances as anecdotes or are simply ignored. In this analysis, we aimed to find common characteristics between non‐invasive populations of known invasive species and evaluated how the study of failed invasions can contribute to research on biological invasions. We found intraspecific variation in invasion success and several recurring explanations for why non‐native species fail to invade; these included low propagule pressure, abiotic resistance, biotic resistance, genetic constraints and mutualist release. Furthermore, we identified key research topics where ignoring failed invasions could produce misleading results; these include studies on historical factors associated with invasions, distribution models of invasive species, the effect of species traits on invasiveness, genetic effects, biotic resistance and habitat invasibility. In conclusion, we found failed invasions can provide fundamental information on the relative importance of factors determining invasions and might be a key component of several research topics. Therefore, our analysis suggests that more specific and detailed studies on invasion failures are necessary.  相似文献   

6.
植物外来种入侵及其对生态系统的影响   总被引:162,自引:16,他引:162  
彭少麟  向言词 《生态学报》1999,19(4):560-569
对植物外来种的入侵及生态系统的影响进行综述与分析,植物入侵多种因子的影响,可分为外因和内因两类,植物外来种对生态系统的影响主要体现在生产力,土壤营养,水分,干扰体制,群落的结构和动态等方面,在管理外来种时,需对外来种的特性和影响因子进行系统的观察研究,采用机械法,化学方法和生物控制法等综合办法控制植物的入侵,引进植物引来种时,要对引进种的行为特性进行了调查研究,注意其安全性。  相似文献   

7.
Many species in the family Pinaceae are invaders. These species are relatively easy to control because of some of their intrinsic characteristics and because they are highly visible and easy to eliminate. Many Pinaceae species have been well studied because of their use in forestry and their invasive behavior in many countries. The impacts of invasive Pinaceae are not only ecological, but also economic and social. We review the ecology and management of Pinaceae invasions and explore how restoration of invaded areas should be addressed. There are many ways to prevent invasions and to deal with them. Planting less invasive species, better site selection, and invasion monitoring are used successfully in different parts of the world to prevent invasion. Mechanical and chemical methods are used effectively to control Pinaceae invasions. Control is more effective at the early stages of invasion. Old invasions are more problematic as their elimination is more expensive, and the restoration of native vegetation is challenging. In some areas, native vegetation cannot thrive after Pinaceae have been removed, and weeds colonize cleared areas. More attention is needed to prevent the initiation and spread of invasions by focusing control interventions at early stages of invasion. Finding new ways of dealing sustainably with conflicts of interest between foresters and conservationists is crucial. Non-native Pinaceae are important parts of the economies and landscapes in several countries and they will continue to play such a role in the future. Despite the numerous challenges facing Pinaceae invasion management, several approaches can be successful at controlling them. Proper application of current techniques and development of more efficient ones is needed if the goal of maximizing benefits and minimizing negative impacts is to be achieved.  相似文献   

8.
A general understanding of biological invasions will provide insights into fundamental ecological and evolutionary problems and contribute to more efficient and effective prediction, prevention and control of invasions. We review recent papers that have proposed conceptual frameworks for invasion biology. These papers offer important advances and signal a maturation of the field, but a broad synthesis is still lacking. Conceptual frameworks for invasion do not require invocation of unique concepts, but rather should reflect the unifying principles of ecology and evolutionary biology. A conceptual framework should incorporate multicausality, include interactions between causal factors and account for lags between various stages. We emphasize the centrality of demography in invasions, and distinguish between explaining three of the most important characteristics by which we recognize invasions: rapid local population increase, monocultures or community dominance, and range expansion. As a contribution towards developing a conceptual synthesis of invasions based on these criteria, we outline a framework that explicitly incorporates consideration of the fundamental ecological and evolutionary processes involved. The development of a more inclusive and mechanistic conceptual framework for invasion should facilitate quantitative and testable evaluation of causal factors, and can potentially lead to a better understanding of the biology of invasions.  相似文献   

9.
Biological invasions can have various impacts on the diversity of important microbial mutualists such as mycorrhizal fungi, but few studies have tested whether the effects of invasions on mycorrhizal diversity are consistent across spatial gradients. Furthermore, few of these studies have taken place in tropical ecosystems that experience an inordinate rate of invasions into native habitats. Here, we examined the effects of plant invasions dominated by non-native tree species on the diversity of arbuscular mycorrhizal (AM) fungi in Hawaii. To test the hypothesis that invasions result in consistent changes in AM fungal diversity across spatial gradients relative to native forest habitats, we sampled soil in paired native and invaded sites from three watersheds and used amplicon sequencing to characterize AM fungal communities. Whether our analyses considered phylogenetic relatedness or not, we found that invasions consistently increased the richness of AM fungi. However, AM fungal species composition was not related to invasion status of the vegetation nor local environment, but stratified by watershed. Our results suggest that while invasions can lead to an overall increase in the diversity of microbial mutualists, the effects of plant host identity or geographic structuring potentially outweigh those of invasive species in determining the community membership of AM fungi. Thus, host specificity and spatial factors such as dispersal need to be taken into consideration when examining the effects of biological invasions on symbiotic microbes.  相似文献   

