首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contamination of water environments by pathogenic viruses has raised concerns about outbreaks of viral infectious diseases in our society. Because conventional water and wastewater treatment systems are not effective enough to inactivate or remove pathogenic viruses, a new technology for virus removal needs to be developed. In this study, the virus-binding proteins (VBPs) in a bacterial culture derived from activated sludge were successfully recovered. The recovery of VBPs was achieved by applying extracted crude proteins from a bacterial culture to an affinity column in which a custom-made peptide of capsid protein from the poliovirus type 1 (PV1) Mahoney strain (H2N-DNPASTTNKDKL-COOH) was immobilized as a ligand. VBPs exhibited the ability to adsorb infectious particles of PV1 Sabin 1 as determined by enzyme-linked immunosorbent assay. The evaluation of surface charges of VBPs with ion-exchange chromatography found that a majority of VBP molecules had a net negative charge under the conditions of affinity chromatography. On the other hand, a calculated isoelectric point implied that the viral peptide in the affinity column was also charged negatively. As a result, the adsorption of the VBPs to the viral peptide in the affinity column occurred with a strong attractive force that was able to overcome the electrostatic repulsive force. Two-dimensional electrophoresis revealed that the isolated VBPs include a number of proteins, and their molecular masses were widely distributed but smaller than 100 kDa. Amino acid sequences of N termini of five VBPs were determined. Homology searches for the N termini against all protein sequences in the National Center for Biotechnology Information (NCBI) database showed that the isolated VBPs in this study were newly discovered proteins. These VBPs that originated with bacteria in activated sludge might be stable, because they are existing in the environment of wastewater treatments. Therefore, a virus removal technology utilizing VBPs as viral adsorbents can be developed, since it is possible to replicate VBPs by protein cloning techniques.  相似文献   

2.
The contamination of water environments by pathogenic viruses has raised concerns about outbreaks of viral infectious diseases in our society. Because conventional water and wastewater treatment systems are not effective enough to inactivate or remove pathogenic viruses, a new technology for virus removal needs to be developed. In this study, the virus-binding proteins (VBPs) in a bacterial culture derived from activated sludge were successfully recovered. The recovery of VBPs was achieved by applying extracted crude proteins from a bacterial culture to an affinity column in which a custom-made peptide of capsid protein from the poliovirus type 1 (PV1) Mahoney strain (H(2)N-DNPASTTNKDKL-COOH) was immobilized as a ligand. VBPs exhibited the ability to adsorb infectious particles of PV1 Sabin 1 as determined by enzyme-linked immunosorbent assay. The evaluation of surface charges of VBPs with ion-exchange chromatography found that a majority of VBP molecules had a net negative charge under the conditions of affinity chromatography. On the other hand, a calculated isoelectric point implied that the viral peptide in the affinity column was also charged negatively. As a result, the adsorption of the VBPs to the viral peptide in the affinity column occurred with a strong attractive force that was able to overcome the electrostatic repulsive force. Two-dimensional electrophoresis revealed that the isolated VBPs include a number of proteins, and their molecular masses were widely distributed but smaller than 100 kDa. Amino acid sequences of N termini of five VBPs were determined. Homology searches for the N termini against all protein sequences in the National Center for Biotechnology Information (NCBI) database showed that the isolated VBPs in this study were newly discovered proteins. These VBPs that originated with bacteria in activated sludge might be stable, because they are existing in the environment of wastewater treatments. Therefore, a virus removal technology utilizing VBPs as viral adsorbents can be developed, since it is possible to replicate VBPs by protein cloning techniques.  相似文献   

