首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Legume seeds contain a large amount of proteins and are one of the essential protein sources for humans and animals. However, the protein, in legume seeds is usually poor in sulfur-containing amino acids, and its nutritional value is lower than the protein from animal sources. Recently plant breeding has become available by the introduction of molecular biology, and a technique, called molecular breeding, was applied to the production of legume seeds that contain proteins with high nutritional quality. This review describes the expression of legume seed protein genes and the transformation of legume plants. Approaches to improve the legume seed storage protein will be discussed.  相似文献   

3.
Biological nitrogen fixation in mixed legume-cereal cropping systems   总被引:6,自引:1,他引:5  
Cereal/legume intercropping increases dry matter production and grain yield more than their monocultures. When fertilizer N is limited, biological nitrogen fixation (BNF) is the major source of N in legume-cereal mixed cropping systems. The soil N use patterns of component crops depend on the N source and legume species. Nitrogen transfer from legume to cereal increases the cropping system's yield and efficiency of N use. The use of nitrate-tolerant legumes, whose BNF is thought to be little affected by application of combined N, may increase the quantity of N available for the cereal component. The distance between the cereal and legume root systems is important because N is transferred through the intermingling of root systems. Consequently, the most effective planting distance varies with type of legume and cereal. Mutual shading by component crops, especially the taller cereals, reduces BNF and yield of the associated legume. Light interception by the legume can be improved by selecting a suitable plant type and architecture. Planting pattern and population at which maximum yield is achieved also vary among component species and environments. Crops can be mixed in different proportions from additive to replacement or substitution mixtures. At an ideal population ratio a semi-additive mixture may produce higher gross returns.  相似文献   

4.
豆科植物凝集素及其对根瘤菌的识别作用   总被引:22,自引:0,他引:22  
本文讨论了豆科植物凝集素的性质、分布、基因及其表达;近年来研究表明识别根瘤菌的因子是豆科植物根上的凝集素。将一种豆科植物的凝集素基因转化到另一种豆科植物后,再接种前一种豆科植物的根瘤菌,可以使其被侵染和结瘤。由此人们提出了扩大根瘤菌宿主范围到非豆科植物,特别是粮食作物范围的可能性。  相似文献   

5.
王逸群  荆玉祥 《植物学报》2000,17(2):127-132
本文讨论了豆科植物凝集素的性质、分布、基因及其表达;近年来研究表明识别根瘤菌的因子是豆科植物根上的凝集素。将一种豆科植物的凝集素基因转化到另一种豆科植物后,再接种前一种豆科植物的根瘤菌,可以使其被侵染和结瘤。由此人们提出了扩大根瘤菌宿主范围到非豆科植物,特别是粮食作物范围的可能性。  相似文献   

6.
A novel lectin has been isolated and cloned from leaves of Glechoma hederacea (ground ivy), a typical representative of the plant family Lamiaceae. Biochemical analyses indicated that the G. hederacea agglutinin (Gleheda) is a tetrameric protein consisting of four subunits pairwise linked through an interchain disulphide bridge and exhibits a preferential specificity towards N-acetylgalactosamine. Cloning of the corresponding gene and molecular modeling of the deduced sequence demonstrated that Gleheda shares high sequence similarity with the legume lectins and exhibits the same overall fold and three-dimensional structure as the classical legume lectins. The identification of a soluble and active legume lectin ortholog in G. hederacea not only indicates that the yet unclassified Lamiaceae lectins belong to the same lectin family as the legume lectins, but also sheds a new light on the specificity, physiological role and evolution of the classical legume lectins.  相似文献   