10.
If food is patchily dispersed, food clumps being very rich, but rare and hard to find, each individual in a foraging flock then faces an evident dilemma: whether to co-operate and participate in the search, thus enhancing the rate by which rich patches are discovered, or to defect and let others do the searching, thus avoiding any possible expenditures and risks involved in the search (but enjoying the abundant resources once a rich patch is discovered). This conflict (and its possible solution) is treated as an example in the analysis of the synergistic n-player game presented in this paper. After deriving conditions for the existence of a mixed ESS in such games, the evolutionary stability of the mixed strategy against invasions by pure strategists, in particular against invasions by recognizable defectors, is analyzed. Whereas in any "degenerating" mixed-strategy model a recognizable defector can invade and spread, a "non-degenerating" model can sometimes yield a mixed ESS which is immune to such invasions.  相似文献   

11.
Non-native (alien, exotic) plant invasions are affecting ecological processes and threatening biodiversity worldwide. Patterns of plant invasions, and the ecological processes which generate these patterns, vary across spatial scales. Thus, consideration of spatial scale may help to illuminate the mechanisms driving biological invasions, and offer insight into potential management strategies. We review the processes driving movement of non-native plants to new locations, and the patterns and processes at the new locations, as they are variously affected by spatial scale. Dispersal is greatly influenced by scale, with different mechanisms controlling global, regional and local dispersal. Patterns of invasion are rarely documented across multiple spatial scales, but research using multi-scale approaches has generated interesting new insights into the invasion process. The ecological effects of plant invasions are also scale-dependent, ranging from altered local community diversity and homogenization of the global flora, to modified biogeochemical cycles and disturbance regimes at regional or global scales. Therefore, the study and control of invasions would benefit from documenting invasion processes at multiple scales.  相似文献   

12.
植物功能性状与外来植物入侵   总被引:4,自引:1,他引:4  
揭示影响外来植物入侵性的功能性状及其生态机制是入侵植物生态学的核心任务之一。本文综述了植物功能性状与外来植物入侵性的研究进展, 通过分析植物功能性状对外来植物入侵的贡献以及外来植物的不同入侵阶段对其功能性状的需求, 探讨植物功能性状与外来植物入侵的相关性及其入侵机理。迄今研究较多的影响外来植物入侵性的功能性状主要包括形态性状、生长性状、生理性状、繁殖性状、种子性状、克隆性状、表型可塑性和遗传变异等。这些功能性状对外来植物入侵的贡献随着入侵阶段的不同而变化。在传播到达阶段, 种子性状对入侵具有重要影响; 在定居建群阶段, 与植物抗逆性和适应性相关的生理性状和繁殖性状发挥主要作用; 在扩散入侵阶段, 克隆性状和影响植物竞争能力的生理性状对植物成功入侵具有重要贡献。由于植物入侵性是其功能性状和环境因素互作的结果, 且功能性状的作用随环境因素和入侵阶段不同而异, 因此, 结合外来植物入侵阶段, 并考虑功能性状与环境因子的互作, 是入侵生物学中植物功能性状研究的发展趋势。  相似文献   

13.
Biological invasions in Hungary are causing severe problems as a result of recent introductions and rapid land use changes. Poorly managed agricultural and rural, disturbed areas, and aquatic ecosystems are the most prone to plant invasions. Dry grasslands and semi-natural forests are less prone to invasions. A few plant species have led to human health (allergenic) problems. Some insect species have caused economic problems to crop production. A number of monitoring networks and control measures are in place for selected plants and insects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Biological invasions and land‐use changes are two major causes of the global modifications of biodiversity. Habitat suitability models are the tools of choice to predict potential distributions of invasive species. Although land‐use is a key driver of alien species invasions, it is often assumed that land‐use is constant in time. Here we combine historical and present day information, to evaluate whether land‐use changes could explain the dynamic of invasion of the American bullfrog Rana catesbeiana (=Lithobathes catesbeianus) in Northern Italy, from the 1950s to present‐day. We used maxent to build habitat suitability models, on the basis of past (1960s, 1980s) and present‐day data on land‐uses and species distribution. For example, we used models built using the 1960s data to predict distribution in the 1980s, and so on. Furthermore, we used land‐use scenarios to project suitability in the future. Habitat suitability models predicted well the spread of bullfrogs in the subsequent temporal step. Models considering land‐use changes predicted invasion dynamics better than models assuming constant land‐use over the last 50 years. Scenarios of future land‐use suggest that suitability will remain similar in the next years. Habitat suitability models can help to understand and predict the dynamics of invasions; however, land‐use is not constant in time: land‐use modifications can strongly affect invasions; furthermore, both land management and the suitability of a given land‐use class may vary in time. An integration of land‐use changes in studies of biological invasions can help to improve management strategies.  相似文献   

