共查询到20条相似文献,搜索用时 0 毫秒
1.
Núbia C.P. Avelar Vanessa G.C. Ribeiro Bruno Mezêncio Sueli F. Fonseca Rosalina Tossige-Gomes Sidney J. da Costa Leszek Szmuchrowski Fernando Gripp Cândido C. Coimbra Ana Cristina R. Lacerda 《Journal of electromyography and kinesiology》2013,23(4):844-850
The influence of the knee flexion on muscle activation and transmissibility during whole body vibration is controversially discussed in the literature. In this study, 34 individuals had electromyography activity (EMG) of the vastus lateralis and the acceleration assessed while squatting with 60° and 90° of knee flexion either with or without whole-body vibration (WBV). The conditions were maintained for 10 s with 1 min of rest between each condition. The main findings were (1) the larger the angle of knee flexion (90° vs. 60°), the greater the EMG (p < 0.001), with no difference on acceleration transmissibility; (2) for both angles of knee flexion, the addition of WBV produced no significant difference in EMG and higher acceleration compared to without WBV (p < 0.001). These results suggest that the larger the knee flexion angle (60° vs. 90°), the greater the muscle activation without acceleration modification. However, the addition of WBV increases the transmissibility of acceleration in the lower limbs without modification in EMG of vastus lateralis. 相似文献
2.
Trunk muscle electromyography and whole body vibration 总被引:2,自引:0,他引:2
By measuring the electromyographic (EMG) activity of the paraspinal muscles, we have estimated the average and peak-to-peak torque imposed on the spine during whole body vibration. Six subjects had surface electrodes placed on their erector spinae muscles at the L3 level. The EMG-torque relationship was estimated by having each subject perform isometric horizontal pulls in an upright seated posture. The subject was then vibrated vertically and sinusoidally in a controlled, flexed, slightly lordotic seated posture, in 1 Hz increments from 3 to 10 Hz at a 0.1 g RMS seat acceleration level. Between vibration readings taken at each frequency, a static reading was also taken with the subject maintaining the same posture. The entire vibration-static 3-10 Hz test was repeated for reliability purposes. Specialized digital signal processing techniques were developed for the EMG signals to enhance the measured cyclic muscle activity and to allow automatic measurement of the time relationship between the mechanical displacement and the estimated torque. We found significantly more average and peak-to-peak estimated torque at almost all frequencies for vibration vs static sitting. 相似文献
3.
Pollock RD Woledge RC Martin FC Newham DJ 《Journal of applied physiology (Bethesda, Md. : 1985)》2012,112(3):388-395
Whole body vibration (WBV) has been suggested to elicit reflex muscle contractions but this has never been verified. We recorded from 32 single motor units (MU) in the vastus lateralis of 7 healthy subjects (34 ± 15.4 yr) during five 1-min bouts of WBV (30 Hz, 3 mm peak to peak), and the vibration waveform was also recorded. Recruitment thresholds were recorded from 38 MUs before and after WBV. The phase angle distribution of all MUs during WBV was nonuniform (P < 0.001) and displayed a prominent peak phase angle of firing. There was a strong linear relationship (r = -0.68, P < 0.001) between the change in recruitment threshold after WBV and average recruitment threshold; the lowest threshold MUs increased recruitment threshold (P = 0.008) while reductions were observed in the higher threshold units (P = 0.031). We investigated one possible cause of changed thresholds. Presynaptic inhibition in the soleus was measured in 8 healthy subjects (29 ± 4.6 yr). A total of 30 H-reflexes (stimulation intensity 30% Mmax) were recorded before and after WBV: 15 conditioned by prior stimulation (60 ms) of the antagonist and 15 unconditioned. There were no significant changes in the relationship between the conditioned and unconditioned responses. The consistent phase angle at which each MU fired during WBV indicates the presence of reflex muscle activity similar to the tonic vibration reflex. The varying response in high- and low-threshold MUs may be due to the different contributions of the mono- and polysynaptic pathways but not presynaptic inhibition. 相似文献
4.
5.