3.
In our previous study, virus-binding proteins (VBPs) demonstrating the ability to strongly bind poliovirus type 1 (PV1) were recovered from a bacterial culture derived from activated sludge. The isolated VBPs would be useful as viral adsorbents for water and wastewater treatments. The VBP gene of activated sludge bacteria was isolated, and the cloning system of the VBP was established. The isolation of the VBP gene from DNA libraries for activated sludge bacteria was achieved with the colony hybridization technique. The sequence of the VBP gene consisted of 807 nucleotides encoding 268 amino acids. Fifteen amino acid sequences were retrieved from 2,137,877 sequences by a homology search using the BLAST server at the National Center for Biotechnology Information. The protein encoded in the isolated genome was considered to be a newly discovered protein from activated sludge culture, because any sequences in protein databases were not perfectly matched with the sequence of the VBP. It was confirmed that Escherichia coli BL21 transformed by pRSET carrying the isolated VBP gene could extensively produce the VBP clones. Enzyme-linked immunosorbent assay (ELISA) revealed that the VBP clone exhibited the binding ability with intact particles of PV1. The equilibrium binding constant between PV1 and VBP in the ELISA well was estimated to be 2.1 × 107 (M−1), which also indicated that the VBP clones have a high affinity with the PV1 particle. The VBP cloning system developed in this study would make it possible to produce a mass volume of VBPs and to utilize them as a new material of the specific adsorbent in several technologies, including virus removal, concentration, and detection.  相似文献   

4.
In our previous study, virus-binding proteins (VBPs) demonstrating the ability to strongly bind poliovirus type 1 (PV1) were recovered from a bacterial culture derived from activated sludge. The isolated VBPs would be useful as viral adsorbents for water and wastewater treatments. The VBP gene of activated sludge bacteria was isolated, and the cloning system of the VBP was established. The isolation of the VBP gene from DNA libraries for activated sludge bacteria was achieved with the colony hybridization technique. The sequence of the VBP gene consisted of 807 nucleotides encoding 268 amino acids. Fifteen amino acid sequences were retrieved from 2,137,877 sequences by a homology search using the BLAST server at the National Center for Biotechnology Information. The protein encoded in the isolated genome was considered to be a newly discovered protein from activated sludge culture, because any sequences in protein databases were not perfectly matched with the sequence of the VBP. It was confirmed that Escherichia coli BL21 transformed by pRSET carrying the isolated VBP gene could extensively produce the VBP clones. Enzyme-linked immunosorbent assay (ELISA) revealed that the VBP clone exhibited the binding ability with intact particles of PV1. The equilibrium binding constant between PV1 and VBP in the ELISA well was estimated to be 2.1 x 10(7) (M(-1)), which also indicated that the VBP clones have a high affinity with the PV1 particle. The VBP cloning system developed in this study would make it possible to produce a mass volume of VBPs and to utilize them as a new material of the specific adsorbent in several technologies, including virus removal, concentration, and detection.  相似文献   

5.
Viruses, in particular DNA viruses, generate microRNAs (miRNAs) to control the expression of host and viral genes. Due to their essential roles in virus-host interactions, viral miRNAs have attracted extensive investigations in recent years. To date, however, most studies on viral miRNAs have been conducted in cell lines. In this study, the viral miRNAs from white spot syndrome virus (WSSV) were characterized in shrimp in vivo. On the basis of our previous study and small RNA sequencing in this study, a total of 89 putative WSSV miRNAs were identified. As revealed by miRNA microarray analysis and Northern blotting, the expression of viral miRNAs was tissue specific in vivo. The results indicated that the viral miRNA WSSV-miR-N24 could target the shrimp caspase 8 gene, and this miRNA further repressed the apoptosis of shrimp hemocytes in vivo. As a result, the number of WSSV copies in shrimp in vivo was significantly increased compared with the control level (WSSV only). Therefore, our study presents the first report on the in vivo molecular events of viral miRNA in antiviral apoptosis.  相似文献   

6.
The accumulating evidence indicates that the viral structural proteins play critical roles in virus infection. However, the interaction between the viral structural protein and host cytoskeleton protein in virus infection remains to be addressed. In this study, the viral VP466 protein, one of the major structural proteins of shrimp white spot syndrome virus (WSSV), was characterized. The results showed that the suppression of VP466 gene expression led to the inhibition of WSSV infection in shrimp, indicating that the VP466 protein was required in virus invasion. It was found that the VP466 protein was interacted with the host cytoskeleton protein tropomyosin. As documented, the VP466–tropomyosin interaction facilitated the WSSV infection. Therefore our findings revealed a novel molecular mechanism in the virus invasion to its host, which would be helpful to better understand the molecular events in virus infection in invertebrate.  相似文献   