7.
Two types of root nodule symbioses are known for higher plants, legume and actinorhizal symbioses. In legume symbioses, bacterial signal factors induce the expression of ENOD40 genes. We isolated an ENOD40 promoter from an actinorhizal plant, Casuarina glauca, and compared its expression pattern in a legume (Lotus japonicus) and an actinorhizal plant (Allocasuarina verticillata) with that of an ENOD40 promoter from the legume soybean (GmENOD40-2). In the actinorhizal Allocasuarina sp., CgENOD40-GUS and GmENOD40-2-GUS showed similar expression patterns in both vegetative and symbiotic development, and neither promoter was active during nodule induction. The nonsymbiotic expression pattern of CgENOD40-GUS in the legume genus Lotus resembled the nonsymbiotic expression patterns of legume ENOD40 genes; however, in contrast to GmENOD40-2-GUS, CgENOD40-GUS was not active during nodule induction. The fact that only legume, not actinorhizal, ENOD40 genes are induced during legume nodule induction can be linked to the phloem unloading mechanisms established in the zones of nodule induction in the roots of both types of host plants.  相似文献   

8.
豆科牧草具有重要的经济价值。本文主要从豆科牧草遗传资源鉴定、保存和利用及豆科牧草育种方法和育种策略两个大的方面阐述了生物技术在国外豆科牧草研究中的应用,并重点介绍了体细胞杂交、胚拯救和分子标记技术。  相似文献   

9.
The identification of markers in legume pasture crops, which can be associated with traits such as protein and lipid production, disease resistance, and reduced pod shattering, is generally accepted as an important strategy for improving the agronomic performance of these crops. It has been demonstrated that many quantitative trait loci (QTLs) identified in one species can be found in other plant species. Detailed legume comparative genomic analyses can characterize the genome organization between model legume species (e.g., Medicago truncatula, Lotus japonicus) and economically important crops such as soybean (Glycine max), pea (Pisum sativum), chickpea (Cicer arietinum), and lupin (Lupinus angustifolius), thereby identifying candidate gene markers that can be used to track QTLs in lupin and pasture legume breeding. LegumeDB is a Web-based bioinformatics resource for legume researchers. LegumeDB analysis of Medicago truncatula expressed sequence tags (ESTs) has identified novel simple sequence repeat (SSR) markers (16 tested), some of which have been putatively linked to symbiosome membrane proteins in root nodules and cell-wall proteins important in plant-pathogen defence mechanisms. These novel markers by preliminary PCR assays have been detected in Medicago truncatula and detected in at least one other legume species, Lotus japonicus, Glycine max, Cicer arietinum, and (or) Lupinus angustifolius (15/16 tested). Ongoing research has validated some of these markers to map them in a range of legume species that can then be used to compile composite genetic and physical maps. In this paper, we outline the features and capabilities of LegumeDB as an interactive application that provides legume genetic and physical comparative maps, and the efficient feature identification and annotation of the vast tracks of model legume sequences for convenient data integration and visualization. LegumeDB has been used to identify potential novel cross-genera polymorphic legume markers that map to agronomic traits, supporting the accelerated identification of molecular genetic factors underpinning important agronomic attributes in lupin.  相似文献   

10.
Bradyrhizobium japonicum mutant strain NAD163, containing a 30-kb deletion mutant encompassing the hsfA gene, was inoculated onto a broad range of legume species to test host-specificity. Most legume species formed ineffective nodules except Vigna angularis var. Chibopat and Glycine max var. Pureunkong. A hsfA insertion mutant, BjjC211, gave similar results to strain NAD163, implying that many legume species require HsfA for host-specific nitrogen fixation. To determine whether other genes in the deleted region of NAD163 are also necessary, the hsfA gene was conjugally transferred into the NAD163 mutant. The transconjugant formed effective nodules on the host legume plants, which earlier had formed ineffective nodules with mutant NAD163. Thus, we conclude that the hsfA gene in the 30-kb region is the only factor responsible for host-specific nitrogen fixation in legume plants.  相似文献   

11.
There is need to evaluate the locally available animal feeds in Nigeria so as to be able to combine them in acceptable proportions to the animals to achieve the desired growth rate. The technique of particle-induced X-ray emission (PIXE) was employed for the evaluation of these locally available animal feeds, which include Panicum maximum (Guinea grass), Cynodon plectostachyum (grass), Leucaena leucephala (legume), Calopogonium mucunoides (legume), Gliricidia sepium (legume), Euphorbia polychrome (legume), Pueraria phaseloides (legume), and Centrosema pubescens (legume). The proton beam delivered by the 2.5-MV AN 2000 Van de Graaff accelerator at the International Centre for Theoretical Physics Laboratori Nazionali di Legnaro (LNL), Padova, Italy was used for the PIXE measurements. Twenty-one different elements were detected at various concentrations and their nutritional effects on different animals are discussed.  相似文献   