Zderic TW Davidson CJ Schenk S Byerley LO Coyle EF 《American journal of physiology. Endocrinology and metabolism》2004,286(2):E217-E225
This study determined the role of intramuscular triglyceride (IMTG) and adipose lipolysis in the elevated fat oxidation during exercise caused by a high-fat diet. In four separate trials, six endurance-trained cyclists exercised at 50% peak O2 consumption for 1 h after a two-day control diet (22% fat, CON) or an isocaloric high-fat diet (60% fat, HF) with or without the ingestion of acipimox, an adipose lipolysis inhibitor, before exercise. During exercise, HF elevated fat oxidation by 72% and whole body lipolysis [i.e., the appearance rate of glycerol in plasma (Ra glycerol)] by 79% compared with CON (P < 0.05), and this was associated with a 36% increase (P < 0.05) in preexercise IMTG concentration. Although acipimox lowered plasma free fatty acid (FFA) availability, HF still increased fat oxidation and Ra glycerol to the same magnitude above control as the increase caused by HF without acipimox (i.e., both increased fat oxidation 13-14 micromol.kg(-1).min(-1)). In conclusion, the marked increase in fat oxidation after a HF diet is associated with elevated IMTG concentration and whole body lipolysis and does not require increased adipose tissue lipolysis and plasma FFA concentration during exercise. This suggests that altered substrate storage in skeletal muscle is responsible for increased fat oxidation during exercise after 2 days of an HF diet. 相似文献
6.
Semler O Fricke O Vezyroglou K Stark C Schoenau E 《Journal of musculoskeletal & neuronal interactions》2007,7(1):77-81
The present article is a preliminary report on the effect of Whole Body Vibration (WBV) on the mobility in long-term immobilized children and adolescents. WBV was applied to 6 children and adolescents (diagnoses: osteogenesis imperfecta, N=4; cerebral palsy, N=1; dysraphic defect of the lumbar spine, N=1) over a time period of 6 months. WBV was applied by a vibrating platform constructed on a tilt-table. The treatment effect was measured by alternations of the tilt-angle of the table and with the "Brief assessment of motor function" (BAMF). All 6 individuals were characterized by an improved mobility, which was documented by an increased tilt-angle or an improved BAMF-score. The authors concluded WBV might be a promising approach to improve mobility in severely motor-impaired children and adolescents. Therefore, the Cologne Standing-and-Walking- Trainer powered by Galileo is a suitable therapeutic device to apply WBV in immobilized children and adolescents. 相似文献
7.
C A Williams A R Lind 《European journal of applied physiology and occupational physiology》1987,56(2):230-237
Experiments were performed to determine to what extent increments in esophageal and abdominal pressure would have on arterial blood pressure during fatiguing isometric exercise. Arterial blood pressure was measured during handgrip and leg isometric exercise performed with both a free and occluded circulation to active muscles. Handgrip contractions were exerted at 33 and 70% MVC (maximum voluntary contraction) by 4 volunteers in a sitting position and calf muscle contractions at 50 and 70% MVC with the subjects in a kneeling position. Esophageal pressure measured at the peak of inspirations did not change during either handgrip or leg contractions but peak expiratory pressures increased progressively during both handgrip and leg contractions as fatigue occurred. These increments were independent of the tensions of the isometric contractions exerted. Intra-abdominal pressures measured at the peak of either inspiration or expiration did not change during inspiration with handgrip contractions but increased during expiration. During leg exercise, intraabdominal pressures increased during both inspiration and expiration, reaching peak levels at fatigue. The arterial blood pressure also reached peak levels at fatigue, independent of circulatory occlusion and tension exerted, averaging 18.5-20 kPa (140-150 mm Hg) for both handgrip and leg contractions. While blood pressure returned to resting levels following exercise with a free circulation, it declined by only 2.7-3.8 kPa after leg and handgrip exercise, respectively, during circulatory occlusion. These results indicate that straining maneuvers contribute 3.5 to 7.8 kPa to the change in blood pressure depending on body position. 相似文献
8.