7.
DNA replication requires processivity factors that allow replicative DNA polymerases to extend long stretches of DNA. Some DNA viruses encode their own replicative DNA polymerase, such as the white spot syndrome virus (WSSV) that infects decapod crustaceans but still require host replication accessory factors. We have determined by X-ray diffraction the three-dimensional structure of the Pacific white leg shrimp Litopenaeus vannamei Proliferating Cell Nuclear Antigen (LvPCNA). This protein is a member of the sliding clamp family of proteins, that binds DNA replication and DNA repair proteins through a motif called PIP-box (PCNA-Interacting Protein). The crystal structure of LvPCNA was refined to a resolution of 3 Å, and allowed us to determine the trimeric protein assembly and details of the interactions between PCNA and the DNA. To address the possible interaction between LvPCNA and the viral DNA polymerase, we docked a theoretical model of a PIP-box peptide from the WSSV DNA polymerase within LvPCNA crystal structure. The theoretical model depicts a feasible model of interaction between both proteins. The crystal structure of shrimp PCNA allows us to further understand the mechanisms of DNA replication processivity factors in non-model systems.  相似文献   

8.
9.
A great loss has been suffered by microbial infectious diseases under intensive shrimp farming in recent years. In this background, the understanding of shrimp innate immunity becomes an importantly scientific issue, but little is known about the heterogeneous protein–protein interaction between pathogenic cells and hosts, which is a key step for the invading microbes to infect internet organs through bloodstream. In the present study, bacterial outer membrane (OM) protein array and pull-down approaches are used to isolate both Vibrio parahaemolyticus OM proteins that bind to shrimp serum proteins and the shrimp serum proteins that interact with bacterial cells, respectively. Three interacting shrimp serum proteins, hemocyanin, β-1,3-glucan binding protein and LV_HP_RA36F08r and thirty interacting OM proteins were determined. They form 63 heterogeneous protein–protein interactions. Nine out of the 30 OM proteins were randomly demonstrated to be up-regulated or down-regulated when bacterial cells were cultured with shrimp sera, indicating the biological significance of the network. The interesting findings uncover the complexity of struggle between host immunity and bacterial infection. Compared with our previous report on heterogeneous interactome between fish grill and bacterial OM proteins, the present study further extends the investigation from lower vertebrates to invertebrates and develops a bacterial OM protein array to identify the OM proteins bound with shrimp serum proteins, which elevates the frequencies of the bound OM proteins. Our results highlight the way to determine and understand the heterogeneous interaction between hosts and microbes.  相似文献   

10.
Class I viral fusion proteins are α-helical proteins that facilitate membrane fusion between viral and host membranes through large conformational transitions. Although prefusion and postfusion crystal structures have been solved for many of these proteins, details about how they transition between these states have remained elusive. This work presents the first, to our knowledge, computational survey of transitions between pre- and postfusion configurations for several class I viral fusion proteins using structure-based models to analyze their dynamics. As suggested by their structural similarities, all proteins share common mechanistic features during their transitions that can be characterized by a diffusive rotational search followed by cooperative N- and C-terminal zipping. Instead of predicting a stable spring-loaded intermediate, our model suggests that helical bundle formation is mediated by N- and C-terminal interactions late in the transition. Shared transition features suggest a global mechanism in which fusion is activated by slow protein-core rotation.  相似文献   

11.
Chickenpox(varicella) is caused by primary infection with varicella zoster virus(VZV), which can establish long-term latency in the host ganglion. Once reactivated, the virus can cause shingles(zoster) in the host. VZV has a typical herpesvirus virion structure consisting of an inner DNA core, a capsid, a tegument, and an outer envelope. The tegument is an amorphous layer enclosed between the nucleocapsid and the envelope, which contains a variety of proteins. However, the types and functions of VZV tegument proteins have not yet been completely determined. In this review, we describe the current knowledge on the multiple roles played by VZV tegument proteins during viral infection. Moreover, we discuss the VZV tegument protein-protein interactions and their impact on viral tissue tropism in SCID-hu mice. This will help us develop a better understanding of how the tegument proteins aid viral DNA replication, evasion of host immune response, and pathogenesis.  相似文献   

