首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum.

Results

We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina.

Conclusions

Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-16-2) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.

Background

Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance.

Results

Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT.

Conclusions

Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1720-0) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
Li M  Liu J  Zhang C 《PloS one》2011,6(10):e26999

Background

The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear.

Methodology/Principal Findings

The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gene expression level of both MAPK genes.

Conclusions/Significance

These results provide valuable insight into the evolutionary history of the vertebrate MAPK family.  相似文献   

6.

Background

The biosynthesis of leucine is a biochemical pathway common to prokaryotes, plants and fungi, but absent from humans and animals. The pathway is a proposed target for antimicrobial therapy.

Methodology/Principal Findings

Here we identified the leuA gene encoding α-isopropylmalate synthase in the zygomycete fungus Phycomyces blakesleeanus using a genetic mapping approach with crosses between wild type and leucine auxotrophic strains. To confirm the function of the gene, Phycomyces leuA was used to complement the auxotrophic phenotype exhibited by mutation of the leu3+ gene of the ascomycete fungus Schizosaccharomyces pombe. Phylogenetic analysis revealed that the leuA gene in Phycomyces, other zygomycetes, and the chytrids is more closely related to homologs in plants and photosynthetic bacteria than ascomycetes or basidiomycetes, and suggests that the Dikarya have acquired the gene more recently.

Conclusions/Significance

The identification of leuA in Phycomyces adds to the growing body of evidence that some primary metabolic pathways or parts of them have arisen multiple times during the evolution of fungi, probably through horizontal gene transfer events.  相似文献   

7.

Background

Cyanobacteria are an ancient lineage of photosynthetic bacteria from which hundreds of natural products have been described, including many notorious toxins but also potent natural products of interest to the pharmaceutical and biotechnological industries. Many of these compounds are the products of non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways. However, current understanding of the diversification of these pathways is largely based on the chemical structure of the bioactive compounds, while the evolutionary forces driving their remarkable chemical diversity are poorly understood.

Results

We carried out a phylum-wide investigation of genetic diversification of the cyanobacterial NRPS and PKS pathways for the production of bioactive compounds. 452 NRPS and PKS gene clusters were identified from 89 cyanobacterial genomes, revealing a clear burst in late-branching lineages. Our genomic analysis further grouped the clusters into 286 highly diversified cluster families (CF) of pathways. Some CFs appeared vertically inherited, while others presented a more complex evolutionary history. Only a few horizontal gene transfers were evidenced amongst strongly conserved CFs in the phylum, while several others have undergone drastic gene shuffling events, which could result in the observed diversification of the pathways.

Conclusions

Therefore, in addition to toxin production, several NRPS and PKS gene clusters are devoted to important cellular processes of these bacteria such as nitrogen fixation and iron uptake. The majority of the biosynthetic clusters identified here have unknown end products, highlighting the power of genome mining for the discovery of new natural products.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-977) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

Protein structural domains are evolutionary units whose relationships can be detected over long evolutionary distances. The evolutionary history of protein domains, including the origin of protein domains, the identification of domain loss, transfer, duplication and combination with other domains to form new proteins, and the formation of the entire protein domain repertoire, are of great interest.

Methodology/Principal Findings

A methodology is presented for providing a parsimonious domain history based on gain, loss, vertical and horizontal transfer derived from the complete genomic domain assignments of 1015 organisms across the tree of life. When mapped to species trees the evolutionary history of domains and domain combinations is revealed, and the general evolutionary trend of domain and combination is analyzed.

Conclusions/Significance

We show that this approach provides a powerful tool to study how new proteins and functions emerged and to study such processes as horizontal gene transfer among more distant species.  相似文献   

9.
10.

Background

Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function.

Methodology/Principal Findings

To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures.

Conclusion

These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.  相似文献   

11.

Background

Anthocyanins are a group of flavonoid compounds. As a group of important secondary metabolites, they perform several key biological functions in plants. Anthocyanins also play beneficial health roles as potentially protective factors against cancer and heart disease. To elucidate the anthocyanin biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses between Arabidopsis thaliana and B. rapa on a genome-wide level.

Results

In total, we identified 73 genes in B. rapa as orthologs of 41 anthocyanin biosynthetic genes in A. thaliana. In B. rapa, the anthocyanin biosynthetic genes (ABGs) have expanded and most genes exist in more than one copy. The anthocyanin biosynthetic structural genes have expanded through whole genome and tandem duplication in B. rapa. More structural genes located upstream of the anthocyanin biosynthetic pathway have been retained than downstream. More negative regulatory genes are retained in the anthocyanin biosynthesis regulatory system of B. rapa.

Conclusions

These results will promote an understanding of the genetic mechanism of anthocyanin biosynthesis, as well as help the improvement of the nutritional quality of B. rapa through the breeding of high anthocyanin content varieties.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-426) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data.