15.
Biological invasions often transcend political boundaries, but the capacity of countries to prevent invasions varies. How this variation in biosecurity affects the invasion risks posed to the countries involved is unclear. We aimed to improve the understanding of how the biosecurity of a country influences that of its neighbours. We developed six scenarios that describe biological invasions in regions with contiguous countries. Using data from alien species databases, socio‐economic and biodiversity data and species distribution models, we determined where 86 of 100 of the world's worst invasive species are likely to invade and have a negative impact in the future. Information on the capacity of countries to prevent invasions was used to determine whether such invasions could be avoided. For the selected species, we predicted 2,523 discrete invasions, most of which would have significant negative impacts and are unlikely to be prevented. Of these invasions, approximately a third were predicted to spread from the country in which the species first establishes to neighbouring countries where they would cause significant negative impacts. Most of these invasions are unlikely to be prevented as the country of first establishment has a low capacity to prevent invasions or has little incentive to do so as there will be no impact in that country. Regional biosecurity is therefore essential to prevent future harmful biological invasions. In consequence, we propose that the need for increased regional co‐operation to combat biological invasions be incorporated in global biodiversity targets.  相似文献   

16.
Litchman E 《Ecology letters》2010,13(12):1560-1572
Although the number of studies on invasive plants and animals has risen exponentially, little is known about invasive microbes, especially non-pathogenic ones. Microbial invasions by viruses, bacteria, fungi and protists occur worldwide but are much harder to detect than invasions by macroorganisms. Invasive microbes have the potential to significantly alter community structure and ecosystem functioning in diverse terrestrial and aquatic ecosystems. Consequently, increased attention is needed on non-pathogenic invasive microbes, both free-living and symbiotic, and their impacts on communities and ecosystems. Major unknowns include the characteristics that make microbes invasive and properties of the resident communities and the environment that facilitate invasions. A comparison of microbial invasions with invasions of macroorganisms should provide valuable insights into general principles that apply to invasions across all domains of life and to taxon-specific invasion patterns. Invasive microbes appear to possess traits thought to be common in many invasive macroorganisms: high growth rate and resource utilization efficiency, and superior competitive abilities. Invading microorganisms are often similar to native species, but with enhanced performance traits, and tend to spread in lower diversity communities. Global change can exacerbate microbial invasions; therefore, they will likely increase in the future.  相似文献   

17.
The history of conifers introduced earlier elsewhere in the southern hemisphere suggests that recent invasions in Argentina, Brazil, Chile and Uruguay are likely to increase in number and size. In South Africa, New Zealand and Australia, early ornamental introductions and small forestry plantations did not lead to large‐scale invasions, while subsequent large plantations were followed with a lag of about 20–30 years by troublesome invasions. Large‐scale conifer plantation forestry in South America began about 50–80 years later than in South Africa, Australia and New Zealand, while reports of invasions in South America lagged behind those in the latter nations by a century. Impacts of invading non‐native conifers outside South America are varied and include replacement of grassland and shrubland by conifer forest, alteration of fire and hydrological regimes, modification of soil nutrients, and changes in aboveground and belowground biotic communities. Several of these effects have already been detected in various parts of South America undergoing conifer invasion. The sheer amount of area planted in conifers is already very large in Chile and growing rapidly in Argentina and Brazil. This mass of reproductive trees, in turn, produces an enormous propagule pressure that may accelerate ongoing invasions and spark new ones at an increasing rate. Regulations to control conifer invasions, including measures to mitigate spread, were belatedly implemented in New Zealand and South Africa, as well as in certain Australian states, inspired by observations on invasions in those nations. Regulations in South America are weaker and piecemeal, but the existing research base on conifer invasions elsewhere could be useful in fashioning effective regulations in South America. Pressure from foreign customers in South Africa has led most companies there to seek certification through the Forestry Stewardship Council; a similar programme operates in Australia. Such an approach may be promising in South America.  相似文献   