12.
The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors.  相似文献   

13.
Yang G  Xiao X  Yin D  Zhang X 《Gene》2012,507(2):139-145
Although the virus-host interaction has attracted extensive studies, the host proteins essential for virus infection remain largely unknown. To address this issue, the shrimp Penaeus stylirostris densovirus (PstDNV), belonging to the family Parvoviridae, was characterized. PstDNV, a single-stranded DNA virus with a 3.9-kb genome, encoded only three open reading frames (ORFs). Among the three viral proteins, the PstDNV ORF2-encoded protein was discovered to interact with the shrimp actin, suggesting that the host actin played a very important role in virus infection. The RNAi assays revealed that the ORF2-encoded protein was required for the PstDNV infection. The confocal evidence demonstrated that the interaction between the ORF2-encoded protein and actin was essential for the virus infection. Therefore our study indicated that the manipulation of the host actin cytoskeleton was a necessary strategy for viral pathogens to invade host cells.  相似文献   

14.
Widespread evidence indicates that the structural proteins of virus play very important roles in virus-host interactions. However, the effect of viral proteins on host immunity has not been addressed. Our previous studies revealed that the host shrimp Rab6 (termed as PjRab previously), tropomyosin, β-actin and the white spot syndrome virus (WSSV) envelope protein VP466 formed a complex. In this study, the VP466 protein was shown to be able to bind host Rab6 protein and increase its GTPase activity in vivo and vitro. Thus, VP466 could function as a GTPase-activating protein (GAP) of Rab6. In the VP466-Rab-actin pathway, the increase of the Rab6 activity induced rearrangements of the actin cytoskeleton, resulting in the formation of actin stress fibers which promoted the phagocytosis against virus. Therefore our findings revealed that a viral protein could be employed by host to initiate the host immunity, representing a novel molecular mechanism in the virus-host interaction. Our study would help to better understand the molecular events in immune response against virus infection in invertebrates.  相似文献   

15.
The Human Immunodeficiency Virus type 1 (HIV-1) accessory protein Nef interacts with a multitude of cellular proteins, manipulating the host membrane trafficking machinery to evade immune surveillance. Nef interactions have been analyzed using various in vitro assays, co-immunoprecipitation studies, and more recently mass spectrometry. However, these methods do not evaluate Nef interactions in the context of viral infection nor do they define the sub-cellular location of these interactions. In this report, we describe a novel bimolecular fluorescence complementation (BiFC) lentiviral expression tool, termed viral BiFC, to study Nef interactions with host cellular proteins in the context of viral infection. Using the F2A cleavage site from the foot and mouth disease virus we generated a viral BiFC expression vector capable of concurrent expression of Nef and host cellular proteins; PACS-1, MHC-I and SNX18. Our studies confirmed the interaction between Nef and PACS-1, a host membrane trafficking protein involved in Nef-mediated immune evasion, and demonstrated co-localization of this complex with LAMP-1 positive endolysosomal vesicles. Furthermore, we utilized viral BiFC to localize the Nef/MHC-I interaction to an AP-1 positive endosomal compartment. Finally, viral BiFC was observed between Nef and the membrane trafficking regulator SNX18. This novel demonstration of an association between Nef and SNX18 was localized to AP-1 positive vesicles. In summary, viral BiFC is a unique tool designed to analyze the interaction between Nef and host cellular proteins by mapping the sub-cellular locations of their interactions during viral infection.  相似文献   