Methodology/Principal Findings

Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection.

Conclusions/Significance

Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a “bramble” model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic “root”. Structural diversification may be constrained (“trimmed”) where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification.  相似文献   

13.

Background

It is generally agreed that horizontal gene transfer (HGT) is common in phagotrophic protists. However, the overall scale of HGT and the cumulative impact of acquired genes on the evolution of these organisms remain largely unknown.

Results

Choanoflagellates are phagotrophs and the closest living relatives of animals. In this study, we performed phylogenomic analyses to investigate the scale of HGT and the evolutionary importance of horizontally acquired genes in the choanoflagellate Monosiga brevicollis. Our analyses identified 405 genes that are likely derived from algae and prokaryotes, accounting for approximately 4.4% of the Monosiga nuclear genome. Many of the horizontally acquired genes identified in Monosiga were probably acquired from food sources, rather than by endosymbiotic gene transfer (EGT) from obsolete endosymbionts or plastids. Of 193 genes identified in our analyses with functional information, 84 (43.5%) are involved in carbohydrate or amino acid metabolism, and 45 (23.3%) are transporters and/or involved in response to oxidative, osmotic, antibiotic, or heavy metal stresses. Some identified genes may also participate in biosynthesis of important metabolites such as vitamins C and K12, porphyrins and phospholipids.

Conclusions

Our results suggest that HGT is frequent in Monosiga brevicollis and might have contributed substantially to its adaptation and evolution. This finding also highlights the importance of HGT in the genome and organismal evolution of phagotrophic eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-729) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background and Aims

The integrity and evolution of lichen symbioses depend on a fine-tuned combination of algal and fungal genotypes. Geographically widespread species complexes of lichenized fungi can occur in habitats with slightly varying ecological conditions, and it remains unclear how this variation correlates with symbiont selectivity patterns in lichens. In an attempt to address this question, >300 samples were taken of the globally distributed and ecologically variable lichen-forming species complex Tephromela atra, together with closely allied species, in order to study genetic diversity and the selectivity patterns of their photobionts.

Methods

Lichen thalli of T. atra and of closely related species T. grumosa, T. nashii and T. atrocaesia were collected from six continents, across 24 countries and 62 localities representing a wide range of habitats. Analyses of genetic diversity and phylogenetic relationships were carried out both for photobionts amplified directly from the lichen thalli and from those isolated in axenic cultures. Morphological and anatomical traits were studied with light and transmission electron microscopy in the isolated algal strains.

Key Results

Tephromela fungal species were found to associate with 12 lineages of Trebouxia. Five new clades demonstrate the still-unrecognized genetic diversity of lichen algae. Culturable, undescribed lineages were also characterized by phenotypic traits. Strong selectivity of the mycobionts for the photobionts was observed in six monophyletic Tephromela clades. Seven Trebouxia lineages were detected in the poorly resolved lineage T. atra sensu lato, where co-occurrence of multiple photobiont lineages in single thalli was repeatedly observed.

Conclusions

Low selectivity apparently allows widespread lichen-forming fungi to establish successful symbioses with locally adapted photobionts in a broader range of habitats. This flexibility might correlate with both lower phylogenetic resolution and evolutionary divergence in species complexes of crustose lichen-forming fungi.  相似文献   

15.
16.

Background

Gene duplication and horizontal gene transfer are common processes in bacterial and archaeal genomes, and are generally assumed to result in either diversification or loss of the redundant gene copies. However, a recent analysis of the genome of the soil bacterium Azotobacter vinelandii DJ revealed an abundance of highly similar homologs among carbohydrate metabolism genes. In many cases these multiple genes did not appear to be the result of recent duplications, or to function only as a means of stimulating expression by increasing gene dosage, as the homologs were located in varying functional genetic contexts. Based on these initial findings we here report in-depth bioinformatic analyses focusing specifically on highly similar intra-genome homologs, or synologs, among carbohydrate metabolism genes, as well as an analysis of the general occurrence of very similar synologs in prokaryotes.

Results

Approximately 900 bacterial and archaeal genomes were analysed for the occurrence of synologs, both in general and among carbohydrate metabolism genes specifically. This showed that large numbers of highly similar synologs among carbohydrate metabolism genes are very rare in bacterial and archaeal genomes, and that the A. vinelandii DJ genome contains an unusually large amount of such synologs. The majority of these synologs were found to be non-tandemly organized and localized in varying but metabolically relevant genomic contexts. The same observation was made for other genomes harbouring high levels of such synologs. It was also shown that highly similar synologs generally constitute a very small fraction of the protein-coding genes in prokaryotic genomes. The overall synolog fraction of the A. vinelandii DJ genome was well above the data set average, but not nearly as remarkable as the levels observed when only carbohydrate metabolism synologs were considered.