12.
Summary Under some conditions the plow down of forage legumes increases the yield of subsequent crops, which is usually caused by improved soil N. However, better soil structure is also a contributing factor. Three experiments were conducted to measure the effect of legume plow down on the yield of subsequent corn crops grown at the Ottawa Research Station (ORS), Ottawa, Canada. In all experiments, corn yields were not affected by legume species, legume cultivars, and/or planting methods. Corn yields from barley plots receiving 0, 60, or 120 kg N ha−1 did not differ until two years after establishment in one experiment and three years in another. The data from these experiments indicated that soil N was high at the ORS, which may inhibit N2-fixation by forage legumès in the establishment year. Therefore, legume plow down was not beneficial to subsequent crops under these conditions. Two other experiments were conducted to measure the effect of legume plow down on the yield of subsequent barley crops. In both experiments, barley yields in the field were not affected by legume type or legume seeding density. Greenhouse and field data indicated that the two cuts with removal strategy benefitted the most to succeeding crops. Data from the greenhouse test indicated that soil N levels were not low in the establishment year, and that some cultivars improved soil fertility more than others.  相似文献   

13.
Molecular Biology Reports - Chickpea is the fourth most important legume crop contributing 15.42% to the total legume production and a rich source of proteins, minerals, and vitamins. Determination...  相似文献   

14.
Legume genomes: more than peas in a pod   总被引:6,自引:0,他引:6  
A growing array of sequence-based tools is helping to reveal the organization, evolution and syntenic relationships of legume genomes. The results indicate that legumes form a coherent taxonomic group with frequent and widespread macro- and microsynteny. This is good news for two model legume systems, Medicago truncatula and Lotus japonicus. Indeed, both models have recently been used to clone and characterize genes for nodulation-related receptors that were originally described in legumes with more complex genomes. Studies of legume genomes have also provided insight into genome size, gene clustering, genome duplications and repetitive elements. To understand legume genomes better, it will be necessary to develop tools for studying under-represented taxa beyond the relatively small group of economically important species that have been examined so far.  相似文献   

15.
Soil carbon distribution with depth, stable carbon isotope ratios in soil organic matter and their changes as a consequence of the presence of legume were studied in three 12-year-old tropical pastures (grass alone —Brachiaria decumbens (C4), legume alone —Pueraria phaseoloides (C3) and grass + legume) on an Oxisol in Colombia. The objective of this study was to determine the changes that occurred in the13C isotope composition of soil from a grass + legume pasture that was established by cultivation of a native savanna dominated by C4 vegetation. The13C natural abundance technique was used to estimate the amount of soil organic carbon originating from the legume. Up to 29% of the organic carbon in soil of the grass + legume pasture was estimated to be derived from legume residues in the top 0–2-cm soil depth, which decreased to 7% at 8–10 cm depth. Improvements in soil fertility resulting from the soil organic carbon originated from legume residues were measured as increased potential rates of nitrogen mineralization and increased yields of rice in a subsequent crop after the grass + legume pasture compared with the grass-only pasture. We conclude that the13C natural abundance technique may help to predict the improvements in soil quality in terms of fertility resulting from the presence of a forage legume (C3) in a predominantly C4 grass pasture.  相似文献   

16.
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume–rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume–rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume–rhizobia symbiosis. The means by which these processes enhance the legume–rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume–rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.  相似文献   