Sahlin K Mogensen M Bagger M Fernström M Pedersen PK 《American journal of physiology. Endocrinology and metabolism》2007,292(1):E223-E230
The purpose of this study was to investigate fatty acid (FA) oxidation in isolated mitochondrial vesicles (mit) and its relation to training status, fiber type composition, and whole body FA oxidation. Trained (Vo(2 peak) 60.7 +/- 1.6, n = 8) and untrained subjects (39.5 +/- 2.0 ml.min(-1).kg(-1), n = 5) cycled at 40, 80, and 120 W, and whole body relative FA oxidation was assessed from respiratory exchange ratio (RER). Mit were isolated from muscle biopsies, and maximal ADP stimulated respiration was measured with carbohydrate-derived substrate [pyruvate + malate (Pyr)] and FA-derived substrate [palmitoyl-l-carnitine + malate (PC)]. Fiber type composition was determined from analysis of myosin heavy-chain (MHC) composition. The rate of mit oxidation was lower with PC than with Pyr, and the ratio between PC and Pyr oxidation (MFO) varied greatly between subjects (49-93%). MFO was significantly correlated to muscle fiber type distribution, i.e., %MHC I (r = 0.62, P = 0.03), but was not different between trained (62 +/- 5%) and untrained subjects (72 +/- 2%). MFO was correlated to RER during submaximal exercise at 80 (r = -0.62, P = 0.02) and 120 W (r = -0.71, P = 0.007) and interpolated 35% Vo(2 peak) (r = -0.74, P = 0.004). ADP sensitivity of mit respiration was significantly higher with PC than with Pyr. It is concluded that MFO is influenced by fiber type composition but not by training status. The inverse correlation between RER and MFO implies that intrinsic mit characteristics are of importance for whole body FA oxidation during low-intensity exercise. The higher ADP sensitivity with PC than that with Pyr may influence fuel utilization at low rate of respiration. 相似文献
9.
Edwards LM Holloway CJ Murray AJ Knight NS Carter EE Kemp GJ Thompson CH Tyler DJ Neubauer S Robbins PA Clarke K 《American journal of physiology. Regulatory, integrative and comparative physiology》2011,301(2):R320-R326
We recently showed that a week-long, high-fat diet reduced whole body exercise efficiency in sedentary men by >10% (Edwards LM, Murray AJ, Holloway CJ, Carter EE, Kemp GJ, Codreanu I, Brooker H, Tyler DJ, Robbins PA, Clarke K. FASEB J 25: 1088-1096, 2011). To test if a similar dietary regime would blunt whole body efficiency in endurance-trained men and, as a consequence, hinder aerobic exercise performance, 16 endurance-trained men were given a short-term, high-fat (70% kcal from fat) and a moderate carbohydrate (50% kcal from carbohydrate) diet, in random order. Efficiency was assessed during a standardized exercise task on a cycle ergometer, with aerobic performance assessed during a 1-h time trial and mitochondrial function later measured using (31)P-magnetic resonance spectroscopy. The subjects then underwent a 2-wk wash-out period, before the study was repeated with the diets crossed over. Muscle biopsies, for mitochondrial protein analysis, were taken at the start of the study and on the 5th day of each diet. Plasma fatty acids were 60% higher on the high-fat diet compared with moderate carbohydrate diet (P < 0.05). However, there was no change in whole body efficiency and no change in mitochondrial function. Endurance exercise performance was significantly reduced (P < 0.01), most probably due to glycogen depletion. Neither diet led to changes in citrate synthase, ATP synthase, or mitochondrial uncoupling protein 3. We conclude that prior exercise training blunts the deleterious effect of short-term, high-fat feeding on whole body efficiency. 相似文献
10.