16.
Mutants of murine leukemia viruses and retroviral replication   总被引:13,自引:0,他引:13  
  相似文献   

17.
White spot syndrome caused by white spot syndrome virus (WSSV) is one of the most threatening diseases of shrimp culture industry. Previous studies have successfully demonstrated the use of DNA- and RNA-based vaccines to protect WSSV infection in shrimp. In the present study, we have explored the protective efficacy of antisense constructs directed against WSSV proteins, VP24, and VP28, thymidylate synthase (TS), and ribonucleotide reductase-2 (RR2) under the control of endogenous shrimp histone-3 (H3) or penaedin (Pn) promoter. Several antisense constructs were generated by inserting VP24 (pH3–VP24, pPn–VP24), VP28 (pH3–VP28, pPn–VP28), TS (pH3–TS, pPn–TS), and RR2 (pH3–RR2) in antisense orientation. These constructs were tested for their protective potential in WSSV infected cell cultures, and their effect on reduction of the viral load was assessed. A robust reduction in WSSV copy number was observed upon transfection of antisense constructs in hemocyte cultures derived from Penaeus monodon and Scylla serrata. When tested in vivo, antisense constructs offered a strong protection in WSSV challenged P. monodon. Constructs expressing antisense VP24 and VP28 provided the best protection (up to 90 % survivability) with a corresponding decrease in the viral load. Our work demonstrates that shrimp treated with antisense constructs present an efficient control strategy for combating WSSV infection in shrimp aquaculture.  相似文献   

18.
From almost negligible amounts in 1970, the quantity of cultivated shrimp (∼3 million metric tons in 2007) has risen to approach that of the capture fishery and it constitutes a vital source of export income for many countries. Despite this success, viral diseases along the way have caused billions of dollars of losses for shrimp farmers. Desire to reduce the losses to white spot syndrome virus in particular, has stimulated much research since 2000 on the shrimp response to viral pathogens at the molecular level. The objective of the work is to develop novel, practical methods for improved disease control. This review covers the background and limitations of the current work, baseline studies and studies on humoral responses, on binding between shrimp and viral structural proteins and on intracellular responses. It also includes discussion of several important phenomena (i.e., the quasi immune response, viral co-infections, viral sequences in the shrimp genome and persistent viral infections) for which little or no molecular information is currently available, but is much needed.  相似文献   

19.
Mamestra brassicae nucleopolyhedrovirus (MabrNPV) has a wide host range replication in more than one insect species. In this study, a sequenced MabrNPV strain, MabrNPV-CTa, was used to perform proteomic analysis of both BVs and ODVs derived from two infected hosts: Helicoverpa armigera and Spodoptera exigua. A total of 82 and 39 viral proteins were identified in ODVs and BVs, respectively. And totally, 23 and 76 host proteins were identified as virion-associated with ODVs and BVs, respectively. The host proteins incorporated into the virus particles were mainly involved in cytoskeleton, signaling, vesicle trafficking, chaperone and metabolic systems. Some host proteins, such as actin, cyclophilin A and heat shock protein 70 would be important for viral replication. Several host proteins involved in immune response were also identified in BV, and a C-type lectin protein was firstly found to be associated with BV and its family members have been demonstrated to be involved in entry process of other viruses. This study facilitated the annotation of baculovirus genome, and would help us to understand baculovirus virion structure. Furthermore, the identification of host proteins associated with virions produced in vivo would facilitate investigations on the involvement of intriguing host proteins in virus replication.  相似文献   

20.
Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high fatality rate and has recently reached a historically epidemic proportion in West Africa. Out of the 5 known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study their interaction with host proteins, and to identify the functional motifs in these viral proteins. Here, in light of these experimental results, we apply computational analysis to predict the 3D structures and functional sites for Ebolavirus protein domains with unknown structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase catalytic domain and a methyltransferase domain of protein L. In addition, we compare sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates with those from RESTV-susceptible monkeys. The host proteins that interact with GP and VP35 show an elevated level of sequence divergence between the RESTV-resistant and RESTV-susceptible species, suggesting that they may be responsible for host specificity. Meanwhile, we detect variable positions in protein sequences that are likely associated with the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare their positions to known functional sites. VP35 and VP30 are significantly enriched in these potential pathogenicity determinants and the clustering of such positions on the surfaces of VP35 and GP suggests possible uncharacterized interaction sites with host proteins that contribute to the virulence of Ebolavirus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号