17.
A large amount of energy is utilized by legume nodules for the fixation of nitrogen and assimilation of fixed nitrogen (ammonia) into organic compounds. The source of energy is provided in the form of photosynthates by the host plant. Phosphoenol pyruvate carboxylase (PEPC) enzyme, which is responsible for carbon dioxide fixation in C4 and crassulacean acid metabolism plants, has also been found to play an important role in carbon metabolism in legume root nodule. PEPC-mediated CO2 fixation in nodules results in the synthesis of C4 dicarboxylic acids, viz. aspartate, malate, fumarate etc. which can be transported into bacteroids with the intervention of dicarboxylate transporter (DCT) protein. PEPC has been purified from the root nodules of few legume species. Information on the relationship between nitrogen fixation and carbon metabolism through PEPC in leguminous plants is scanty and incoherent. This review summarizes the various aspects of carbon and nitrogen metabolism in legume root nodules.  相似文献   

18.
The major carbohydrate of the legume seed is starch, which represents up to 45% of the total seed weight. In recent years, substantial progress has been made in understanding the relationship between starch structure and functionality. However, these studies have been mainly on cereal and tuber starches. The present status of knowledge on the composition, structure, functionality, digestibility, and chemical modification of legume starches is reviewed. In addition present concepts of granule structure, gelatinization, retrogradation, and rheology are also reviewed. Future research needs in the area of legume starch chemistry are discussed.  相似文献   

19.

Background

Nitrogen-fixing legumes are key species in grassland ecosystems, as their ability to fix atmospheric nitrogen can facilitate neighboring plants. However, little is known about the fate of this legume effect in the face of extreme weather events, which are increasingly expected to occur.

Methods

Here, we examined experimentally how the presence of a legume modifies above-ground net primary production (ANPP) and nitrogen supply of neighboring non-legumes under annually recurrent pulsed drought and heavy rainfall events by comparing responses of three key species in European grassland versus without legume presence over 4 years.

Results

Legume presence facilitated community productivity of neighboring non-legumes under ambient weather conditions and also under experimental heavy rainfall. However, no facilitation of community productivity by the legume was found under experimental drought. Productivity of the three target species responded species-specifically to legume presence under different weather conditions: Holcus lanatus was facilitated only under control conditions, Plantago lanceolata was facilitated only under heavy rainfall, and Arrhenatherum elatius was facilitated irrespective of climate manipulations. The legume effects on δ 15N, leaf N concentration, and N uptake were also species-specific, yet irrespective of the climate manipulations. The data suggest that the missing legume effect on community productivity under the pulsed drought was rather caused by reduced N-uptake of the target species than by reduced N-fixation by the legume.

Conclusions

In contrast to heavy rain, the presence of a legume could not effectively buffer community ANPP against the negative effects of extreme drought events in an experimental temperate grassland. Facilitation also depends on the key species that are dominating a grassland community.  相似文献   

20.
A simple recipe for modelling the dynamics of the legume componentof a grass-legume pasture simulator is proposed, avoiding someof the difficulties associated with representing the pasturesubmodel as autonomous but interacting grass and legume components.A target legume content of the sward is assumed to depend onthe carbon[ratio]nitrogen ratio in the plant substrate carbonand nitrogen pools (these represent the labile and easily mobilizableC and N pools in the plant). The rate at which the actual legumecontent approaches the target content is proportional to thegross specific growth rate of the pasture. The canopy extinctioncoefficient and the dinitrogen fixation rate for the pastureare adjusted according to the changing legume content. The methodhas been incorporated into a generic single-species grasslandsimulator, the Hurley Pasture Model. Seasonal changes in legumefraction and associated variables are simulated. Next, the responseof the legume fraction to step changes in nitrogen fertilizerapplication, carbon dioxide concentration, rainfall and temperatureare predicted for a grazed pasture. Yield from frequent harvestingis also examined for four treatments: ambient and elevated carbondioxide x low and high nitrogen fertilizer application. Qualitatively,the simulations agree well with experimental findings. Thisindicates that some important aspects of grass-legume competitioncould operate primarily through the pasture carbon[ratio]nitrogensubstrate ratio. This ratio may determine those characteristicsof morphology, growth and function that largely define the differentialsuccess of the two components of grass-legume swards; however,causation would not be proved (as far as this is scientificallypossible) without a detailed mechanistic model. The approachmay be useful for the investigation of management and climate-changeproblems in grassland. Copyright 2001 Annals of Botany Company Grass, legume, model, grassland, ecosystem, simulator  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号