Coupé M Yuan M Demiot C Bai YQ Jiang SZ Li YZ Arbeille P Gauquelin-Koch G Levrard T Custaud MA Li YH 《American journal of physiology. Regulatory, integrative and comparative physiology》2011,301(6):R1748-R1754
Whole body vibration with resistive exercise is a promising countermeasure against some weightlessness-induced dysfunctions. Our objective was to study whether the combination of low-magnitude whole body vibration with a resistive exercise can prevent the cardiovascular deconditioning induced by a nonstrict 60-day head-down bed rest (Earth Star International Bed Rest Experiment Project). Fourteen healthy men participated in this study. We recorded electrocardiograms and blood pressure waves by means of a noninvasive beat-by-beat measurement system (Cardiospace, integrated by Centre National d'Etudes Spatiales and Astronaut Center of China) during an orthostatic test (20 min of 75-degree head-up tilt test) before and immediately after bed rest. We estimated heart rate, blood pressure, cardiac output, stroke volume, total peripheral resistance, baroreflex sensitivity, and heart rate variability. Low-magnitude whole body vibration with resistive exercise prevented an increase of the sympathetic index (reflecting the sympathovagal balance of cardiac autonomic control) and limited the decrease of the spontaneous baroreflex sensitivity induced by 60 days of head-down bed rest. However, this countermeasure had very little effect on cardiac hemodynamics and did not improve the orthostatic tolerance. This combined countermeasure did not efficiently prevent orthostatic intolerance but prevents changes in the autonomic nervous system associated with cardiovascular deconditioning. The underlying mechanisms remain hypothetical but might involve cutaneous and muscular mechanoreceptors. 相似文献
11.
The effect of moderate body cooling and heating on the aftercontraction effect (ACE) was studied in muscles differing in their biomechanical functions. In the biceps muscle of the arm (a flexor muscle), the ACE increased with body cooling and tended to decrease with body heating. Heating of the deltoid muscle (an antigravity abductor) resulted in a higher ACE amplitude and shorter ACE duration, which suggests a complex interaction of the postural mechanisms that regulate the heat emission area and heat production. Cooling had no unambiguous effect on the deltoid muscle ACE. In general, ACE programming in response to thermal factors proved to depend on the biomechanical function of the muscle. 相似文献
12.
R. Harrison K. Ward E. Lee H. Razaghi C. Horne N.J. Bishop 《Journal of musculoskeletal & neuronal interactions》2015,15(2):112-122
The skeleton responds to mechanical stimulation. We wished to ascertain the magnitude and speed of the growing skeleton’s response to a standardised form of mechanical stimulation, vibration. 36 prepubertal boys stood for 10 minutes in total on one of two vibrating platforms (high (>2 g) or low (<1 g) magnitude vibration) on either 1, 3 or 5 successive days (n=12 for each duration); 15 control subjects stood on an inactive platform. Blood samples were taken at intervals before and after vibration to measure bone formation (P1NP, osteocalcin) and resorption (CTx) markers as well as osteoprotegerin and sclerostin. There were no significant differences between platform and control groups in bone turnover markers immediately after vibration on days 1, 3 and 5. Combining platform groups, at day 8 P1NP increased by 25.1% (CI 12.3 to 38.0; paired t-test p=0.005) and bone resorption increased by 10.9% (CI 3.6 to 18.2; paired t-test p=0.009) compared to baseline. Osteocalcin, osteoprotogerin and sclerostin did not change significantly. The growing skeleton can respond quickly to vibration of either high or low magnitude. Further work is needed to determine the utility of such “stimulation-testing” in clinical practice. 相似文献
13.
A Giombini F Menotti L Laudani A Piccinini F Fagnani A Di Cagno A Macaluso F Pigozzi 《Biology of sport / Institute of Sport》2015,32(3):243-247
Whole-body vibration (WBV) has been shown to enhance muscle activity via reflex pathways, thus having the potential to contrast muscle weakness in individuals with rupture of the anterior cruciate ligament (ACL). The present study aimed to compare the magnitude of neuromuscular activation during WBV over a frequency spectrum from 20 to 45 Hz between ACL-deficient and healthy individuals. Fifteen males aged 28±4 with ACL rupture and 15 age-matched healthy males were recruited. Root mean square (RMS) of the surface electromyogram from the vastus lateralis in both limbs was computed during WBV in a static half-squat position at 20, 25, 30, 35, 40 and 45 Hz, and normalized to the RMS while maintaining the half-squat position without vibration. The RMS of the vastus lateralis in the ACL-deficient limb was significantly greater than in the contralateral limb at 25, 30, 35 and 40 Hz (P<0.05) and in both limbs of the healthy participants (dominant limb at 25, 30, 35, 40 and 45 Hz, P<0.05; non dominant limb at 20, 25, 30, 35, 40 and 45 Hz, P<0.05). The greater neuromuscular activity in the injured limb compared to the uninjured limb of the ACL-deficient patients and to both limbs of the healthy participants during WBV might be due to either augmented excitatory or reduced inhibitory neural inflow to motoneurons of the vastus lateralis through the reflex pathways activated by vibratory stimuli. The study provides optimal WBV frequencies which might be used as reference values for ACL-deficient patients. 相似文献
14.