18.
亚热带本地植物群落中增加降水扩大了氮增加对入侵植物表现的影响 氮沉降、降水以及它们的交互作用会影响氮和水是限制性资源的温带生态系统中的外来植物 入侵,但它们是否会影响以及怎样影响外来植物在富氮和降水丰富的亚热带植物群落中的入侵, 仍不清楚。本研究在亚热带生态系统中,在野外用12种常见本地植物构建群落,将4种入侵植物及其近缘的4种本地植物分别引入到群落中,对群落进行氮添加(0和5 g N m−2 a−1)和降水增加(自然降水和增加降水30%)交互处理,比较了引入的入侵植物和近缘本地植物在群落中的生长和定居表现以及群落特征(包括群落密度和地上生物量等)。研究结果显示,只增加降水没有提高入侵植物或近缘本地植物的表现;氮添加仅提高入侵植物地上生物量和相对密度;氮和降水同时增加提高了入侵植物和近缘本地植物在群落中的生长和定居表现。在氮添加、降水增加和氮与降水同时增加处理下,入侵植物的大多数生长和定居参数高于近缘本地植物。在氮与降水同时增加时,入侵植物所定居本地群落的密度和地上生物量显著低于近缘本地植物所定居本地群落的密度和地上生物量。这些结果说明,在富氮和降水丰富的亚热带本地群落中,降水增加扩大了氮增加对入侵植物表现的影响。这将有助于理解在富氮和降水丰富的亚热带生态系统中,全球变化对植物入侵的影响。  相似文献   

19.
Non-indigenous species (NIS) are increasingly conspicuous inmarine and estuarine habitats throughout the world, as the number,variety, and effects of these species continue to accrue. Mostof these NIS invasions result from anthropogenic dispersal.Although the relative importance of different dispersal mechanismsvaries both spatially and temporally, the global movement ofballast water by ships appears to be the largest single vectorfor NIS transfer today, andmany recent invasions have resultedfrom this transfer. The rate of new invasions may have increasedin recent decades, perhaps due to changes in ballast water transport.Estuaries have been especially common sites of invasions, accumulatingfrom tens to hundreds of NIS per estuary that include most majortaxonomic and trophic groups. We now know of approximately 400NIS along the Pacific, Atlantic and Gulf coasts of the U.S.,and hundreds of marine and estuarine NIS are reported from otherregions of the world. Although available information about invasionsis limited to a few regions and underestimates the actual numberof NIS invasions, there are apparent differences in the frequencyof NIS among sites. Mechanisms responsible for observed patternsamong sites likely include variation in supply of NIS, and perhapsvariation in properties of recipient or donor communities,butthe role of these mechanisms has not been tested. Although ourpresent knowledge about the extent, patterns and mechanismsof marine invasions is still in its infancy, it is clear thatNIS are a significant force of change in marine and especiallyestuarine communities globally. Taxonomically diverse NIS arehaving significant effects on many, if not most, estuaries thatfundamentally alter population, community, and ecosystems processes.The impacts of most NIS remain unknown, and the predictabilityof their direct and indirect effects remains uncertain. Nonetheless,based upon the documented extent of NIS invasions and scopeof then effects, studies of marine communities that do not includeNIS are increasingly incomplete  相似文献   

20.
Invasive events by Bemisia tabaci (Gennadius) biotypes in various parts of the world are of continuing interest. The most famous is biotype B that has caused great economic losses globally. In addition, biotype Q has also recently been reported to be a new invasive pest. These two biotypes have been monitored for some time in the Western North Pacific region, but the invasive events and population genetic structures of these two biotypes are still not clear in this region. In this study, the mitochondrial cytochrome oxidase I (COI) gene was used to reconstruct a phylogenetic tree for identifying biotypes B and Q and to study the relationships between invasive events and ornamental plants. Population genetic analyses of mtCOI sequences were also used to study the genetic relationships within and between populations. A combination of a phylogenetic tree and haplotype analysis suggested the recent invasion of biotype Q in this region is related to the international ornamental trade from the Mediterranean region. Low levels of haplotype diversity and nucleotide diversity indicate that the presence of biotypes B and Q in the Western North Pacific region are caused by multiple invasions. Hierarchical analysis of molecular variance supports the hypothesis of multiple invasions. In addition, high sequence identities and low genetic distances within and between populations of the two biotypes revealed that these invasive events occurred recently. The low levels of genetic differentiation revealed by pairwise F (ST) values between populations also suggests the invasions were recent. Therefore, results of this study suggested that biotypes B and Q entered this region through multiple recent invasions. A quarantine of agricultural crops may be necessary to prevent further invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号