Conclusions

Large numbers of highly similar synologs are rare in bacterial and archaeal genomes, both in general and among carbohydrate metabolism genes. However, A. vinelandii and several other soil bacteria harbour large numbers of highly similar carbohydrate metabolism synologs which seem not to result from recent duplication or transfer events. These genes may confer adaptive benefits with respect to certain lifestyles and environmental factors, most likely due to increased regulatory flexibility and/or increased gene dosage.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-192) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

The duplication of autosomal genes onto the Y chromosome may be an important element in the evolution of sexual dimorphism.A previous cytological study reported on a putative example of such a duplication event in a dioecious tribe of Silene (Caryophyllaceae): it was inferred that the Y-linked MADS-box gene AP3Y originated from a duplication of the reportedly autosomal orthologAP3A. However, a recent study, also using cytological methods, indicated that AP3A is X-linked in Silenelatifolia.

Methodology/Principal Findings

In this study, we hybridized S. latifolia and S. dioicato investigate whether the pattern of X linkage is consistent among distinct populations, occurs in both species, and is robust to genetic methods. We found inheritance patterns indicative of X linkage of AP3A in widely distributed populations of both species.

Conclusions/Significance

X linkage ofAP3A and Y linkage of AP3Yin both species indicates that the genes'' ancestral progenitor resided on the autosomes that gave rise to the sex chromosomesand that neither gene has moved between chromosomes since species divergence.Consequently, our results do not support the contention that inter-chromosomal gene transfer occurred in the evolution of SlAP3Y from SlAP3A.  相似文献   

18.
19.

Background

Two major mycoparasitic lineages, the family Hypocreaceae and the genus Tolypocladium, exist within the fungal order, Hypocreales. Peptaibiotics are a group of secondary metabolites almost exclusively described from Trichoderma species of Hypocreaceae. Peptaibiotics are produced by nonribosomal peptide synthetases (NRPSs) and have antibiotic and antifungal activities. Tolypocladium species are mainly truffle parasites, but a few species are insect pathogens.

Results

The draft genome sequence of the truffle parasite Tolypocladium ophioglossoides was generated and numerous secondary metabolite clusters were discovered, many of which have no known putative product. However, three large peptaibiotic gene clusters were identified using phylogenetic analyses. Peptaibiotic genes are absent from the predominantly plant and insect pathogenic lineages of Hypocreales, and are therefore exclusive to the largely mycoparasitic lineages. Using NRPS adenylation domain phylogenies and reconciliation of the domain tree with the organismal phylogeny, it is demonstrated that the distribution of these domains is likely not the product of horizontal gene transfer between mycoparasitic lineages, but represents independent losses in insect pathogenic lineages. Peptaibiotic genes are less conserved between species of Tolypocladium and are the product of complex patterns of lineage sorting and module duplication. In contrast, these genes are more conserved within the genus Trichoderma and consistent with diversification through speciation.

Conclusions

Peptaibiotic NRPS genes are restricted to mycoparasitic lineages of Hypocreales, based on current sampling. Phylogenomics and comparative genomics can provide insights into the evolution of secondary metabolite genes, their distribution across a broader range of taxa, and their possible function related to host specificity.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1777-9) contains supplementary material, which is available to authorized users.  相似文献   

20.
Geuten K  Viaene T  Irish VF 《Annals of botany》2011,107(9):1545-1556

Background

Gene duplication has often been invoked as a key mechanism responsible for evolution of new morphologies. The floral homeotic B-group gene family has undergone a number of gene duplication events, and yet the functions of these genes appear to be largely conserved. However, detailed comparative analysis has indicated that such duplicate genes have considerable cryptic variability in their functions. In the Solanaceae, two duplicate B-group gene lineages have been retained in three subfamilies. Comparisons of orthologous genes across members of the Solanaceae have demonstrated that the combined function of all four B-gene members is to establish petal and stamen identity, but that this function was partitioned differently in each species. These observations emphasize both the robustness and the evolvability of the B-system.

Scope

We provide an overview of how the B-function genes can robustly specify petal and stamen identity and at the same time evolve through changes in protein–protein interaction, gene expression patterns, copy number variation or alterations in the downstream genes they control. By using mathematical models we explore regulatory differences between species and how these impose constraints on downstream gene regulation.

Conclusions

Evolvability of the B-genes can be understood through the multiple ways in which the B-system can be robust. Quantitative approaches should allow for the incorporation of more biological realism in the representations of these regulatory systems and this should contribute to understanding the constraints under which different B-systems can function and evolve. This, in turn, can provide a better understanding of the ways in which B-genes have contributed to flower diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号