15.
The purpose of this investigation was to compare the thermoregulatory, metabolic, and perceptual effects of lower body (LBI) and whole body (WBI) immersion precooling techniques during submaximal exercise. Eleven healthy men completed two 30-min cycling bouts at 60% of maximal O(2) uptake preceded by immersion to the suprailiac crest (LBI) or clavicle (WBI) in 20 degrees C water. WBI produced significantly lower rectal temperature (T(re)) during minutes 24-30 of immersion and lower T(re), mean skin temperature, and mean body temperature for the first 24, 14, and 16 min of exercise, respectively. Body heat storage rates differed significantly for LBI and WBI during immersion and exercise, although no net differences were observed between conditions. For WBI, metabolic heat production and heart rate were significantly higher during immersion but not during exercise. Thermal sensation was significantly lower (felt colder) and thermal discomfort was significantly higher (less comfortable) for WBI during immersion and exercise. In conclusion, WBI and LBI attenuated T(re) increases during submaximal exercise and produced similar net heat storage over the protocol. LBI minimized metabolic increases and negative perceptual effects associated with WBI. 相似文献
16.
The location of the body's gravicenter in the horizontal plane was measured by means of a force platform. The 4 male subjects stood upright with eyes closed. Power-density spectra of the frontal and sagittal stabilograms were estimated. Repeated investigations made it possible to assess intraindividual variability and to evaluate significant interindividual differences. The power spectral density was not altered by a controlled sitting posture observed for 30 min. Low-frequency whole-body vibration with an exposure time of 30 min and a permissible level according to the "fatigue decreased proficiency boundary" (International Standard ISO 2631) induced a significant increase of the power spectral density below 0.25 Hz and a decrease above this frequency. The results indicate that the power density spectral analysis of stabilograms is a suitable method for evaluating a biological effect of vibration. 相似文献
17.
Michael D. Lewek 《Journal of biomechanics》2011,44(1):128-133
The use of body weight support (BWS) systems during locomotor retraining has become routine in clinical settings. BWS alters load receptor feedback, however, and may alter the biomechanical role of the ankle plantarflexors, influencing gait. The purpose of this study was to characterize the biomechanical adaptations that occur as a result of a change in limb load (controlled indirectly through BWS) and gait speed during treadmill locomotion. Fifteen unimpaired participants underwent gait analysis with surface electromyography while walking on an instrumented dual-belt treadmill at seven different speeds (ranging from 0.4 to 1.6 m/s) and three BWS conditions (ranging from 0% to 40% BWS). While walking, spatiotemporal measures, anterior/posterior ground reaction forces, and ankle kinetics and muscle activity were measured and compared between conditions. At slower gait speeds, propulsive forces and ankle kinetics were unaffected by changing BWS; however, at gait speeds ≥approximately 0.8 m/s, an increase in BWS yielded reduced propulsive forces and diminished ankle plantarflexor moments and powers. Muscle activity remained unaltered by changing BWS across all gait speeds. The use of BWS could provide the advantage of faster walking speeds with the same push-off forces as required of a slower speed. While the use of BWS at slower speeds does not appear to detrimentally affect gait, it may be important to reduce BWS as participants progress with training, to encourage maximal push-off forces. The reduction in plantarflexor kinetics at higher speeds suggests that the use of BWS in higher functioning individuals may impair the ability to relearn walking. 相似文献
18.
Harris MB Starnes JW 《American journal of physiology. Heart and circulatory physiology》2001,280(5):H2271-H2280
This study determined the role of body temperature during chronic exercise on myocardial stress proteins and antioxidant enzymes as well as functional recovery after an ischemic insult. Male Sprague-Dawley rats were exercised for 3, 6, or 9 wk in a 23 degrees C room (3WK, 6WK, and 9WK, respectively) or in a 4-8 degrees C environment with wetted fur (3WKC, 6WKC, and 9WKC, respectively). The colder room prevented elevations in core temperature. During weeks 3-9 the animals ran 5 days/wk up a 6% grade at 20 m/min for 60 min. Myocardial heat shock protein 70 (HSP 70) increased 12.3-fold (P < 0.05) in 9WK versus sedentary (SED) rats but was unchanged in the cold-room runners. Compared with SED rats, alphaB-crystallin was 90% higher in 9WKC animals, HSP 90 was 50% higher in 3WKC and 6WKC animals, and catalase was 23% higher in 3WK animals (P < 0.05 for all). Cytosolic superoxide dismutase increased and mitochondrial SOD decreased (P < 0.05) in 3WK and 6WK rats compared with 3WKC and 6WKC rats. Antioxidant enzymes returned to SED values in all runners by 9 wk. No differences were observed among any of the groups for glucose-regulated protein 75, heme oxygenase-1, or glutathione peroxidase. Mechanical recovery of isolated working hearts after 22.5 min of global ischemia was enhanced in 9WK (P < 0.05) but not in 9WKC rats. We conclude that exercise training results in dynamic changes in cardioprotective proteins over time which are influenced by core temperature. In addition, cardioprotection resulting from chronic exercise appears to be due to increased HSP 70. 相似文献
19.
D C Lloyd A A Edwards J S Prosser N Barjaktarovic J K Brown D Horvat S R Ismail G J K?teles Z Almassy A Krepinsky 《Mutation research》1987,179(2):197-208
An experiment sponsored by the International Atomic Energy Agency was undertaken to compare dose estimation by cytogenetic analysis on aliquots of samples of irradiated blood sent by air to participating laboratories. Accidental acute whole-body irradiations to 0.7 and 2.34 Gy and half-body irradiations to 3.5 Gy were simulated with X- and gamma-rays. For the partial irradiations the size of the irradiated fraction and its dose were estimated by the Qdr and contaminated Poisson techniques. Each laboratory's in vitro dose-response data were fitted to the quadratic model by the iteratively reweighted least squares method. Interlaboratory variations in dose-response curves, and in the aberration yields and dose estimates for the simulated accidents were noted. However, in general, most participants consistently obtained results acceptably close to the true values. 相似文献
20.
Cormie P McBride JM McCaulley GO 《Journal of strength and conditioning research / National Strength & Conditioning Association》2007,21(4):1042-1049
The objective of this investigation was to examine the influence of body mass in the calculation of power and the subsequent effect on the load-power relationship in the jump squat, squat, and power clean. Twelve Division I male athletes were evaluated on their performance across various intensities in all the 3 lifts. Power output was calculated using 3 separate techniques: (a) including the contribution of body mass in force output (IBM), (b) including the contribution of the mass of body less the mass of the shanks and feet in force output (IBMS), and (c) excluding the contribution of body mass in force output (EBM). Peak power, peak power relative to body mass, and peak force calculated using EBM were significantly (p < or = 0.05) lower than outputs calculated with IBM and IBMS. The load that maximized power output was unchanged between the 3 techniques in the jump squat (0% 1 repetition maximum [1RM]) and power clean (80% 1RM) but was shifted from 56% (IBM and IBMS) to 71% 1RM (EBM) in the squat. Across all 3 movements, the shape of the load-power curve was affected when derived via the EBM method as a result of the underrepresentation of power output at light loads. This was due to the majority of the load being neglected when the mass of the body was removed from the system mass used in the calculation of force. This study indicates that not only is the actual power output significantly lower when body mass is excluded from the force output of a lower body movement, but the load-power relationship is altered as well. Therefore, it is imperative that the mass of the individual being tested is incorporated into the calculation of force used to determine power output during lower-body movements. 相似文献